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THE RIESZ TRANSFORM OF CODIMENSION
SMALLER THAN ONE AND THE WOLFF ENERGY

BENJAMIN JAYE, FEDOR NAZAROV, MARIA CARMEN REGUERA,
AND XAVIER TOLSA

Abstract. Fix d ≥ 2, and s ∈ (d−1, d). We characterize the non-
negative locally finite non-atomic Borel measures µ in Rd for which
the associated s-Riesz transform is bounded in L2(µ) in terms of
the Wolff energy. This extends the range of s in which the Mateu-
Prat-Verdera characterization of measures with bounded s-Riesz
transform is known.

As an application, we give a metric characterization of the re-
movable sets for locally Lipschitz continuous solutions of the frac-
tional Laplacian operator (−∆)α/2, α ∈ (1, 2), in terms of a well-
known capacity from non-linear potential theory. This result con-
trasts sharply with removability results for Lipschitz harmonic
functions.
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1. Introduction

Fix d ≥ 2, and s ∈ (d−1, d). The s-Riesz transform is the Calderón-
Zygmund operator given by convolution with the kernel K(x) = x

|x|s+1 ,

x ∈ Rd.
In this paper we characterize the non-negative locally finite non-

atomic Borel measures µ in Rd for which the associated s-Riesz trans-
form is bounded in L2(µ) in terms of the Wolff energy

W2(µ,Q) =

∫

Q

(∫ ∞

0

[µ(B(x, r) ∩Q)
rs

]2dr
r

)
dµ(x) (Q ⊂ R

d a cube).
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Theorem 1.1. Fix s ∈ (d − 1, d). Suppose that µ is a locally finite
non-atomic Borel measure in Rd. Then the s-Riesz Transform operator
associated to µ is bounded in L2(µ), in the sense that there is a constant
C ∈ (0,∞) such that

sup
ε>0

∫

x∈Rd

∣∣∣
∫

y∈Rd: |x−y|>ε
K(x− y)f(y)dµ(y)

∣∣∣
2

dµ(x) ≤ C‖f‖2L2(µ)

for every f ∈ L2(µ), if and only if there exists a constant C̃ ∈ (0,∞)
such that

(1.1) W2(µ,Q) ≤ C̃µ(Q), for every cube Q ⊂ R
d.

This statement is by no means intuitive because there is no a priori
reason for the boundedness of a Calderón-Zygmund operator coming
from the cancelation in the kernel to be equivalent to the boundedness
of a (non-linear) positive operator. The ‘only if’ direction of the theo-
rem fails for s ∈ N because the s-Riesz transform operator is bounded
on an s-plane, or more generally on a uniformly s-rectifiable set, see
[Dav2, DS], and the Wolff energy condition fails for (the s-Hausdorff
measure restricted to) an s-plane or indeed any Ahlfors-David regular
set of dimension s. It was therefore quite a surprise when Mateu-Prat-
Verdera [MPV] showed that if s ∈ (0, 1), then the s-Riesz transform
associated to µ is bounded in L2(µ) if and only if (1.1) holds. The
proof given in [MPV] is heavily rooted to the case of s ∈ (0, 1), as it
relies on the curvature technique introduced to the area by Melnikov.
Over the subsequent years, it had been conjectured that it should be
possible to extend the Mateu-Prat-Verdera characterization to cover
all s ∈ (0, d), s 6∈ Z, see for instance [Tol3, ENV1]. Here we settle the
case of s ∈ (d− 1, d). The case of s ∈ (1, d− 1)\Z remains open.

The ‘if’ direction of Theorem 1.1 holds for any s ∈ (0, d), integer or
not, and is not particularly subtle. The proof is essentially contained in
the paper [MPV], see also [ENV1]. A rather similar argument had also
previously appeared in Mattila’s paper [Mat1]. For a concise proof see
Appendix A of [JN2]. Consequently, in proving Theorem 1.1 we shall
be concerned with the statement that if µ is a measure whose associ-
ated s-Riesz transform operator is bounded in L2(µ), then (1.1) holds
for every cube.

The structure of a non-atomic measure µ whose associated s-Riesz
transform is bounded in L2(µ) has been heavily studied. It is well
known (see, for instance [Dav2] or Lemma 3.6 below) that this condition
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implies that there is a constant C > 0 such that µ(B(x, r)) ≤ Crs for
every x ∈ Rd and r > 0. Vihtilä [Vih] then proved that

µ
({
x ∈ R

d : lim inf
r→0

µ(B(x, r))

rs
> 0

})
= 0

whenever s 6∈ Z. Notice that this is a much more qualitative conclu-
sion than the Wolff energy condition in Theorem 1.1, which certainly

implies that
∫ 1

0

(
µ(B(x,r))

rs

)2 dr
r
< ∞ for µ-almost every x ∈ Rd. In spite

of all the work that has taken place since, Vihtilä’s theorem remains
the only result that tells us anything non-trivial about the structure
of general measures with bounded s-Riesz transform that covers all
non-integer s, and until recently the results that applied when s > 1
concerned only particular types of Cantor measures, see for instance
[MT, Tol2, EV].

Eiderman-Nazarov-Volberg [ENV2] subsequently made a breakthrough
in this area by showing that if s ∈ (d − 1, d), and Hs(supp(µ)) < ∞,
then µ is the zero measure. To compare this result to Theorem 1.1, we

remark that it is equivalent to the conclusion that limr→0
µ(B(x,r))

rs
= 0

for µ-almost every x ∈ Rd. (Vihtilä’s theorem only guarantees that

lim infr→0
µ(B(x,r))

rs
= 0 for µ-almost every x ∈ Rd.) The new ideas

introduced in [ENV2] played a key role in the solution of the David-
Semmes problem in co-dimension 1 recently given by Nazarov-Tolsa-
Volberg [NToV1].

A weak quantitative version of [ENV2] was proved in [JNV] involv-
ing some very weak non-linear potential of exponential type. Reguera-
Tolsa [RT] then verified Theorem 1.1 under the restrictive assumption
that the support of µ is uniformly disconnected. Finally, Jaye-Nazarov
[JN2] proved that, for general measures, Wp(µ,Q) ≤ Cµ(Q) for every
cube Q, and some large p = p(s, d) > 0. The techniques developed
in these papers will play a significant role in our analysis, as will the
Nazarov-Treil-Volberg T (1)-theorem for suppressed kernels [NTV2].

We remark that if one replaces the condition of the boundedness of
the s-Riesz transform with the (morally stronger but more qualitative)
condition of existence of principal values, then the situation is much
better understood. For instance, in [RdVT] it is shown that if s ∈ (0, d)
and µ is a finite measure satisfying Hs(supp(µ)) < ∞ along with the
growth condition µ(B(x, r)) ≤ rs for every x ∈ Rd and r > 0, then the
existence of the limit limε→0+

∫
|x−y|>εK(x−y)dµ(y) for µ-almost every
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x ∈ Rd implies that s ∈ Z.

Theorem 1.1 has an interesting consequence in the theory of the
fractional Laplacian: We say that a compact set E is α-removable (in
the Lipschitz category) if every function u that is Lipschitz continuous
in some open neighbourhood U of E, grows slowly at infinity in the

sense that
∫
Rd

|u(x)|
(1+|x|)d+αdmd(x) < ∞, and satisfies (−∆)α/2u = 0 in

U\E in the sense of distributions (see Appendix C) in fact satisfies
(−∆)α/2u = 0 in U .

Theorem 1.2. Fix α ∈ (1, 2). A compact set E is α-removable in the
Lipschitz category if and only if it cannot support a non-zero measure
µ with

(1.2) sup
x∈Rd

∫ ∞

0

(µ(B(x, r))

rd−α+1

)2dr

r
<∞, ,

which is to say that cap2
3
(α−1),

3
2
(E) = 0 in the language of non-linear

potential theory (see [AH]).

We refer to the book [AH] for more information on the capacity
cap2

3
(α−1),

3
2
(E), including its role in approximation theory for Sobolev

spaces. It was previously known that non-removable sets for the α-
Laplacian with α ∈ (1, 2) necessarily have infinite (d−α+1)-dimensional
Hausdorff measure, and this was a consequence of the theorem in
[ENV2] mentioned above. Theorem 1.2 follows from Theorem 1.1 along
with Prat’s [Pra] extension of the theorems of Tolsa [Tol3] on analytic
capacity and Volberg [Vol] on Lipschitz harmonic capacity (see Appen-
dix C for more details).
The direct analogue of Theorem 1.2 fails for the Laplacian opera-

tor (α = 2), where hyperplanes are non-removable for the Lipschitz
harmonic functions1. See Nazarov-Tolsa-Volberg [NToV2] for a char-
acterization of the sets of finite (d− 1)-dimensional Hausdorff measure
that are removable for Lipschitz harmonic functions in terms of recti-
fiability.

1Notice two things: (1) the function max(xd, 0) (x = (x1, . . . , xd) ∈ Rd) is a
Lipschitz harmonic function outside of the hyperplane {xd = 0} that is obviously
not harmonic in Rd, and (2) a hyperplane cannot even support a nonzero measure µ

with limr→0
µ(B(x,r))

rd−1 = 0 at µ-almost every point x ∈ Rd, a much weaker condition

than (1.2) with α = 2.
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Part 0: Preliminaries

2. Notation

Fix d ≥ 2 and s ∈ (d− 1, d). We set K(x) = x
|x|s+1 to be the s-Riesz

kernel.
By a measure, we shall always mean a non-atomic non-negative lo-

cally finite Borel measure. Consequently, the Borel regularity theorem
(Chapter 1 of [Mat]) will apply to any measure we consider, meaning
that for every measure µ, and Borel set E ⊂ Rd with µ(E) < ∞, we
have

µ(E) = sup
{
µ(K) : K compact, K ⊂ E

}

= inf
{
µ(U) : U open, U ⊃ E

}
.

We denote by supp(µ) the closed support of µ.
For a cube Q ⊂ Rd, ℓ(Q) denotes its side-length. We shall write

ℓ(Q) ≍ ℓ if ℓ
2
≤ ℓ(Q) ≤ ℓ. For A > 0, we denote by AQ the cube

concentric to Q of sidelength Aℓ(Q).
We define the ratio of two cubes Q and Q′ by

[Q′ : Q] =
∣∣∣log2

ℓ(Q′)

ℓ(Q)

∣∣∣.

The density of a cube Q (with respect to a measure µ) is given by

Dµ(Q) =
µ(Q)

ℓ(Q)s
, while the density of an open ball B(x, r) is defined by

Dµ(B(x, r)) =
µ(B(x, r))

rs
.

For a set U ⊂ Rd, we denote by Lip0(U) the set of Lipschitz contin-
uous functions that are compactly supported in the interior of U .
For a set E ⊂ Rd, and a function f defined on E (either scalar or

vector valued), we set

oscE(f) = sup
x,x′∈E

|f(x)− f(x′)|.

Normally, we shall denote a large positive constant by C and a small
positive constant by c. When new constants have to be defined in terms
of some previously chosen ones, we number them. The conventions are
that all constants may depend on d and s in addition to parameters
explicitly mentioned in parentheses, and a numbered constant with
index j can be chosen in terms of constants with indices less than j
(say, C12 can be chosen in terms of c4 and C10).
We will also use the notation A ≪ B to mean A < c0B where

c0 = c0(s, d) > 0 is a sufficiently small positive constant (its choice
does not depend on any other constants in the paper and can be made
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at the very beginning). Every time this notation is used, it should be
read as “the following argument is true, provided that c0 was chosen
small enough”. The statement A≫ B is equivalent to B ≪ A.

2.1. The lattice D of triples of dyadic cubes. Let Q denote a
dyadic lattice.
Let D = D(Q) denote the lattice of concentric triples of open dyadic

cubes from Q. Cubes in D are therefore not disjoint on a given level,
but have finite overlap.
Set Q0 = 3(0, 1)d = (−1, 2)d. For a cube Q ∈ D, we set LQ to be the

canonical linear map (a composition of a dilation and a translation)
satisfying LQ(Q0) = Q.
The cubes in D have a natural family tree: A cube P ∈ D is the

ancestor of Q ∈ D of sidelength 2mℓ(Q), m ≥ 0, if P = 3P and Q = 3Q
where P is the unique dyadic cube containing Q with ℓ(P ) = 2mℓ(Q).
If m = 2 we call the corresponding ancestor of Q its grandparent.

Lemma 2.1. Suppose that Q = 3Q ∈ D, and P is any cube that

intersects Q with ℓ(P ) ≤ ℓ(Q). Then the grandparent Q̃ of Q contains
P (in fact, it contains the whole of 3Q).

Proof. The cube Q̃ is the triple of a cube Q̃ that contains Q, and

ℓ(Q̃) = 4ℓ(Q). Consequently, it follows that Q̃ = 3Q̃ ⊃ 9Q = 3Q,
which yields the claim. �

We endow the dyadic lattice Q with a graph structure Γ(Q) by con-
necting each dyadic cube with an edge to its children, parent, and all
neighbouring cubes of the same sidelength. The graph distance on Q
is the shortest path from Q ∈ Q to Q′ ∈ Q in the graph Γ(Q).
For Q,Q′ ∈ D, the symbol d(Q,Q′) denotes the graph distance be-

tween the dyadic cubes Q and Q′ with Q = 3Q and Q′ = 3Q′.

2.2. Weak Limits. We next collect the standard facts regarding weak
limits of measures that we shall use in two blow up arguments. A good
reference for the material here is Chapter 1 of [Mat].
We say that a sequence of measures µk converges weakly to a measure

µ if

lim
k→∞

∫

Rd

fdµk =

∫

Rd

fdµ for every f ∈ C0(R
d),

where C0(R
d) denotes the set of compactly supported continuous func-

tions on Rd.
The separability of the space C0(R

d), along with the Riesz represen-
tation theorem, yields the following compactness result:
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Lemma 2.2 (Weak compactness). If µk is a sequence of measures that
satisfy

sup
k
µk(B(0, R)) <∞ for every R > 0,

then the sequence has a weakly convergent subsequence.

Using the Borel regularity theorem, it is not hard to prove the fol-
lowing semi-continuity properties of the weak limit.

Lemma 2.3 (Semi-continuity of the weak limit). Suppose that µk con-
verge weakly to µ. Then

(1) µ(U) ≤ lim infk→∞ µk(U) for any open set U ,
(2) µ(K) ≥ lim supk→∞ µk(K) for any compact set K,
(3) If Kk are compact sets that converge to a compact set K in

Hausdorff metric, then

µ(K) ≥ lim sup
k→∞

µk(Kk).

3. A primer on singular integrals

Our approach calls for careful notation, as we shall need to study
the convolution of a singular kernel with a measure from several stand-
points.

3.1. The potential of a finite measure. Suppose that ν is a finite
signed measure. Then the integral

∫
Rd
K(x − y)dν(y) converges abso-

lutely for md-almost every x ∈ Rd. Thus we can define the potential

R(ν)(x) =

∫

Rd

K(x− y)dν(y)

for md-almost every x ∈ Rd, and for every x 6∈ supp(ν).
Moreover, if ν has bounded density with respect to md, then the

potential R(ν) is a bounded continuous function on Rd that converges
to zero at infinity.
Similarly, for a finite signed vector valued measure ν = (ν1, . . . , νd),

we can define the adjoint Riesz transform

R∗(ν)(x) =

∫

Rd

K(x− y) · dν(y) =
n∑

j

∫

Rd

xj − yj
|x− y|s+1

dνj(y)

for md-almost every x ∈ Rd.
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3.2. Diffuse measures and an associated bilinear form. Let k(·, ·)
be an anti-symmetric kernel satisfying |k(x, y)| ≤ 1

|x−y|s for x, y ∈ Rd,

x 6= y.
A measure µ is said to be diffuse in an open set U ⊂ Rd if the

function (x, y) → χU (x)χU (y)
|x−y|s−1 belongs to L1

loc(U ×U, µ×µ), that is, if for

any compact set K ⊂ U ,
∫∫

K×K

1

|x− y|s−1
dµ(x)dµ(y) <∞.

If we say that a measure is diffuse (without reference to an open set),
we shall mean that it is diffuse in the entire space Rd.
For a measure µ that is diffuse in an open set U , and for f, ψ ∈

Lip0(U), we may define

(3.1) 〈T (fµ), ψ〉µ =
∫∫

Rd×Rd

k(x, y)Hf,ψ(x, y)dµ(x)dµ(y),

where

Hf,ψ =
1

2

[
f(y)ψ(x)− ψ(y)f(x)

]
.

Notice that Hf,ψ is a Lipschitz continuous function on Rd × Rd with
Hf,ψ(x, x) = 0 for x ∈ Rd. Consequently, |Hf,ψ(x, y)| ≤ C(f, ψ)|x− y|
for x, y ∈ Rd. On the other hand, Hf,ψ is clearly supported in some
compact subset S of U . Therefore,
∫∫

Rd×Rd

|k(x, y)||Hf,ψ(x, y)|dµ(x)dµ(y) ≤C(f, ψ)
∫∫

S×S

1

|x− y|s−1
dµ(x)dµ(y),

and the right hand side here is finite since µ is diffuse.
In the event that

∫
Rd×Rd

|k(x, y)||f(y)||ψ(x)|dµ(x)dµ(y) < ∞, then

we can write 〈T (fµ), ψ〉µ =
∫
Rd×Rd

k(x, y)f(y)ψ(x)dµ(x)dµ(y).

In the case when k(x, y) = K(x − y) is the Riesz kernel, we shall
denote the bilinear form by 〈R(fµ), ψ〉µ.

3.3. The extension of the bilinear form to an operator Tµ. If
there exists C > 0 such that

(3.2) |〈T (fµ), ψ〉µ| ≤ C‖f‖L2(µ)‖ψ‖L2(µ)

for every f, ψ ∈ Lip0(R
d), then by duality we can find a (unique)

bounded linear operator Tµ : L2(µ) 7→ L2(µ) with norm at most C,
satisfying

〈Tµ(f), ψ〉µ = 〈T (fµ), ψ〉µ whenever f, ψ ∈ Lip0(R
d).
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Lemma 3.1. Suppose that µ is a diffuse measure, and Tµ : L2(µ) →
L2(µ). For a Borel set E ⊂ Rd, set µ′ = χEµ. Then

〈Tµ(χEf), ψχE〉µ = 〈T (fµ′), ψ〉µ′
for any f, ψ ∈ Lip0(R

d).

Proof. Fix f, ψ ∈ Lip0(R
d). According to the Borel regularity theorem,

we can find a sequence gk ∈ Lip0(R
d) such that 0 ≤ gk ≤ 1 on Rd and

gk → χE pointwise µ-almost everywhere on Rd.
But then fgk and ψgk converge to f and ψ respectively in L2(µ),

and so
〈Tµ(χEf), ψχE〉µ = lim

k→∞
〈Tµ(fgk), ψgk〉µ.

Now, for each k,

〈Tµ(fgk), ψgk〉µ =

∫∫

Rd×Rd

k(x, y)Hf,ψ(x, y)gk(x)gk(y)dµ(x)dµ(y).

But the function (x, y) 7→ k(x, y)Hf,ψ(x, y) ∈ L1(µ × µ), so the domi-
nated convergence theorem yields that

lim
k→∞

∫∫

Rd×Rd

k(x, y)Hf,ψ(x, y)gk(x)gk(y)dµ(x)dµ(y)

=

∫∫

E×E

k(x, y)Hf,ψ(x, y)dµ(x)dµ(y),

and the lemma follows. �

Corollary 3.2. If Tµ is bounded in L2(µ), and µ′ = χEµ, where E
is a Borel set, then Tµ′ is bounded in L2(µ′) and for every f ∈ L2(µ)
Tµ′(f) = Tµ(fχE) µ′-almost everywhere.

Let’s now assume that µ is a finite diffuse measure and Tµ is bounded
on L2(µ), let us now suppose that f, ψ ∈ L2(µ) satisfy

dist(supp(f), supp(ψ)) > 0.

Then we can find sequences fn and ψn of functions in Lip0(R
d) such

that

dist(supp(fn), supp(ψn)) ≥ 1
2
dist(supp(f), supp(ψ)) for every n ∈ N,

while fn → f and ψn → ψ in L2(µ) respectively. Then

〈Tµ(fn), ψn〉µ = 〈T (fnµ), ψn〉µ

=

∫∫

Rd×Rd

k(x, y)fn(y)ψn(x)dµ(x)dµ(y),
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where in the second equality we have used the separation in the sup-
ports of fn and ψn to rewrite (3.1) in the stated manner. But now,
we may readily use the dominated convergence theorem to pass to the
limit to obtain that

〈Tµ(f), ψ〉µ =
∫∫

Rd×Rd

k(x, y)f(y)ψ(x)dµ(x)dµ(y).

In particular, we have the following lemma:

Lemma 3.3. Suppose that µ is a finite diffuse measure, Tµ is bounded
in L2(µ), and f ∈ L2(µ). Then for µ-almost every x ∈ Rd\ supp(f) we
have that

Tµ(f)(x) =
∫

Rd

k(x, y)f(y)dµ(y).

Our next lemma will be used in order to apply certain T (1)-theorems
from the literature. We shall suppose that, for every δ > 0, there is a
bounded anti-symmetric kernel kδ such that

• |kδ(x, y)| ≤ |k(x, y)| for x, y ∈ Rd, x 6= y, and
• limδ→0+ kδ(x, y) = k(x, y) whenever x 6= y.

Lemma 3.4. Suppose that µ is a finite diffuse measure, and there is
a family of kernels kδ for δ > 0 satisfying the above assumptions and
also that there is a constant C > 0 such that

sup
δ>0

∫

Rd

∣∣∣
∫

Rd

kδ(x, y)f(y)dµ(y)
∣∣∣
2

dµ(x) ≤ C‖f‖2L2(µ)

for every f ∈ L2(µ). Then,

|〈T (fµ), ψ〉µ| ≤ C‖f‖L2(µ)‖ψ‖L2(µ)

for every f, ψ ∈ Lip0(R
d).

Proof. Using anti-symmetry of the kernel kδ, along with the Cauchy-
Schwarz inequality, we have that for any δ > 0 and f, ψ ∈ Lip0(R

d).
∣∣∣
∫∫

Rd×Rd

kδ(x, y)Hf,ψ(x, y)dµ(x)dµ(y)
∣∣∣≤ C‖f‖L2(µ)‖ψ‖L2(µ).

On the other hand, since µ is diffuse, the dominated convergence the-
orem yields that

∣∣∣
∫∫

Rd×Rd

k(x, y)Hf,ψ(x, y)dµ(x)dµ(y)
∣∣∣≤ C‖f‖L2(µ)‖ψ‖L2(µ)

for every f, ψ ∈ Lip0(R
d). �
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3.4. The truncated Riesz transform and diffuseness.

Lemma 3.5. Fix a (non-atomic) measure µ. If

sup
ε>0

∫

x∈B

∣∣∣
∫

y∈B: |x−y|>ε

K(x− y)dµ(y)
∣∣∣
2

dµ(x) ≤ µ(B),

for some ball B = B(x0, r), then µ is diffuse in B, and moreover∫∫

B×B

1

|x− y|s−1
dµ(x)dµ(y) ≤ 2rµ(B).

Proof. Suppose that G ∈ L2(µ) is a vector field. From the antisymme-
try of the kernel K, we infer that

∣∣∣
∫∫

(x,y)∈B×B
|x−y|>ε

K(x− y) · (G(x)−G(y))dµ(x)dµ(y)
∣∣∣

≤ 2
∣∣∣
∫

x∈B
G(x) ·

[∫

y∈B: |x−y|>ε
K(x− y)dµ(y)dµ(x)

]∣∣∣,

and by the assumption of the lemma, we have that
∣∣∣
∫

x∈B
G(x) ·

[∫

y∈B: |x−y|>ε
K(x− y)dµ(y)dµ(x)

]∣∣∣≤ ‖G‖L2(µ)

√
µ(B).

Now, let G(x) = (x− x0)χB. Then∫∫

(x,y)∈B×B
|x−y|>ε

1

|x− y|s−1
dµ(x)dµ(y)

=

∫∫

(x,y)∈B×B
|x−y|>ε

K(x− y) · [G(x)−G(y)]dµ(x)dµ(y).

But ‖G‖L2(µ) ≤ r
√
µ(B), and the set {(x, x) : x ∈ Rd} is µ × µ

null because µ is non-atomic, so the lemma follows from the monotone
convergence theorem. �

The next lemma is in fact well known for all s ∈ (0, d), see for
instance David [Dav2]. We provide a quick proof in the case s > 1 that
will suffice for our purposes.

Lemma 3.6. Let s ∈ (1, d). Suppose that µ is a (non-atomic) measure
such that

sup
ε>0

∫

Rd

∣∣∣
∫

Rd: |x−y|>ε
K(x− y)f(y)dµ(y)

∣∣∣
2

dµ(x) ≤ ‖f‖2L2(µ)
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for every f ∈ L2(µ). Then there is a constant C > 0 such that
Dµ(B(x, r)) ≤ C for every x ∈ Rd and r > 0. Consequently µ is
diffuse and so

|〈R(fµ), ϕ〉µ| ≤ ‖f‖L2(µ)‖ϕ‖L2(µ) for every f, ϕ ∈ Lip0(R
d).

Proof. From Lemma 3.5 we infer that for every ball B = B(x0, r),∫∫

B×B

1

|x− y|s−1
dµ(x)dµ(y) ≤ 2rµ(B),

which yields that µ(B(x0, r)) ≤ 2srs if s > 1. But now we have that µ
is diffuse, and so an application of Lemma 3.4 completes the proof. �

3.5. Restricted growth at infinity and reflectionless measures.
If µ is diffuse in an open set U ⊂ Rd and has restricted growth at
infinity, in the sense that

∫
|x|≥1

1
|x|s+1dµ(x) < ∞, then we may define

the pairing 〈R(fµ), ϕ〉µ when f ∈ Lip0(U) satisfies
∫
Rd
f dµ = 0, and

ϕ is merely a bounded Lipschitz function. To do this, fix ψ ∈ Lip0(U)
that is identically equal to 1 on a neighbourhood of the support of f ,
and set

〈R(fµ), ϕ〉µ = 〈R(fµ), ψϕ〉µ +
∫

Rd

R(fµ)(x)[1− ψ(x)]ϕ(x) dµ(x).

The mean zero property of f ensures that |R(fµ)(x)| ≤ Cf,ψ
(1+|x|)s+1 for

x ∈ supp(1−ψ), which combined with the restricted growth at infinity
implies that the second integral converges absolutely. The value of
〈R(fµ), ϕ〉µ does not depend on the particular choice of ψ.
We say that a measure µ, diffuse in U with restricted growth at

infinity, is reflectionless in U if

〈R(fµ), 1〉µ = 0 for every f ∈ Lip0(U) satisfying

∫

Rd

f dµ = 0.

If we say that a measure is reflectionless without reference to an open
set U , we mean that it is reflectionless in the entire space Rd.

4. A revised statement

We now reduce Theorem 1.1 to the statement that we shall spend
the remainder of the paper proving. First notice that there is a constant
C > 0 such that for any measure µ, and any x ∈ Rd,

∫∞
0
Dµ(B(x, r))2 dr

r
≤

C
∑

Q∈DDµ(Q)
2χQ(x). Therefore

∫

Rd

[∫ ∞

0

Dµ(B(x, r))2
dr

r

]
dµ(x) ≤ C

∑

Q∈D
Dµ(Q)

2µ(Q).
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Suppose that a non-atomic measure µ satisfies

(4.1) sup
ε>0

∫

Rd

∣∣∣
∫

Rd: |x−y|>ε
K(x− y)f(y)dµ(y)

∣∣∣
2

dµ(x) ≤ ‖f‖2L2(µ)

for every f ∈ L2(µ). Then for any cube Q, the inequality (4.1) contin-
ues to hold if we replace the measure µ with its restriction to Q. In
addition, Lemma 3.6 ensures that supx∈Rd, r>0Dµ(B(x, r)) is bounded
by some absolute constant. Therefore, in order to prove (the ‘only if’
direction of) Theorem 1.1, it suffices to establish the following result:

Theorem 4.1. Let s ∈ (d − 1, d). Suppose that µ is a finite measure
satisfying the growth condition supx∈Rd, r>0Dµ(B(x, r)) <∞. If

(4.2) |〈R(fµ), 1〉µ| ≤ ‖f‖L2(µ)

√
µ(Rd)

for every f ∈ Lip0(R
d) with

∫
Rd
fdµ = 0. Then

∑

Q∈D
Dµ(Q)

2µ(Q) ≤ Cµ(Rd),

where C > 0 depends only on s and d.

5. The general scheme: Finding a large Lipschitz
oscillation coefficient

Fix a (locally finite non-negative Borel) measure µ. For A > 0, and
a cube Q ∈ D, define the set of functions

ΨA
µ (Q) =

{
ψ ∈ Lip0(AQ) : ‖ψ‖Lip ≤ 1

ℓ(Q)
,

∫

Rd

ψdµ = 0
}
.

The system ΨA
µ (Q) (Q ∈ D) forms a Riesz system, that is, there exists

a constant C(A) > 0, such that for any sequence (aQ)Q ∈ ℓ2(D) with
only finitely many non-zero entries, and every choices of ψQ ∈ ΨA

µ (Q)
(Q ∈ D),

∥∥∥
∑

Q∈D

aQψQ√
µ(3AQ)

∥∥∥
2

L2(µ)
≤ C(A)‖aQ‖2ℓ2.

The reader may consult Appendix B of [JN2] for the simple proof of
this fact.
If µ is diffuse in AQ with restricted growth at infinity, we may define

the Lipschitz oscillation coefficient

ΘA
µ (Q) = sup

ψ∈ΨAµ (Q)

|〈R(ψµ), 1〉µ|.
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If in addition µ is a finite measure such that (4.2) holds, then we
obtain from the Riesz system property and duality that for any choices
of ψQ ∈ ΨA

µ (Q) (Q ∈ D),

(5.1)
∑

Q∈D

|〈R(ψQµ), 1〉µ|2
µ(3AQ)

≤ C(A)µ(Rd).

To verify this, we may assume that only finitely many functions ψQ
are chosen to be non-zero. Then the left hand side of the previous
inequality equals the square of

∑

Q∈D

aQ · 〈R(ψQµ), 1〉µ√
µ(3AQ)

,

for some finite (vector valued) sequence aQ = (a
(1)
Q , . . . , a

(d)
Q ) with ‖aQ‖ℓ2 ≤

1. This in turn can be bounded by
∑d

j=1 |〈R(fjµ), 1〉µ|, where

fj =
∑

Q∈D

a
(j)
Q ψQ√
µ(3AQ)

.

But the Riesz system property tells us that ‖fj‖L2(µ) ≤ C(A). Thus,
from (4.2) we infer that for each j ∈ {1, . . . , d}, |〈R(fjµ), 1〉µ| ≤
C(A)

√
µ(Rd), and so (5.1) follows.

We arrive at the following simple lemma (see also [JN2] Lemma 4.2).

Lemma 5.1. Suppose that µ is a finite diffuse measure and (4.2) holds.
Let F(µ) ⊂ D. If there exist A > 0 and ∆ > 0 such that

ΘA
µ (Q) ≥ ∆Dµ(Q)µ(Q) for every Q ∈ F(µ),

then

(5.2)
∑

Q∈F(µ)

Dµ(Q)
2 µ(Q)

µ(3AQ)
µ(Q) ≤ C(A)

∆2
µ(Rd).

Our goal is to find a rule F that associates to each measure µ some
family of cubes F(µ) ⊂ D, along with universal constants A > 0,
∆ > 0, and c > 0, so that the following two things occur:
(A) (LargeWolff Potential). If a measure µ satisfies supQ∈DDµ(Q) <

∞, then

(5.3)
∑

Q∈F(µ)

Dµ(Q)
2 µ(Q)

µ(3AQ)
µ(Q) ≥ c

∑

Q∈D
Dµ(Q)

2µ(Q).

(B) (Large Lipschitz Oscillation Coefficient). For any measure µ and
Q ∈ F(µ), we have that µ is diffuse in AQ with restricted growth at
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infinity, and moreover

(5.4) ΘA
µ (Q) ≥ ∆Dµ(Q)µ(Q).

Once such a rule has been found, Theorem 4.1 will follow from
Lemma 5.1 by comparing (5.2) and (5.3).
For a fixed rule F under consideration, establishing whether (A)

holds is usually a routine matter. To prove (B) we would like to argue
via contradiction. We shall assume that there exist no universal A and
∆ so that (5.4) holds. Then, for arbitrarily large A≫ 1, we can find a
measure µ and a cube Q ∈ F(µ) so that the quotient

ΘA
µ (Q)

Dµ(Q)µ(Q)

is arbitrarily small. Re-scaling the cube Q to Q0, and re-scaling the
measure µ accordingly so that µ(Q0) = 1, we thereby arrive at a se-
quence of measures µk satisfying µk(Q0) = 1 and ΘA

µk
(Q0) → 0 as

k → ∞. Provided that the measures µk are sufficiently regular (we
shall require that they are uniformly diffuse in AQ0, as defined in Sec-
tion 9), we may pass to the weak limit to deduce that there is a measure
µ with µ(Q0) ≥ 1 that is reflectionless in AQ0. The game then becomes
to exploit any properties that µ has inherited from the rule F to pre-
clude its existence if A is sufficiently large, and so conclude that (B)
holds after all.
As such, there are two distinct parts of the proof needed to establish

(B) via contradiction:
Part I: A blow-up argument leading to the existence of a certain

reflectionless measure.
Part II: Proving the non-existence of said reflectionless measure.
The blow-up techniques presented in this paper (Sections 10–16) can

be trivially adapted to any s-dimensional Calderón-Zygmund operator
with smooth (away from the diagonal) homogeneous kernel with s ∈
(0, d). It is the non-existence results that require the restriction to the
s-Riesz transform with s ∈ (d− 1, d).
Examples of diffuse measures with restricted growth at infinity that

are reflectionless in Rd for the s-Riesz transform with s ∈ (d − 1, d)
include md (the d-dimensional Lebesgue measure on Rd), Hd−1|L for
some hyperplane L (the d−1-dimensional Hausdorff measure restricted
to a hyperplane), and

∑
j∈ZHd−1|L+jv, where L is a hyperplane and v

is a vector perpendicular to L. If one could provide a full description of
the reflectionless measures associated to the s-Riesz transform, then it
is likely that a much more straightforward proof of Theorem 4.1 could
be found. This, however, remains an interesting open problem.
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In lieu of a complete description of the reflectionless measures for
the s-Riesz transform, we employ two non-existence results for reflec-
tionless measures. Firstly, we use Proposition 9.2 below, which is the
main technical result for the Riesz transform from [JN2]. The sec-
ond non-existence result and its proof occupies the latter half of this
paper (beginning in Section 17), and is a synthesis of the techniques
introduced in [ENV2] and [RT].
Currently, all non-existence results (at least for s > 1) rely heavily on

the theory of the differential operator associated to the Riesz transform
(i.e., the fractional Laplacian). While there is a degree to which this
is natural, we suspect that our techniques are currently overreliant on
this relationship.
We shall make use of two refining procedures on the lattice D in

defining the rule F . These procedures are introduced in the next two
sections.

6. Upward domination

Fix B ≫ 1, 0 < a ≪ 1, and 0 < ε ≪ 1. From the start, we shall
assume that a−1 ≪ B. Eventually a−1 will be chosen to be of the order
of a very small positive power of B. We shall assume that a and B are
both powers of 2.
Fix a measure µ.

Definition 6.1. We say that Q′ ∈ D dominates Q ∈ D from above if
aBQ′ ⊃ BQ and

Dµ(Q
′) ≥ 2ε[Q

′:Q]Dµ(Q).

The set of those cubes in D that cannot be dominated from above by
another cube in D is denoted by Dsel(µ) (or just Dsel).

Of course, in order for Q′ to dominate Q from above we must have
that ℓ(Q′) > ℓ(Q). Also notice that domination from above is transi-
tive: If Q′ dominates Q from above, and Q′′ dominates Q′ from above,
then Q′′ dominates Q from above.
We begin by showing that cubes in Dsel make up a noticeable portion

of the Wolff potential.

Lemma 6.2. Suppose that supQ∈DDµ(Q) < ∞. Then there exists a
constant c(B, ε) > 0 such that

∑

Q∈Dsel(µ)

Dµ(Q)
2µ(BQ) ≥ c(B, ε)

∑

Q∈D
Dµ(Q)

2µ(BQ).

Proof. We first claim that every Q ∈ D\Dsel that satisfies µ(Q) > 0

can be dominated from above by a cube Q̃ ∈ Dsel.
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To see this, first note that if Q′ dominates Q from above, then we
must have that

[Q′ : Q] ≤ 1

ε
log2

(supQ′′∈DDµ(Q
′′)

Dµ(Q)

)
,

or else Q′ would have density larger than supQ′′∈DDµ(Q
′′). As any such

Q′ must also satisfy aBQ′ ⊃ BQ, we see that there are only finitely
many candidates for a cube that dominates Q from above.

We choose Q̃ ∈ D to be a cube of maximal sidelength that dominates
Q from above. Since domination from above is transitive, we conclude

that Q̃ ∈ Dsel. The claim is proved.

Now, for each Q ∈ D\Dsel with µ(Q) > 0, we choose a cube Q̃ ∈ Dsel

that dominates Q from above. Certainly we have that BQ ⊂ aBQ̃ ⊂
BQ̃.
For each fixed P ∈ Dsel, write∑

Q∈D\Dsel:Q̃=P

Dµ(Q)
2µ(BQ) =

∑

m≥1

∑

Q∈D\Dsel:

ℓ(Q)=2−mℓ(P ),Q̃=P

Dµ(Q)
2µ(BQ)

≤
∑

m≥1

2−2εmDµ(P )
2
[ ∑

Q∈D:
ℓ(Q)=2−mℓ(P ),BQ⊂BP

µ(BQ)
]

We examine the term in square brackets. The sum is taken over cubes
Q of a fixed level, with BQ ⊂ BP . Consequently, it is bounded by
CBdµ(BP ).
By summing over such P ∈ Dsel, we see that

∑

Q∈D\Dsel

Dµ(Q)
2µ(BQ) ≤ C(B, ε)

∑

Q∈Dsel

Dµ(Q)
2µ(BQ).

This inequality clearly proves the lemma. �

Before continuing, we fix a parameter regime

(6.1) Bε ≤ 2,

and a−2 ≪ B (much more than this will be assumed in due course).

Lemma 6.3. If a cube Q′′ ∩ BQ 6= ∅, and ℓ(Q′′) ≥ 4
a
ℓ(Q), then

aBQ′′ ⊃ BQ.

Proof. There is a point z ∈ Q′′ ∩BQ. But then the cube Q̃ centred at
z of sidelength

(
aB − 1

)
ℓ(Q′′) is contained in aBQ′′. Since aB > 2,

we have that aB − 1 ≥ aB
2
. On the other hand ℓ(Q′′) ≥ 4

a
ℓ(Q), and so(

aB − 1
)
ℓ(Q′′) ≥ 2Bℓ(Q). Thus Q̃ ⊃ BQ, which yields the claim. �
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Lemma 6.4. There is a constant C1 > 0 (depending on s and d)
such that if Q ∈ Dsel, then for any cube Q′ (not necessarily in D) that
satisfies Q′ ∩ BQ 6= ∅ and ℓ(Q′) ≥ a−1ℓ(Q), we have

(6.2) Dµ(Q
′) ≤ C12

ε[Q′:Q]Dµ(Q).

Proof. Certainly the cube 4Q′ intersects BQ, and ℓ(4Q′) ≥ 4
a
ℓ(Q). So

Lemma 6.3 ensures that aB(4Q′) ⊃ BQ. On the other hand, if we
choose a cube P ∈ D of sidelength between 4ℓ(Q′) and 8ℓ(Q′) that

intersects 4Q′, then its grandparent P̃ contains 4Q′ (this is Lemma

2.1). Consequently, aBP̃ ⊃ BQ, and, since Q ∈ Dsel we have

Dµ(P̃ ) ≤ 2ε[P̃ :Q]Dµ(Q).

We need now only notice that P̃ ⊃ Q′ and ℓ(P̃ ) ≤ Cℓ(Q′) to deduce
that Dµ(Q

′) ≤ C2ε[Q
′:Q]Dµ(Q), and the lemma follows. �

Corollary 6.5. If Q ∈ Dsel, and Q
′ is any cube, then the following two

statements hold:

(1) if Q′ ∩ BQ 6= ∅ satisfies a−1ℓ(Q) ≤ ℓ(Q′) ≤ Bℓ(Q), then
Dµ(Q

′) ≤ 2C1Dµ(Q),
(2) if Q′∩ B

2
Q 6= ∅ satisfies ℓ(Q) ≤ ℓ(Q′) ≤ Bℓ(Q), then Dµ(Q

′) ≤
2·4sC1

as
Dµ(Q).

Proof. In the case of statement (1), we have that 2ε[Q
′:Q] ≤ 2ε log2B ≤ 2,

where (6.1) has been used in the final inequality. Plugging this into
(6.2) yields the statement.
The second estimate is only not already proved in the case that

ℓ(Q′) ≤ 1
a
ℓ(Q). But in this case, consider the enlargement Q′′ = 4

a
Q′.

Then ℓ(Q′′) < Bℓ(Q′) as a−2 ≪ B, and so

Dµ(Q
′) ≤ 4s

as
Dµ(Q

′′) ≤ 2
4sC1

as
Dµ(Q),

where the second inequality follows from statement (1). �

Lemma 6.6. There is a constant C2 > 0 such that if Q ∈ Dsel, and
Q′ ∈ D\Dsel satisfies Q

′∩ 1
2
BQ 6= ∅ and Dµ(Q

′) ≥ C2a
−s2ε[Q:Q′]Dµ(Q),

then every cell Q′′ ∈ Dsel dominating Q′ from above satisfies

BQ′′ ⊂ BQ.

Proof. For the claimed inclusion to fail, we must have that a dominating
cube Q′′ satisfies ℓ(Q′′) ≥ 1

2
ℓ(Q). In this case, we infer from Lemma 6.3

that Q̃′′, the ancestor ofQ′′ of sidelength 16
a
ℓ(Q′′), satisfies aBQ̃′′ ⊃ BQ.
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But then notice that (6.1) ensures that 2ε[Q̃
′′:Q′′] ≤ 2, and so

Dµ(Q̃
′′) ≥ as

16s
Dµ(Q

′′) ≥ as

2 · 16s2
ε[Q̃′′,Q′′]Dµ(Q

′′)

≥ as

2 · 16s2
ε[Q̃′′:Q′]Dµ(Q

′) ≥ as

2 · 16s2
ε[Q̃′′:Q]C2

as
Dµ(Q).

But now if C2 ≥ 2 · 16s, the right hand side is at least 2ε[Q̃
′′:Q]Dµ(Q).

This contradicts the assumption that Q ∈ Dsel. �

7. The shell and the downward domination

We now describe a second refinement process. Fix a measure µ, and
Q ∈ Dsel(µ).
Let us assume that we have some way of associating a closed cube

Q̂µ to each cube Q ∈ Dsel(µ) so that 2aBQ ⊂ Q̂µ ⊂ 4aBQ. We refer

to Q̂µ as the shell of Q.
We postpone the precise selection of the shell cubes until later. When

it does not cause too much confusion, we shall just write Q̂ instead of

Q̂µ, but the reader should always keep in mind that the choice of the
shell will depend on the underlying measure.

Definition 7.1. We say that Q ∈ Dsel is dominated from below by a
(finite) bunch of cubes Qj if the following conditions hold:

• Qj ∈ Dsel,
• Dµ(Qj) ≥ 2ε[Q:Qj]Dµ(Q),
• BQj are disjoint,
• BQj ⊂ BQ,

•
∑

j

Dµ(Qj)
22−2ε[Q:Qj]µ(Q̂j) ≥ Dµ(Q)

2µ(Q̂).

We define D̂sel = D̂sel(µ) to be the set of all cubes Q in Dsel that
cannot be dominated from below by a bunch of cubes except for the
trivial bunch consisting of Q.

Notice that if Q1, . . . , QN is a non-trivial bunch of cubes that domi-

nate Q from below, then ℓ(Qj) ≤ ℓ(Q)
2

for every j or else the property
that BQj ⊂ BQ would fail.

Lemma 7.2. Suppose that supQ∈DDµ(Q) <∞. There exists c(B, ε) >
0 such that

∑

Q∈D̂sel

Dµ(Q)
2µ(Q̂) ≥ c(B, ε)

∑

Q∈Dsel

Dµ(Q)
2µ(Q̂).
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Proof. We start with a simple claim.
Claim. Every Q ∈ Dsel with µ(Q) > 0 is dominated from below by

a bunch of cubes PQ,j in D̂sel(µ).
To prove the claim we make two observations. Firstly, note that if

the bunch Q1, . . . , QN dominates Q′ ∈ Dsel from below, and if Q1 is
itself dominated from below by a bunch P1, . . . , PN ′, then the bunch
P1, . . . , PN ′, Q2, . . . , QN dominates Q′.
The second observation is that, since any cube Q′ participating in a

bunch of cubes that dominates a cube Q from below satisfies Dµ(Q
′) ≥

2ε[Q:Q′]Dµ(Q), we have that

[Q : Q′] ≤ 1

ε
log2

(supQ′′∈DDµ(Q
′′)

Dµ(Q)

)
,

or else Q′ would have density larger than supQ′′∈DDµ(Q
′′).

Now, if the cube Q lies in D̂sel, then we are done already. Other-
wise, we find some non-trivial bunch Q1, . . . , QN of cubes in Dsel that

dominates Q from below with ℓ(Qj) ≤ ℓ(Q)
2

for each j. If for each

j = 1, 2, . . .N , Qj lies in D̂sel then we are done. Otherwise, we re-

place each cube Qj 6∈ D̂sel with a non-trivial bunch of cubes Qj,k that

dominates Qj from below with ℓ(Qj,k) ≤ ℓ(Qj)

2
. The resulting bunch

consisting of the cubes Qj ∈ D̂sel along with the cubes Qj,k forQj 6∈ D̂sel

dominates Q from below (the transitive property). This process can be

iterated at most 1
ε
log2

( supQ′′∈DDµ(Q′′)

Dµ(Q)

)
times before it must terminate

in a bunch of cubes PQ,j that dominate Q from below, each of which

lies in D̂sel.
Now write

∑

Q∈Dsel

Dµ(Q)
2µ(Q̂) ≤

∑

Q∈Dsel

∑

j

Dµ(PQ,j)
2µ(P̂Q,j)2

−2ε[Q:PQ,j]

≤
∑

P∈D̂sel

Dµ(P )
2µ(P̂ )

[ ∑

Q:BQ⊃BP
2−2ε[Q:P ]

]
.

But the inner sum does not exceed CBd

ε
, and this proves the lemma. �

8. The main goal

We begin with a lemma.
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Lemma 8.1. There is a constant c(B, ε) > 0 such that for any measure
µ satisfying supQ∈DDµ(Q) <∞,

∑

Q∈D̂sel(µ)

Dµ(Q)
2 µ(Q)

µ(3BQ)
µ(Q) ≥ c(B, ε)

∑

Q∈D
Dµ(Q)

2µ(Q).

Proof. By Lemma 6.4, we have that if Q ∈ Dsel(µ), then

(8.1) µ(3BQ) ≤ CBs2ε[3BQ:Q]µ(Q) ≤ CBsµ(Q),

where (6.1) has been used in the second inequality. Since Q̂ ⊂ BQ, we
see from (8.1) that

∑

Q∈D̂sel(µ)

Dµ(Q)
2 µ(Q)

µ(3BQ)
µ(Q) ≥ cB−2s

∑

Q∈D̂sel(µ)

Dµ(Q)
2µ(Q̂).

Applying Lemma 7.2, we see that the right hand side of this inequality
is at least

c(B, ε)
∑

Q∈Dsel(µ)

Dµ(Q)
2µ(Q̂).

But now (8.1) also yields
∑

Q∈Dsel(µ)

Dµ(Q)
2µ(Q̂) ≥ cB−s

∑

Q∈Dsel(µ)

Dµ(Q)
2µ(BQ),

after which we infer from Lemma 6.2 that∑

Q∈Dsel(µ)

Dµ(Q)
2µ(Q̂) ≥ c(B, ε)

∑

Q∈D
Dµ(Q)

2µ(BQ).

The lemma follows. �

We now state our main goal.

MAIN GOAL. We want to choose B, a, and ε satisfying the restric-

tions imposed in all previous sections and define the shells Q̂µ in an
appropriate way to ensure that there exists ∆ > 0 such that for any

measure µ and any Q ∈ D̂sel(µ), µ is diffuse in B
2
Q and

ΘB/2
µ (Q) ≥ ∆Dµ(Q)µ(Q).

Notice that once this goal has been achieved, Theorem 4.1 will follow.
Indeed, Lemma 5.1 ensures that if µ is a finite measure with bounded
density for which (4.2) holds, then there is a constant C(ε, a, B) such
that ∑

Q∈D̂sel(µ)

Dµ(Q)
2 µ(Q)

µ(3B
2
Q)
µ(Q) ≤ C(ε, a, B)

∆2
µ(Rd).

But then the theorem follows from Lemma 8.1.
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Part I: The blow-up procedures

9. Preliminary results regarding reflectionless measures

To perform blow up arguments, we need some weak continuity prop-
erties of the form 〈R(fµ), 1〉µ. Following Section 8 of [JN1], we make
the following definitions.
A sequence of measures µk is called uniformly diffuse in the cube

R0Q0 (where R0 may equal +∞, in which case R0Q0 = Rd) if, for each
R < R0 and δ > 0, there exists r > 0 such that for all sufficiently large
k,

(9.1)

∫∫

RQ0×RQ0
|x−y|<r

dµk(x) dµk(y)

|x− y|s−1
≤ δ.

A sequence of measures µk is said to have uniformly restricted growth
(at infinity) if, for each δ > 0, there exists R ∈ (0,∞) such that for all
sufficiently large k,

(9.2)

∫

Rd\RQ0

1

|x|s+1
dµk(x) ≤ δ.

For R > 0, define

ΨR
µ =

{
ψ ∈ Lip0(RQ0) :

∫

Rd

ψdµ = 0, ‖ψ‖Lip < 1
}
.

We shall appeal to the following weak convergence lemma. The proof
is an exercise in the definitions2 but the details may be found in Section
8 of [JN1].

Lemma 9.1. Suppose that µk is a sequence of measures that are uni-
formly diffuse in R0Q0 (for R0 ∈ (0,+∞]) with uniformly restricted
growth at infinity. Further assume that the sequence µk converges
weakly to a measure µ (and so µ is diffuse in R0Q0, and has restricted
growth at infinity). Suppose that γk is a non-negative sequence con-
verging to zero, and Rk is a sequence converging to R0.
If, for every k,

|〈R(ψµk), 1〉µk | ≤ γk for every ψ ∈ ΨRk
µk
,

2Also required is the fact that if µk are locally finite Borel measures that converge
weakly to µ, then µk × µk converge weakly to µ × µ. This is really a statement
about the density of linear combinations of functions of the form (x, y) 7→ f(x)g(y),
with f, g ∈ C0(R

d), in the space C4(R
d×Rd), which can be proved using the Stone-

Weierstrass Theorem.
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then

〈R(ψµ), 1〉µ = 0 for every ψ ∈ ΨR0
µ ,

i.e., µ is reflectionless in R0Q0.

Finally, let us recall a non-existence result on reflectionless measures
from [JN2]. It is an immediate consequence of combining Proposition
2.3 and Lemma 5.6 in [JN2].

Proposition 9.2. Let s ∈ (d−1, d). There exists ε0 > 0 depending on
d and s such that for any dyadic lattice Q and the associated lattice of
triples D = D(Q), the only measure µ that is reflectionless in Rd and
satisfies the estimate

Dµ(Q
′) ≤ 2ε0d(Q

′,Q0)Dµ(Q0) for all Q′ ∈ D
is the zero measure.

10. The basic energy estimates

We define the energy of a set F ⊂ Rd with respect to µ by

E
µ(F ) =

∫∫

F×F

1

|x− y|s−1
dµ(x)dµ(y).

Estimates on the energy will play a substantial role in the following
arguments.
When proving that a sequence of measures is uniformly diffuse, trun-

cated energy integrals naturally arise. For r > 0, and a set F ⊂ Rd,
set

E
µ
r (F ) =

∫∫

F×F :
|x−y|<r

1

|x− y|s−1
dµ(x)dµ(y).

In order to best utilize the special properties of a cube in D̂sel, it will
be useful to consider a ‘dyadic’ analogue of the truncated energy. If
P ⊂ Rd is a cube, and r > 0, then set

Eµr (P ) =
∑

Q′∈D
ℓ(Q′)≤r

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩ P ).

We just write Eµ(P ) for Eµℓ(P )(P ).

Lemma 10.1. There is a constant C > 0 such that for any cube P ,
and r > 0,

E
µ
r (P ) ≤ CEµ8r(P ), and E

µ(P ) ≤ CEµ(P ).
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Proof. Fix r > 0. For x ∈ Rd and y ∈ B(x, r), y 6= x, choose Q′ ∈ D
such that x ∈ Q′ and |x − y| ≤ ℓ(Q′) < 2|x − y|. Then Lemma 2.1

ensures that the grandparent Q̃′ of Q′ contains y, and so 1
|x−y|s−1 ≤

8s−1ℓ(Q̃′)−(s−1). Consequently, for any y ∈ B(x, r),

1

|x− y|s−1
≤ C

∑

Q′∈D
ℓ(Q′)<8r

1

ℓ(Q′)s−1
χQ′(x)χQ′(y).

Integrating both sides of the inequality over P×P with respect to µ×µ
yields the first inequality.
For the second inequality, note that

∫∫

P×P :

|x−y|≥1
8
ℓ(P )

1

|x− y|s−1
dµ(x)dµ(y) ≤ Cℓ(P )Dµ(P )µ(P ).

But then by the pigeonhole principle there must be a cube Q′ ∈ D
with ℓ(Q′) ≍ ℓ(P ) and µ(P ) ≤ Cµ(Q′∩P ). The second inequality now
follows from the first. �

We shall need several accurate estimates regarding the contribution
toward the energy from cubes of different types.

For the remainder of Section 10, fix a measure µ and Q ∈ D̂sel(µ).

10.1. The High Density Energy. Set C3 = max(C2, 2 · 4sC1). Con-
sider the set

HD =
{
Q′ ∈ D : Q′ ∩ B

2
Q 6= ∅; Dµ(Q

′) >
C3

as
2ε[Q:Q′]Dµ(Q)

}

of high density cubes intersecting B
2
Q. Notice that Lemma 6.4 along

with Corollary 6.5 imply that any cube Q′ ∈ HD must satisfy ℓ(Q′) <
ℓ(Q).
It will be convenient to estimate the total energy coming from high

density cubes. For m ∈ Z+, set

EHD,2−mℓ(Q)(
B
2
Q) =

∑

Q′∈HD,
ℓ(Q′)≤2−mℓ(Q)

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩ B

2
Q).

Proposition 10.2. There is a constant C > 0 such that for every
m ≥ 0,

EHD,2−mℓ(Q)(
B
2
Q) ≤ Ca−(d−s)(1 +m)2−(1−ε)mℓ(Q)Dµ(Q)µ(Q̂),

where Q̂ is the shell of Q.
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To prove this proposition, it will be convenient to split up the col-
lection of cubes HD. Fix T > C3a

−s and m ∈ Z+. Define

HDm,T =
{
Q′ ∈ D : Q′ ∩ B

2
Q 6= ∅, ℓ(Q′) = 2−mℓ(Q),

Dµ(Q
′) ≥ T2ε[Q,Q

′]Dµ(Q)
}
.

Lemma 10.3. There is a constant C > 0 such that
∑

Q′∈HDm,T

µ(Q′) ≤ C(m+ 1)

adT 2
µ(Q̂).

Proof. For each Q′ ∈ HDm,T , there is a cube Q′′ ∈ Dsel satisfying

• Q′ ⊂ aBQ′′ ⊂ 1
2
Q̂′′,

• BQ′′ ⊂ BQ, and
• Dµ(Q

′′) ≥ T2ε[Q:Q′′]Dµ(Q).
Indeed, either Q′ ∈ Dsel and Q

′′ = Q′, or Q′ 6∈ Dsel, and we set Q′′ to
be any cube in Dsel that dominates Q′ from above. In the second case,
the first and third of the claimed properties follow from the definitions,
while the second property follows from Lemma 6.6.
It is clear that 0 ≤ [Q : Q′′] ≤ m. For n ∈ [0, m], consider those Q′′

with [Q : Q′′] = n. Then the corresponding shells Q̂′′ differ in size by

at most a factor of 2. Thus, we may cover the union of the sets 1
2
Q̂′′

by a collection Gn of the cubes Q̂′′ with bounded overlap3. Since

1

4a
≤ ℓ(BQ′′)

ℓ(Q̂′′)
≤ 1

2a
,

the collection Gn can in turn be split into at most C
ad

disjoint subfamilies
Gn,j, so that within each subfamily the cubes BQ′′ are pairwise disjoint.

Now Q, as a member of D̂sel, cannot be dominated from below by a
bunch, and so we must have that for each j,

T 2Dµ(Q)
2

∑

Q′′∈Gn,j

µ(Q̂′′) ≤
∑

Q′′∈Gn,j

Dµ(Q
′′)22−2ε[Q:Q′′]µ(Q̂′′) ≤ Dµ(Q)

2µ(Q̂).

After a summation in j we arrive at

T 2
∑

Q′′∈Gn

µ(Q̂′′) ≤ C

ad
µ(Q̂).

3For instance, with ρ = 2aB2−nℓ(Q), choose a maximal ρ/16 separated set (xk)k
in

⋃{
1
2 Q̂

′′ : [Q : Q′′] = n
}
. Each point xk lies in some 1

2 Q̂
′′
k, and the collection Q̂′′

k

satisfies all the required properties.
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But since every Q′ ∈ HDm,T is covered by the union of the cubes Q̂′′

with Q̂′′ ∈ ∪mn=0Gn, the desired inequality follows after a summation in
n. �

Proof of Proposition 10.2. The proof of the proposition is rather rou-
tine with the previous lemma in hand. For fixed n, k ∈ Z+, and
T = 2kC3a

−s, each Q′ in the set HDn,T\HDn,2T satisfies

2kC3a
−s2ε[Q:Q′]Dµ(Q) ≤ Dµ(Q

′) < 2k+1C3a
−s2ε[Q:Q′]Dµ(Q).

Consequently, by writing

EHD,2−mℓ(Q)(
B
2
Q) ≤

∑

n≥m
2−nℓ(Q)

∑

k∈Z+

∑

Q′∈HDn,T \HDn,2T
T=2kC3a−s

Dµ(Q
′)µ(Q′),

we may bound EHD,2−mℓ(Q)(
B
2
Q) by

Ca−sℓ(Q)Dµ(Q)
∑

n≥m
2−n+εn

∑

k∈Z+

2k
∑

Q′∈HDn,T
T=2kC3a−s

µ(Q′).

Applying the estimate of Lemma 10.3 with T = C32
ka−s, we get

EHD,2−mℓ(Q)(
B
2
Q) ≤ Cas−dℓ(Q)Dµ(Q)µ(Q̂)

∑

n≥m
2−n+εn(n+ 1)

∑

k∈Z+

2−k,

from which the result follows. �

10.2. The small cube energy. We call a cube Q′ ∈ D small if
ℓ(Q′) ≤ 1

a
ℓ(Q). Recall that every cube in HD has sidelength at most

ℓ(Q), and so, in particular, these cubes are small.
For R ⊂ B

2
Q and m ∈ Z+, set

E
small,

2−m

a
ℓ(Q)

(R) =
∑

Q′∈D:

ℓ(Q′)≤ 2−m

a
ℓ(Q)

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩R).

Lemma 10.4. There is a constant C > 0 such that for any R ⊂ B
2
Q,

E
small,

2−m

a
ℓ(Q)

(R) ≤ C

ad−s
(m+ 1)2−m(1−ε)

a1−ε
ℓ(Q)Dµ(Q)µ(Q̂)

+
C

as
2−m(1−ε)

a1+ε
ℓ(Q)Dµ(Q)µ(R).

Proof. We first consider the contribution of the high density cubes.
Set m′ = max(m − log2(1/a), 0). Then certainly EHD, 2−m′ ℓ(Q)(

B
2
Q)
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bounds the contribution of those high density cubes in HD toward
E
small,

2−m

a
ℓ(Q)

(R). But applying Proposition 10.2 yields that

EHD,2−m′ℓ(Q)(
B
2
Q) ≤ C

ad−s
(m′ + 1)

2m′(1−ε) ℓ(Q)Dµ(Q)µ(Q̂)

≤ C

ad−s
(m+ 1)2−m(1−ε)

a1−ε
ℓ(Q)Dµ(Q)µ(Q̂).

The remaining small cubes Q′ have density Dµ(Q
′) ≤ C3

as
2ε[Q:Q′]Dµ(Q),

and therefore
∑

Q′∈D:Q′ 6∈HD,
ℓ(Q′)≤2−m

a
ℓ(Q)

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩R)

≤ C3

as
Dµ(Q)

∑

n∈Z:
n≥m−log2(1/a)

2−n2ε|n|ℓ(Q)
∑

Q′∈D:
ℓ(Q′)=2−nℓ(Q)

µ(Q′ ∩ R).

With n fixed, the inner sum satisfies
∑

Q′∈D:
ℓ(Q′)=2−nℓ(Q)

µ(Q′ ∩R) ≤ Cµ(R),

after which the summation in n yields the required estimate, as

∑

n≥m−log2(1/a)

2−n2ε|n| ≤ C
2−m(1−ε)

a1+ε
.

The lemma is proved. �

10.3. The large cube energy. A cube Q′ is called large if ℓ(Q′) ≥
1
a
ℓ(Q). Corollary 6.5 ensures that all the large cubes that intersect BQ

with ℓ(Q′) ≤ Bℓ(Q) satisfy Dµ(Q
′) ≤ CDµ(Q).

Let R ⊂ B
2
Q, and m ∈ Z+. Define

Elarge, 2−mℓ(R)(R) =
∑

Q′∈Dsel, ℓ(Q
′)≤2−mℓ(R):

Q′ is large

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩ R).

The large cube energy is simple to estimate:

Lemma 10.5. There is a constant C > 0 such that

Elarge,2−mℓ(R)(R) ≤ C2−mDµ(Q)ℓ(R)µ(R).
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Proof. Since R ⊂ B
2
Q, any large cube Q′ intersecting R with ℓ(Q′) ≤

ℓ(R) satisfies the density estimate Dµ(Q
′) ≤ CDµ(Q). For fixed n ≥ 0,

this density estimate yields that
∑

Q′∈D, ℓ(Q′)≍2−nℓ(R):
Q′ is large

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩R)

≤ C2−nℓ(R)Dµ(Q)
∑

Q′∈D:
ℓ(Q′)≍2−nℓ(R)

µ(Q′ ∩ R).

But the right hand side is at most C2−nℓ(R)Dµ(Q)µ(R). Summing the
resulting inequalities over all n ≥ m, we arrive at the estimate. �

A particular consequence of Lemmas 10.4 and 10.5 applied with m =
0 and R = B

2
Q is that

Eµ(B
2
Q) <∞.

Due to Lemma 10.1, this implies that

E
µ(B

2
Q) <∞,

from which we conclude that µ is diffuse in B
2
Q.

11. Blow up I: The density drop

First note that for any measure µ and Q ∈ D̂sel(µ), the energy esti-
mates of the previous section ensure that µ is diffuse in B

2
Q, while the

upward control in Lemma 6.4 certainly implies that µ has restricted
growth at infinity. Consequently, it makes sense to talk about the

Lipschitz Oscillation coefficient Θ
B/2
µ (Q).

The goal of this section is to show that cubes Q ∈ D̂sel(µ) already
have a large Lipschitz Oscillation coefficient unless they have a drop of
density at many scales above and around Q. The remaining sections
of this paper will then concern cubes with such a density drop.
Now fix ε1 with ε1 ≪ ε0, with ε0 as in Proposition 9.2. (One can fix

ε1 to be exactly ε1 = c0ε0.) Assuming that ε ≪ ε1, our goal is to prove
the following technical proposition.

Proposition 11.1. There exists β > 0, ∆ > 0, B0 ≫ 1, and a0 ≪ 1,
such that if B > 0, a > 0, and ε > 0 satisfy

B ≥ B0, a ≤ a0, 1/a
β ≪ B, and Bε ≤ 2,

then for every measure µ and Q ∈ D̂sel(µ) we have that either,

(i) (Large Oscillation coefficient.) Θ
B/2
µ (Q) ≥ ∆Dµ(Q)µ(Q), or

(ii) (Large and lasting drop in density.) Dµ(Q
′) ≤ aε1Dµ(Q) for all

Q′ ∈ D with Q′ ∩ B
4
Q 6= ∅ and a2Bℓ(Q) ≤ ℓ(Q′) ≤ √

aBℓ(Q).
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We begin by examining a describing operation that will be carried
out under the assumption that part (ii) of the proposition fails.

11.1. The ε0-regular cube. Consider a measure µ, and Q ∈ D̂sel(µ).
Suppose that there is a cube R ∈ D intersecting B

4
Q that satisfies

a2Bℓ(Q) ≤ ℓ(R) ≤ √
aBℓ(Q) andDµ(R) ≥ aε1Dµ(Q). (In other words,

the second alternative in Proposition 11.1 fails for this measure µ and
cube Q ∈ D̂sel.)
Consider all cubes P ∈ D satisfying P ⊂ B

2
Q and ℓ(P ) ≥ 1

a
ℓ(Q),

and amongst them choose a cube R∗ that maximizes the quantity

Dµ(P )2
−ε0d(R,P ),

where ε0 is the constant appearing in Proposition 9.2.
Notice that the triangle inequality for the graph metric d(·, ·) ensures

that whenever Q′ ⊂ B
2
Q satisfies ℓ(Q′) ≥ 1

a
ℓ(Q), we have Dµ(Q

′) ≤
2ε0d(Q

′,R∗)Dµ(R
∗), since otherwise R∗ would not be a maximizer. In

particular, if a−3 ≪ B (as we shall henceforth assume), then ℓ(R∗) ≥
1
a
ℓ(Q) and so

Dµ(R
∗)2−ε0d(R,R

∗) ≥ Dµ(R).

We first show that there is a bound for the distance between R∗ and
R that depends on a only.

Claim 11.2. d(R,R∗) ≤ 1
4
log2(1/a).

Proof. Corollary 6.5 ensures that Dµ(R
∗) ≤ CDµ(Q), from which we

deduce the chain of inequalities

CDµ(Q)2
−ε0d(R,R∗) ≥ Dµ(R

∗)2−ε0d(R,R
∗) ≥ Dµ(R) ≥ aε1Dµ(Q).

The penultimate inequality follows from the maximizing property of
R∗. But this implies that

d(R,R∗) ≤ ε1
ε0

log2(1/a) +
C

ε0
≤ 1

4
log2(1/a),

where the final inequality follows since ε1 ≪ 1 and a ≪ 1 (recall that
ε0 > 0 is fixed in terms of d and s). �

Let us now record two consequences of this statement:
• The logarithmic ratio [R : R∗] ≤ 1

4
log2 1/a, and so

a9/4Bℓ(Q) ≤ ℓ(R∗) ≤ a1/4Bℓ(Q).

• The Euclidean distance from R to R∗ is at most Ca−1/4
√
aBℓ(Q) =

Ca1/4Bℓ(Q). In particular, since a≪ 1, this distance estimate ensures
that

(11.1) a−1/8R∗ ⊂ B
3
Q,
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thus ensuring that R∗ is deep inside B
2
Q.

Lemma 11.3. If Q′ ∈ D satisfies Q′∩a−1/8R∗ 6= ∅ and ℓ(Q′) ≥ 1
a
ℓ(Q),

then

Dµ(Q
′) ≤ 2ε0d(Q

′,R∗)Dµ(R
∗).

Proof. If Q′ ⊂ B
2
Q, then the required estimate follows from the maxi-

mizing property of R∗. Otherwise, since a−1/8R∗ ⊂ B
3
Q, we must have

that Q′ ∩ B
3
Q 6= ∅ and Q′ ∩ (B

2
Q)c 6= ∅, so ℓ(Q′) ≥ B

12
ℓ(Q).

Now, from Lemma 2.1 we infer that the ancestor Q̃′ of sidelength
64ℓ(Q′) contains BQ (the ancestor of Q′ of sidelength 16ℓ(Q′) has side-
length at least Bℓ(Q), and so its grandparent contains BQ). Thus,

Dµ(Q
′) ≤ CDµ(Q̃

′) ≤ C2ε[Q̃
′:Q]Dµ(Q) ≤ C2ε[Q

′:Q]Dµ(Q).

On the other hand, since ℓ(R∗) ≤ a1/4Bℓ(Q) and ℓ(Q′) ≥ B
12
ℓ(Q), we

have that

(11.2) d(Q′, R∗) ≥ [Q′ : R∗] ≥ c log2
1
a
≫ 1.

Now, notice that

[Q′ : Q] ≤ [Q′ : R∗] + [Q : R∗] ≤ [Q′ : R∗] + log2B.

Thus C2ε[Q
′:Q] ≤ C2ε[Q

′:R∗]+1 ≤ 2
ε0
2
d(Q′,R∗) as ε ≪ ε0. It remains

to observe the following chain of inequalities Dµ(Q) ≤ a−ε1Dµ(R) ≤
a−ε1Dµ(R

∗) = 2ε1 log2 1/aDµ(R
∗) ≤ 2

ε0
2
d(Q′,R∗)Dµ(R

∗), where the final
inequality follows from (11.2) and the fact that ε1 ≪ 1 (again, ε0 > 0
is a fixed constant). �

Corollary 11.4. There is a constant c > 0 such that if a−3 ≪ B, then

• Dµ(R
∗)µ(R∗) ≥ Dµ(Q)µ(Q), and

• Dµ(R
∗)µ(R∗) ≥ ca3sDµ(Q)µ(BQ).

Proof. We bring together two estimates: On the one hand, we have the
density estimate Dµ(R

∗) ≥ aε1Dµ(Q). On the other hand, we have the
length estimate ℓ(R∗) ≥ a9/4Bℓ(Q).
In particular, these two estimates combine to ensure that µ(R∗) ≥

aε1+9s/4Bsµ(Q), and so, since ε1 ≪ 1,

Dµ(R
∗)µ(R∗) ≥ a2ε1+

9s
4 BsDµ(Q)µ(Q) ≥ a3sBsDµ(Q)µ(Q),

and the right hand side is at least Dµ(Q)µ(Q) if a−3 ≪ B. But also
Dµ(BQ) ≤ CDµ(Q), and so Dµ(R

∗)µ(R∗) ≥ ca3sDµ(Q)µ(BQ). �
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11.2. Energy estimates around R∗. We now use the estimates of
the previous section to record a crucial energy estimate.

Lemma 11.5. There are constants C > 0, and β2 ≥ 3 depending on d
and s, such that for every A ∈ (1, a−1/8),

1

Aℓ(R∗)
Eµ2−mAℓ(R∗)(AR

∗) ≤ C
[a−β2
AB

+ As+2ε02−m(1−ε0)
]
Dµ(R

∗)µ(R∗).

Proof. We recall that a cube is small if ℓ(Q′) ≤ 1
a
ℓ(Q). In Lemma

10.4, we estimated the small cube energy in B
2
Q. Note that since

a−1/8R∗ ⊂ B
2
Q, we have
∑

Q′∈D:
Q′ small

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩AR∗) ≤ E

small,
ℓ(Q)
a

(B
2
Q).

But now using Corollary 11.4 to bound the right hand side of the
estimate appearing in Lemma 10.4, we find that there is some β1 > 0
such that∑

Q′∈D:
Q′ small

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩ AR∗) ≤ Ca−β1ℓ(Q)Dµ(R

∗)µ(AR∗).

Now recall that ℓ(R∗) ≥ a9/4Bℓ(Q), and so

1

Aℓ(R∗)

∑

Q′∈D:
Q′ small

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩AR∗) ≤ C

a−β1−
9
4

AB
Dµ(R

∗)µ(AR∗).

Now recall from Lemma 11.3 that for every Q′ with Q′ ∩ a−1/8R∗ 6= ∅

and ℓ(Q′) ≥ 1
a
ℓ(Q), we have that

(11.3) Dµ(Q
′) ≤ 2ε0d(Q

′,R∗)Dµ(R
∗).

This allows us to estimate the remaining part of the energy in a quite
straightforward manner. Fix some n ≥ m, and consider the sum

1

Aℓ(R∗)

∑

Q′∈D,Q′∩AR∗ 6=∅:
Q′ is large

ℓ(Q′)≍2−nAℓ(R∗)

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩AR∗).

Notice that if Q′ ∩AR∗ 6= ∅ and ℓ(Q′) ≍ 2−nAℓ(R∗), then d(Q′, R∗) ≤
log2A+ n+ C. Thus we bound the previous sum using (11.3) by

C2−nAε02ε0nDµ(R
∗)

∑

Q′∈D
ℓ(Q′)≍2−nℓ(AR∗)

µ(Q′ ∩ AR∗),
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which is at most CAε02−n(1−ε0)Dµ(R
∗)µ(AR∗). After a summation over

n ≥ m, we get

1

Aℓ(R∗)

∑

Q′∈D:
Q′ large,

ℓ(Q′)≤2−mAℓ(R∗)

ℓ(Q′)Dµ(Q
′)µ(Q′∩AR∗) ≤ C

Aε0

2m(1−ε0)Dµ(R
∗)µ(AR∗).

Finally, we claim that

µ(AR∗) ≤ CAs+ε0µ(R∗) ≤ Ca−(s+ε0)/8µ(R∗),

from which the lemma will follow. To prove the claim, note that AR∗

is contained in the union of at most 3d cubes in D of sidelength at most
2Aℓ(R∗). Lemma 11.3 ensures that each of those cubes has density at
most CAε0Dµ(R

∗), and the claim follows. �

Of course, because of Lemma 10.1, the previous lemma also yields
the estimate
(11.4)

1

Aℓ(R∗)
E
µ
2−mAℓ(R∗)(AR

∗) ≤ C
[a−β2
AB

+ As+2ε02−m(1−ε0)
]
Dµ(R

∗)µ(R∗),

whenever 1 < A < a−1/8 and m ≥ 0.

11.3. The rescaling. Recall that Q0 = 3(0, 1)d, and for a cube R, LR
is the canonical linear map satisfying LR(Q0) = R. Define the rescaled
measure

µ∗( · ) = µ(LR∗( · ))
µ(R∗)

.

Thus µ∗(Q0) = 1 and Dµ∗(Q0) = 1
3s
. Notice that the pre-image of

cubes from D under the mapping LR∗ are contained in a lattice D∗

consisting of concentric triples of cubes from a shifted dyadic lattice
Q∗.
Note the following scaling property of the energy:

1

Aℓ(Q0)Dµ∗(Q0)µ∗(Q0)
E
µ∗

2−mAℓ(Q0)
(AQ0)

=
1

Aℓ(R∗)Dµ(R∗)µ(R∗)
E
µ
2−mAℓ(R∗)(AR

∗).

Consequently, we deduce from Lemma 11.5 that

(11.5)
1

A
E
µ∗

2−mAℓ(Q0)
(AQ0) ≤ C

[a−β2
AB

+ As+2ε02−m(1−ε0)
]
,

whenever 1 < A < a−1/8 and m ≥ 0.
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Finally, we examine what happens to Lemma 11.3 under the scal-
ing. Recall that ℓ(R∗) ≥ a9/4Bℓ(Q), so any cube Q′ ∈ D with ℓ(Q′) ≥

1
a13/4B

ℓ(R∗) that intersects a−1/8R∗ satisfiesDµ(Q
′) ≤ 2ε0d(Q

′,R∗)Dµ(R
∗).

Consequently, we arrive at the following result.

Corollary 11.6. Any cube Q′ ∈ D∗ with ℓ(Q′) ≥ 1
a13/4B

ℓ(Q0) that

intersects the cube a−1/8Q0 satisfies Dµ∗(Q
′) ≤ 2ε0d(Q

′,Q0)Dµ∗(Q0).

12. Proof of Proposition 11.1

Fix β > max(β2, 8).
Suppose that the proposition fails to hold. Then there are sequences

Bk → ∞, ak → 0, and ε(k) > 0, satisfying Bε(k)

k ≤ 2 and 1

aβk
≪ Bk,

along with measures µ̃k, and cubes Qk ∈ D̂sel(µ̃k), such that

|〈R(ϕµ̃k), 1〉µ̃k | ≤ 2−kDµ̃k(Qk)µ̃k(Qk),

for all ϕ ∈ Lip0(
Bk
2
Qk) with

∫
Rd
ϕdµ̃k = 0 and ‖ϕ‖Lip ≤ 1

ℓ(Qk)
. Ad-

ditionally, there exists some Rk ⊂ Bk
4
Qk, with a2kBkℓ(Qk) ≤ ℓ(Rk) ≤√

akBkℓ(Qk) and Dµ̃k(Rk) ≥ aε1k Dµ̃k(Qk).
For each Rk we locate our favourite maximizing cube R∗

k as defined
in Section 11.1. Then by Corollary 11.4,

|〈R(ϕµ̃k), 1〉µ̃k | ≤ 2−kDµ̃k(R
∗
k)µ̃k(R

∗
k),

for all ϕ ∈ Lip0(
Bk
2
Qk) with

∫
ϕdµ̃k = 0 and ‖ϕ‖Lip ≤ 1

ℓ(Qk)
.

Set

µk( · ) =
µ̃k(LR∗( · ))
µ̃k(R∗)

.

The pre-images of the cubes in D under the mapping LR∗ are con-
tained in a lattice Dk that contains the unit cube Q0. Consequently,
with the aid of the diagonal argument we pass to a subsequence of
the measures µk so that the lattices stabilize in the sense that there
is a fixed lattice D′ such that every cube Q′ ∈ D′ lies in Dk for all
sufficiently large k.
The measure µk satisfies the following properties:

(1) Since a
−1/8
k R∗

k ⊂ Bk
2
Qk (see (11.1)), we have that for every ϕ ∈

Lip0(a
−1/8
k Q0) with ‖ϕ‖Lip < 1 and

∫
Rd
ϕdµk = 0,

|〈R(ϕµk), 1〉µk | ≤ 2−k.

(2) The estimate Dµk(Q
′) ≤ 2ε0d(Q

′,Q0) holds for all Q′ ∈ Dk satisfy-

ing Q′ ∩ a−1/8
k Q0 6= ∅ with ℓ(Q′) ≥ 1

a
13/4
k Bk

ℓ(Q0). (See Corollary

11.6.)
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(3) (Uniform Diffuseness.) Each measure µk satisfies

E
µk
2−mAℓ(Q0)

(AQ0) ≤ C
[a−β2k

ABk
+ As+2ε02−m(1−ε0)

]
A,

whenever A < a
−1/8
k andm ≥ 0. As β > β2, we have a

−β2
k /Bk →

0 as k → ∞, and of course a
−1/8
k → ∞ as k → ∞. Therefore,

we conclude that the measures µk are uniformly diffuse in Rd.
(4) µk(Q0) ≥ 1.

We now derive a contradiction. From item (2), it follows that there
is a constant C > 0 such that

(12.1) sup
k
µk(RQ0) ≤ CRs+ε0 for any R > 1.

Consequently, we may pass to a subsequence of the measures µk that
converges weakly to a measure µ. The growth condition (12.1) also
implies that the measures have uniformly restricted growth at infinity:
There is a constant C > 0 such that∫

Rd\RQ0

1

|x|s+1
dµk(x) ≤

C

R1−ε0 .

Since the third property tells us that the measures µk are uniformly
diffuse in the entire space Rd, we are permitted to apply Lemma 9.1
to conclude that µ is reflectionless in Rd. We now employ the semi-
continuity properties of the weak limit (Lemma 2.3). From item (4),
we see that µ(Q0) ≥ 1. However, item (2) implies that µ satisfies
Dµ(Q

′) ≤ 2ε0d(Q
′,Q0)Dµ(Q0) for all Q′ ∈ D′. We have arrived at a

contradiction with Proposition 9.2.

13. The choice of the shell

Fix a measure µ, and Q ∈ Dsel(µ). Up to this point, all that has

been required from the shell Q̂ is that 2aBQ ⊂ Q̂ ⊂ 4aBQ. In this
section we make the precise choice of the shell cube.
Corollary 6.5 ensures that Dµ(4aBQ) ≤ CDµ(Q). Consequently, we

have that

µ(4aBQ) = (4aBℓ(Q))sDµ(4aBQ)

≤ CasBsℓ(Q)sDµ(Q) ≤ CasBsµ(2aBQ).
(13.1)

We shall now use (13.1) to locate a doubling cube. Let λ = 1
s log2 B

.

Set Q(0) = 2aBQ, and Q(j) = (1 + jλ)Q(0) for 1 ≤ j ≤ 1
λ
. If it

holds that µ(Q(j−1)) < 1
2
µ(Q(j)) for all 1 ≤ j ≤ 1

λ
, then µ(4aBQ) >

21/λ−1µ(2aBQ) = 1
2
Bsµ(2aBQ), which is absurd given (13.1) and that

a≪ 1.
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Consequently, there exists some 1 ≤ j ≤ 1
λ
such that µ(Q(j−1)) ≥

1
2
µ(Q(j)). Set Q̂µ to be the closure of the cube (1+ (j− 1

2
)λ)Q(0). Note

that

(13.2) µ((1− λ
8
)Q̂) ≥ 1

2
µ((1 + λ

8
)Q̂).

(Recall that 2ℓ(Q(0)) ≥ ℓ(Q(j)).)

14. The long and lasting drop in density yields an
improved energy estimate in the shell

Fix a measure µ and Q ∈ D̂sel(µ). Assume that Dµ(Q
′) ≤ aε1Dµ(Q)

for all Q′ intersecting Q̂ with a2Bℓ(Q) ≤ ℓ(Q′) ≤ √
aBℓ(Q). We shall

prove the following estimate:

Lemma 14.1. There are constants C > 0 and β3 = β3(d, s) > 0 such
that

E
µ((1 + λ

8
)Q̂) ≤ C

(
aε1 +

1

aβ3B

)
Dµ(Q)µ(Q̂)ℓ(Q̂).

Proof. We set Q̃ = (1 + λ
8
)Q̂. Certainly Q̂ ⊂ Q̃ ⊂ 2Q̂. Using the

doubling property (13.2), it suffices to prove the estimate in the lemma

with the factor µ(Q̂) on the right hand side replaced by µ(Q̃). Due to

Lemma 10.1, it suffices to estimate Eµ(Q̃).
Recalling that 2aBℓ(Q) ≤ ℓ(Q̂) ≤ 4aBℓ(Q), we see that the addi-

tional property that the density drop provides us with is that every cube

Q′ intersecting Q̃ of sidelength in the range a
2
ℓ(Q̂) ≤ ℓ(Q′) ≤ 1

4
√
a
ℓ(Q̂)

satisfies Dµ(Q
′) ≤ aε1Dµ(Q). In particular, we may estimate the con-

tribution to the energy from these cubes in a straightforward manner:
∑

Q′∈D
aℓ(Q̃)≤ℓ(Q′)≤ℓ(Q̃)

ℓ(Q′)Dµ(Q
′)µ(Q′ ∩ Q̃) ≤ Caε1Dµ(Q)µ(Q̃)ℓ(Q̃),

where we have done nothing more than split the sum over the dyadic
levels, and use the density estimate Dµ(Q

′) ≤ aε1Dµ(Q) in each dyadic
level.
The remainder of the energy is bounded by

E
small,

ℓ(Q)
a

(Q̃) + Elarge, aℓ(Q̃)(Q̃).

Appealing to Lemma 10.4, and recalling that ℓ(Q)

ℓ(Q̂)
≤ 1

aB
, we get that

E
small,

ℓ(Q)
a

(Q̃) ≤ C

amax(s,d−s)+1+ε
ℓ(Q)Dµ(Q)µ(Q̃) ≤

C

aβ3B
ℓ(Q̂)Dµ(Q)µ(Q̃),
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while Lemma 10.5 yields that

Elarge, aℓ(Q̃)(Q̃) ≤ Caℓ(Q̃)Dµ(Q)µ(Q̃),

and the lemma follows. �

15. Blow up II: Doing away with ε

Let us fix B ≥ B0 sufficiently large, and a ≤ a0 sufficiently small,
satisfying a−β ≪ B. The upshot of Proposition 11.1 is that in order to
achieve our main goal, we now only need to associate a large Lipschitz
coefficient to those Q ∈ D̂sel with the additional property that part
(ii) of Proposition 11.1 holds. In this section we shall examine what
happens in the case that this fails to occur in the limit as ε → 0+.
The statement that we shall obtain is perhaps a little convoluted, so
we present it as a summary at the end of the section.
ASSUMPTION. Suppose that for every ε > 0 satisfying Bε ≤ 2,

and for every ∆ > 0 we can find a measure µ and Q ∈ D̂sel satisfying
Dµ(Q

′) ≤ aε1Dµ(Q) for all Q′ ∈ D with Q′ ∩ B
4
Q 6= ∅ and a2Bℓ(Q) ≤

ℓ(Q′) ≤ √
aBℓ(Q), so that

ΘB/2
µ (Q) ≤ ∆Dµ(Q)µ(Q).

Under this assumption, we can find a sequence (ε(k))k that tends to

zero, with Bε(k) ≤ 2, such that for each k, there is a measure µ̃k and a

cube Qk ∈ D̂sel(µ̃k) satisfying Dµ̃k(Q
′) ≤ aε1Dµ̂(Qk) for all Q

′ ∈ D with
Q′ ∩ B

4
Qk 6= ∅ and a2Bℓ(Qk) ≤ ℓ(Q′) ≤ √

aBℓ(Qk), and furthermore

|〈R(ψµ̃k), 1〉µ̃k | ≤ 2−kDµ̃k(Qk)µ̃k(Qk) for all ψ ∈ Ψ
B/2
µ̃k

(Qk).

We shall now shift and scale Qk to be the cube Q0. Set

µk( · ) =
µ̃k(LQk( · ))
µ̃k(Qk)

,

so that µk(Q0) = 1. As in the previous blow up argument, we have
that the pre-images of cubes in D under the mapping LQk belong to
some lattice Dk containing Q0. Passing to a subsequence if necessary,
we may assume that these lattices stablize insofar as there is a lattice
D′ such that every Q′ ∈ D′ lies in Dk for sufficiently large k.
Under the scaling, we have that

(15.1) |〈R(ψµk), 1〉µk | ≤ 2−k, for all ψ ∈ ΨB/2
µk

.

Our first aim will be to show that (by passing to a subsequence if
necessary) the measures µk converge weakly to a measure µ that is
reflectionless in B

2
Q0.
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First notice that Lemma 6.4 ensures that

(15.2) Dµk(Q
′) ≤ C12

ε(k)[Q′:Q0]Dµk(Q0) ≤ C12
ε(k)[Q′:Q0],

for all Q′ ∈ Dk that intersect BQ0 and satisfy ℓ(Q′) ≥ ℓ(Q0)
a

, while

Corollary 6.5 ensures that Dµk(Q
′) ≤ 2·4sC1

as
for any cube Q′ with Q′ ∩

B
2
Q 6= ∅ and ℓ(Q0) ≤ ℓ(Q′) ≤ ℓ(Q0)

a
. From these density bounds we

readily derive that there is a constant C(a) > 0 such that for all R > 1,
∫

Rd\RQ0

1

|x|s+1
dµ(x) ≤ C(a)

R1−ε(k) ≤ C(a)√
R
.

In particular, the sequence µk has uniformly restricted growth at infin-
ity.
Let us now show that the uniform diffuse property holds for the se-

quence µk in the cube B
2
Q0. Since a and B are now fixed, this amounts

to showing that Eµk2−m(
B
2
Q0) tends to zero uniformly in k as m → ∞.

First notice that

E
µk
2−mℓ(Q0)

(B
2
Q0) =

ℓ(Q0)Dµk(Q0)µk(Q0)

ℓ(Qk)Dµ̃k(Qk)µ̃k(Qk)
E
µ̃k
2−mℓ(Qk)

(B
2
Qk),

and using Lemma 10.1, we may estimate the right hand side by a
constant multiple of

1

ℓ(Qk)Dµ̃k(Qk)µ̃k(Qk)
E µ̃k2−m+3ℓ(Qk)

(B
2
Qk)

≤ CBs+1

ℓ(BQk)Dµ̃k(Qk)µ̃k(BQk)
E µ̃k2−m+3ℓ(Qk)

(B
2
Qk).

However, since a and B are fixed, it is clear that by combining the esti-
mates given in Lemmas 10.4 and 10.5 respectively, the truncated energy
E µ̃k2−m+3ℓ(Qk)

(B
2
Qk) is bounded by C(a, B)2−m(1−ε(k))ℓ(Qk)Dµ̃k(Qk)µ̃k(

B
2
Qk).

Thus Eµk2−mℓ(Q0)
(B
2
Q0) ≤ C(a, B)2−m/2 and the sequence µk is therefore

uniformly diffuse in B
2
Q0.

Of course, the inequality (15.2) ensures that supk µk(B(0, R)) < ∞
for any R > 0, and so we may pass to a further subsequence if necessary
to ensure that the measures µk converge weakly to a measure µ with
µ(Q0) ≥ 1.
Recalling (15.1), we may now appeal to Lemma 9.1 to conclude that

µ is reflectionless in the cube B
2
Q0.

Finally, the scaled shells Q̂µk
0 = L−1

Qk
(Q̂µ̃k

k ) all lie in the compact set

4aBQ0, and so, passing to a further subsequence if necessary, may

be assumed to converge in the Hausdorff metric to a closed cube Q̂0

satisfying 2aBQ0 ⊂ Q̂0 ⊂ 4aBQ0.
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In the next few subsections, we describe the additional properties of
µ that are important for our analysis.

15.1. Density properties of µ. Since cubes in D′ are open, we may
freely employ the lower-semicontinuity of the weak limit to deduce that

if Q′ ∈ D′, and Q′ ⊃ Q̂0, then

Dµ(Q
′) ≤ C1.

Indeed, the open cube Q′ contains any of the compact sets Q̂µk
0 for

sufficiently large k, and also Q′ ∈ Dk for large enough k. Thus

Dµk(Q
′) ≤ C12

ε(k)[Q′:Q0],

for large enough k (see (15.2)). Since ε(k) tends to zero, the property
follows.
Similarly, any cubeQ′ ∈ D′ intersecting B

4
Q0 and satisfying aℓ(Q̂0) <

ℓ(Q′) < 1
4
√
a
ℓ(Q̂0) also lies in Dk, and satisfies aℓ(Q̂µk

0 ) ≤ ℓ(Q′) ≤
1

4
√
a
ℓ(Q̂µk

0 ) for large enough k. By assumption each such cube satisfies

Dµk(Q
′) ≤ aε1, and therefore

Dµ(Q
′) ≤ aε1.

Finally, suppose that Q′ ∈ D′ intersects B
2
Q0 and satisfies Dµ(Q

′) >

C1
2·4s
as

. By the semi-continuity properties of the weak limit, we have

for all k sufficiently large that Dµk(Q
′) > C1

2·4s
as

2ε
(k)[Q0:Q′]Dµk(Q0). But

then Lemma 6.4 and Corollary 6.5 ensure that ℓ(Q′) ≤ ℓ(Q0)
2

.

15.2. The doubling property and the energy property of Q̂0.

We first claim that the cube Q̂0 inherits a doubling property from the

shells Q̂µk
0 .

Claim 15.1. µ(Q̂0) ≤ 2µ((1− λ
8
)Q̂0).

Proof. To prove this claim, let U be the open λ
16
ℓ(Q̂0) neighbourhood

of Q̂0. Then

µ(Q̂0) ≤ µ(U) ≤ lim inf
k→∞

µk(U),

but U ⊂ (1+ λ
8
)Q̂µk

0 for large enough k. For those k, µk(U) ≤ 2µk((1−
λ
8
)Q̂µk

0 ). However, since the sequence of closed cubes Q̂µk
0 converges to

Q̂0 in Hausdorff metric,

(15.3) µ((1− λ
8
)Q̂0) ≥ lim sup

k→∞
µk((1− λ

8
)Q̂µk

0 ),

and the claim follows. �
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Next, we turn to estimating the energy Eµ(Q̂0).

Claim 15.2.

E
µ(Q̂0) ≤ C

(
aε1 +

1

aβ3B

)
µ(Q̂0)ℓ(Q̂0).

Proof. It is a straightforward exercise to show that the energy is lower-
semicontinuous: If U ⊂ Rd is open and bounded, then

E
µ(U) ≤ lim inf

k→∞
E
µk(U).

Now, let U be the open λ
16
ℓ(Q̂0) neighbourhood of Q̂0. Then for k large

enough, U ⊂ (1 + λ
8
)Q̂µk

0 . But then Lemma 14.1 ensures that

E
µ(U) ≤ lim inf

k→∞
E
µk(U) ≤ C

(
aε1 +

1

aβ3B

)
lim inf
k→∞

µk(Q̂
µk
0 )ℓ(Q̂µk

0 ),

which proves the claim after passing to the limit on the right hand side
(cf. (15.3)). �

15.3. The Weak-L2 property of the maximal density. We con-
tinue to study the limit measure µ. Set

Dµ(x) = sup
r>0

Dµ(B(x, r)).

Lemma 15.3. There exists a constant C = C(B) > 0, such that for
any T > 1

µ
({
x ∈ B

4
Q0 : Dµ(x) > T

})
≤ C(B)

T 2
.

Proof. Note that for each x ∈ Rd and r > 0, there is a cube Q′ ∈ D
containing B(x, r) with ℓ(Q′) ≤ 8r. Thus, it suffices to estimate the
measure of the set

{
x ∈ B

4
Q0 : sup

Q′∈D′:x∈Q′

Dµ(Q
′) > T

}
.

for every T > 1. Moreover, since µ(B
4
Q0) ≤ CBs, it suffices to estimate

the measure of this set for T > max(4 · 2sC1, C2)a
−s. Consider the

collection maximal (by inclusion) cubes in D′ intersecting B
4
Q0 of µ-

density strictly greater than T . The third of the density properties for
µ proved in Section 15.1 ensures that every such maximal cube has
sidelength no greater than ℓ(Q0)/2. Let HT denote the collection of
these maximal cubes. Now fixm ∈ N, and considerHT,m: the collection
of maximal high density cubes in HT of sidelength at least 2−m. It is
clear that this is a finite collection of cubes. As such, we can find k
sufficiently large so that Q0 ∈ D̂sel(µk) and Dµk(Q

′) > T2ε
(k)[Q0:Q′] for

every Q′ ∈ HT,m.
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Since Q0 ∈ D̂sel(µk), Lemma 6.6 ensures that for each Q′ ∈ HT,m we
can find Q′′ ∈ Dsel(µk) with BQ

′′ ⊂ BQ0, aBQ
′′ ⊃ Q′ and Dµk(Q

′′) >

T2ε
(k)[Q′′:Q0] (if Q′ ∈ Dsel(µk) then set Q′′ = Q′). Since Q′′ is not

dominated from above, Lemma 6.4 applies to yield Dµk(5BQ
′′) ≤

CDµk(Q
′′). Thus

µk(5BQ
′′) ≤ CBsµk(Q

′′) ≤ CBsµk(Q̂
′′).

Applying the Vitali covering lemma, we can find a subcollection H̃T,m

of the Q′′ with BQ′′ disjoint, contained in BQ0, and such that 5BQ′′

cover every Q′ ∈ HT,m. Insofar as Q0 ∈ D̂sel(µk), and so cannot be
dominated from below by a bunch, we have that

T 2
∑

Q′′∈H̃T,m

µk(5BQ
′′) ≤ CBs

∑

Q′′∈H̃T,m

Dµk(Q
′′)22−2ε(k)[Q0:Q′′]µk(Q̂

′′)

≤ CBsµk(Q̂
(k)
0 ).

Letting k → ∞ and then m → ∞ completes the proof of the lemma.
�

15.4. Summary. In the following alternative we recap what has been
proved so far.

Alternative 15.4. For every B ≥ B0 and a ≤ a0 satisfying a−β ≪ B,
one of the following two statements holds:
(i) (Large Oscillation coefficient.) There exist ε > 0 satisfying Bε ≤

2, and ∆ > 0, such that for every measure µ and Q ∈ D̂sel(µ) we have
that µ is diffuse in B

2
Q and

ΘB/2
µ (Q) ≥ ∆Dµ(Q)µ(Q).

(ii) (Existence of a strange reflectionless measure.) There is a mea-

sure µ, and a cube Q̂0 with 2aBQ0 ⊂ Q̂0 ⊂ 4aBQ0, satisfying the
following properties:

(1) µ is reflectionless in B
2
Q ⊃ Q̂0;

(2) µ(Q0) ≥ 1;

(3) (Doubling in Q̂0) µ(Q̂0) ≤ 2µ((1− λ
8
)Q̂0), with λ = 1

s log2B
;

(4) (Small energy in Q̂0)

E
µ(Q̂0) ≤ C

(
aε1 +

1

aβ3B

)
µ(Q̂0)ℓ(Q̂0);

(5) Dµ(Q
′) ≤ C for all Q′ ∈ D′ satisfying Q′∩Q̂0 6= ∅ with ℓ(Q′) ≥

1
a
ℓ(Q0);
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(6) Dµ(Q
′) ≤ aε1 for all Q′ ∈ D′ that intersect B

4
Q0 and have

sidelength aℓ(Q̂0) < ℓ(Q′) < 1
4
√
a
ℓ(Q̂0);

(7) For every T > 1,

µ
({
x ∈ Q̂0 : Dµ(x) > T

})
≤ C(B)

T 2
.

16. Localization around the shell

Consider the reflectionless measure µ given in part (ii) of Alterna-
tive 15.4. The goal of this section is to localise the measure µ to the

shell Q̂0. Restricting the measure in this way will of course distort the
reflectionless property. The following calculation shows that this dis-
tortion is well controlled using the energy property (4) and the density
properties (5)–(6).
First recall that for any x ∈ Rd, r > 0 there is a cube Qx,r ∈ D′

such that B(x, r) ⊂ Qx,r and ℓ(Qx,r) < 8r. Thus, if x ∈ Q̂0 and

r ∈ (aℓ(Q̂0),
1

32
√
a
ℓ(Q̂0)), then

µ(B(x,r))
rs

≤ Caε1 (by property (6)), while

if r > 1
32

√
a
ℓ(Q̂0) ≥ 1

a
ℓ(Q0), then

µ(B(x,r))
rs

≤ C (by property (5)).

Fix ϕ ∈ Lip0((1− λ
16
)Q̂0) so that ϕ ≡ 1 on (1− λ

8
)Q̂0, 0 ≤ ϕ ≤ 1 on

Rd, and ‖ϕ‖Lip ≤ C

λℓ(Q̂0)
≤ C logB

ℓ(Q̂0)
. Also take ψ̃ ∈ Lip0(R

d), satisfying
∫
ψ̃ϕdµ = 0.

By the reflectionless property, 〈R(ψ̃ϕµ), 1〉µ = 0. Let’s now split

〈R(ψ̃ϕµ), 1〉µ into its local and non-local parts:

〈R(ψ̃ϕµ), χQ̂0
〉µ + 〈R(ψ̃ϕµ), χ

Rd\Q̂0
〉µ.

The local term is interpreted as the Lebesgue integral

〈R(ψ̃ϕµ), χQ̂0
〉µ =

1

2

∫∫

Q̂0×Q̂0

K(x− y)[ψ̃(y)ϕ(y)− ψ̃(x)ϕ(x)]dµ(x)dµ(y).

Since µ has restricted growth at infinity, the non-local term can be
expressed as

〈R(ψ̃ϕµ), χ
Rd\Q̂0

〉µ = lim
N→∞

〈R(ψ̃ϕµ), χB(0,N)\Q̂0
〉µ.

On the other hand, since supp(ϕ) ⊂ (1− λ
16
)Q̂0, we have that for fixed

N ,

|〈R(ψ̃ϕµ),χB(0,N)\Q̂0
〉µ| ≤ osc

(1− λ
16

)Q̂0
[R(χB(0,N)\Q̂0

)]‖ψ̃ϕ‖L1(µ)

≤
√
dℓ(Q̂0)‖∇R(χB(0,N)\Q̂0

)‖
L∞((1− λ

16
)Q̂0)

‖ψ̃ϕ‖L1(µ).
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Note that for each x ∈ (1− λ
16
)Q̂0,

|∇R(χB(0,N)\Q̂0
µ)(x)| ≤ C

∫

Rd\Q̂0

1

|x− y|s+1
dµ(y)

≤ C

∫

λ
16
ℓ(Q̂0)≤|x−y|≤ 1

32
√
a
ℓ(Q̂0)

· · · dµ(y)

+ C

∫

|x−y|≥ 1
32

√
a
ℓ(Q̂0)

· · · dµ(y) = I + II.

(16.1)

As long as 1
a
≫ logB we have λ

16
> a, and so µ(B(x,r))

rs
≤ Caε1 for any

x ∈ (1 − λ
16
)Q̂0 and r ∈ ( λ

16
ℓ(Q̂0),

1
32

√
a
ℓ(Q̂0)). The first integral I is

therefore at most

C

∫ 1
32

√
a
ℓ(Q̂0)

λ
16
ℓ(Q̂0)

µ(B(x, r))

rs+1

dr

r
≤ Caε1 logB

ℓ(Q̂0)
on (1− λ

16
)Q̂0.

The second integral is much smaller: Since µ(B(x,r))
rs

≤ C for any x ∈ Q̂0

and r > 2
√
dℓ(Q̂0), this integral is estimated by

II ≤ C

∫ ∞

1
32

√
a
ℓ(Q̂0)

µ(B(x, r))

rs+1

dr

r
≤ C

√
a

ℓ(Q̂0)
on (1− λ

16
)Q̂0.

We arrive at the following estimate for the nonlocal term

|〈R(ψ̃ϕµ), χ
Rd\Q̂0

〉µ| ≤ Caε1 logB‖ψ̃ϕ‖L1(µ).

Set µ0 = χQ̂0
µ, and define

U(x) =

∫

Q̂0

K(x− y)(ϕ(x)− ϕ(y))dµ0(y).

Since µ is diffuse in Q̂0, U lies in L1(µ0). Thus 〈U, ψ〉µ0 is well defined
for any ψ ∈ Lip0(R

d). Consequently, by the anti-symmetry of the
kernel K, we have that

〈R(ϕµ), ψ〉µ0 + 〈R(ψϕµ), χQ̂0
〉µ = −〈U, ψ〉µ0 whenever ψ ∈ Lip0(R

d).

To see this, we write out the left hand side
∫∫

Q̂0×Q̂0

K(x− y)
1

2

[
ϕ(y)ψ(x)− ϕ(x)ψ(y)

]
dµ(x)dµ(y)

+

∫∫

Q̂0×Q̂0

K(x− y)
1

2

[
ϕ(y)ψ(y)− ϕ(x)ψ(x)

]
dµ(x)dµ(y),
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and by combining the integrals and grouping together terms with a
common ψ variable, we get∫∫

Q̂0×Q̂0

K(x− y)
1

2

[
ϕ(y)− ϕ(x)

]
ψ(x)dµ(x)dµ(y)

+

∫∫

Q̂0×Q̂0

K(x− y)
1

2

[
ϕ(y)− ϕ(x)

]
ψ(y)dµ(x)dµ(y),

but this equals −〈U, ψ〉µ0.
Now take any ψ ∈ Lip0(R

d). Then the Lipschitz continuous function

ψ̃(x) = ψ(x)− 1

‖ϕ‖2L2(µ)

∫

Rd

ψϕ dµ · ϕ(x)

has ϕdµ-mean zero, and its L1(ϕµ) norm is at most 2
∫
|ψ|ϕdµ. Thus

|〈R(ϕµ0), ψ̃〉µ0 + 〈U, ψ̃〉µ0 | = |〈R(ψ̃ϕµ), χQ̂0
〉µ| = |〈R(ψ̃ϕµ), χ

Rd\Q̂0
〉µ|

≤ Caε1 logB‖ψϕ‖L1(µ).

From the anti-symmetry of the kernel, we see that 〈R(ϕµ0), ψ〉µ0 =
〈R(ϕµ0), ψ̃〉µ0 , and therefore

|〈R(ϕµ0), ψ〉µ0 + 〈U, ψ〉µ0|

≤
[ 1

‖ϕ‖2L2(µ)

∫

Rd

|U |ϕdµ(x) + Caε1 logB
]
‖ψϕ‖L1(µ).

We now wish to estimate 1
‖ϕ‖2

L2(µ)

∫
Rd

|U |ϕdµ(x). First note that

|U(x)| ≤ ‖ϕ‖Lip
∫

Q̂0

1

|x− y|s−1
dµ(y) ≤ C logB

ℓ(Q̂0)

∫

Q̂0

1

|x− y|s−1
dµ(y).

One the other hand, the doubling property of Q̂0 ensures that
1
2
µ(Q̂0) ≤

‖ϕ‖2L2(µ) ≤ µ(Q̂0). Combining these two observations yields that

1

‖ϕ‖2L2(µ)

∫

Q̂0

|U(x)|ϕ(x)dµ(x) ≤ C logB

µ(Q̂0)ℓ(Q̂0)

∫∫

Q̂0×Q̂0

1

|x− y|s−1
dµ(x)dµ(y).

It’s now time to use property (4) of the measure µ given in Alternative

15.4. This bound on the energy Eµ(Q̂0) yields that

1

‖ϕ‖2L2(µ)

∫

Q̂0

|U(x)|ϕ(x)dµ(x) ≤ C
(
aε1 +

1

aβ3B

)
logB.

Let’s now define

Ũ(x) =

∫

Q̂0\12 Q̂0

(ϕ(x)− ϕ(y))K(x− y)dµ(y).
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Then for every x ∈ Rd,

(16.2) |Ũ(x)− U(x)| ≤ Caε1.

Indeed, if x ∈ 3
4
Q̂0, then for every y ∈ 1

2
Q̂0, ϕ(x) = ϕ(y), and so

Ũ(x) = U(x). Otherwise, x 6∈ 3
4
Q̂0, but then

∫

1
2
Q̂0

|K(x− y)|dµ(y) ≤ Cµ(Q̂0)

ℓ(Q̂0)s
≤ Caε1 .

We have proved the following statement: For every ψ ∈ Lip0(R
d),

|〈R(ϕµ0), ψ〉µ0 + 〈Ũ , ψ〉µ0 | ≤ C
[
aε1 logB +

a−β3 logB

B

]
‖ψ‖L1(µ0).

We have one more observation to make. Notice that

|Ũ(x)| ≤ C

∫

Q̂0\12 Q̂0

(logB)

ℓ(Q̂0)|x− y|s−1
dµ0(y).

As the Riesz potential of a positive measure, the quantity on the right
hand side of this inequality is α-superharmonic (α = d−s+1

2
), and this

will be used crucially in Part II of the paper.
Finally, we have arrived at the following conclusion:

Lemma 16.1. For every ψ ∈ Lip0(R
d),

|〈R(ϕµ0), ψ〉µ0| ≤C
∫

Q̂0

[∫

Q̂0\12 Q̂0

logB

ℓ(Q̂0)|x− y|s−1
dµ0(y)

]
|ψ(x)|dµ0(x)

+ Cτa,B‖ψ‖L1(µ0),

where τa,B = aε1 logB + a−β3 logB
B

.

16.1. Fixing parameters and the end of Part I. It’s time now to
fix a in terms of B. Put

a = B
− 1
2β′ ,

with β ′ = max
(
β, β3

)
.

By choosing B sufficiently large, we may ensure that B ≥ B0, a ≤ a0,

and a−β ≪ B. Now set A = ℓ(Q̂0)
ℓ(Q0)

, so 2aB ≤ A ≤ 4aB. Then if B is

sufficiently large we have log(B) ≤ 4 log(A).

By the choice of β ′, we have that τa,B ≤ CA−γ, and Dµ(Q̂0) ≤ CA−γ

for some γ > 0 depending on d and s. By relabelling µ0 by µ we arrive
at the following statement:

Alternative 16.2. Either
(i) Theorem 4.1 holds, or
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(ii) there exist C4 > 0 and γ > 0, depending solely on d and s,
such that for arbitrarily large A > 0, there is a finite diffuse measure µ
supported on the cube AQ0, and a function ϕ ∈ Lip0(AQ0) satisfying
(a) ϕ ≡ 1 on 9A

10
Q0 and 0 ≤ ϕ ≤ 1 in Rd,

(b) µ(Q0) ≥ 1,
(c) Dµ(AQ0) ≤ CA−γ,

(d) Dµ ∈ L2,∞(µ) where Dµ(x) = supr>0
µ(B(x,r))

rs
. In other words,

‖Dµ‖22,∞ = sup
T>0

[
T 2µ

({
x ∈ R

d : Dµ(x) > T
})]

<∞,

(e) for every ψ ∈ Lip0(R
d),

|〈R(ϕµ), ψ〉µ| ≤ C4 logA

∫

AQ0

GA(χ
AQ0\A2 Q0

µ)(x)|ψ(x)|dµ(x)

+ C4A
−γ‖ψ‖L1(µ),

where, for a measure ν,

GA(ν)(x) =

∫

Rd

1

A|x− y|s−1
dν(y).

Part II: The non-existence of an impossible object

17. The scheme

Our goal is to obtain a contradiction by assuming that part (ii)
of the Alternative 16.2 holds. The argument that we shall employ to
obtain this contradiction is based on the ideas introduced by Eiderman-
Nazarov-Volberg [ENV2] and Reguera-Tolsa [RT], and is quite involved.
Therefore, we shall here attempt to outline the scheme that shows that
part (ii) of the alternative cannot be true.
For A very large, let’s suppose that we can construct finite measures

ν and µ both supported in AQ0 which satisfy

(17.1) |R(ν)| ≤ (logA)GA(χ
AQ0\A2 Q0

µ) + C4A
−γ md-a.e. in R

d,

but also such that ν(Q0) ≥ 1 and Dµ(AQ0) ≤ A−γ . A standard Fourier
analytic construction (see Section 22.1) provides us with a non-negative
function Ψ ∈ L1(md) such that Ψ(x) ≤ C

(1+|x|)2d−s for every x ∈ Rd and
∫

Rd

|R(ν)|Ψdmd ≥ ν(Q0) ≥ 1.

On the other hand, since Dµ(AQ0) ≤ A−γ, simple estimates yield that
∫

Rd

G(χ
AQ0\A2 Q0

µ)Ψdmd ≤ CA−γ .
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But then if we integrate (17.1) against Ψmd we get that 1 ≤ C(logA)A−γ,
and this of course yields a contradiction if A was chosen large enough.
With this simple argument in mind, it is natural to attempt to derive

a pointwise condition similar to (17.1), with ν = ϕµ, from the distri-
butional inequality (e). Hopefully this should remind the reader of a
maximum principle, since the distributional inequality tells us about
the behaviour of R(ϕµ) only on the support of µ. However, it is not
feasible to derive (17.1) from (e) directly. We shall instead go through
several steps of regularizing and modifying the measures ϕµ and µ while
preserving their key properties, and ultimately arrive at some pair of
measures for which (a slight variant of) the above Fourier analytic ar-
gument can be pushed through. We shall seek to explain the ideas
behind these regularization steps in the subsequent few paragraphs.
The ultimate goal of the first two regularization steps (Sections 19

and 20) is to smooth the measures µ and ϕµ. However, if we were to
just convolve these measures with some smooth mollifier immediately,
we would not know the effect it would have on the crucial condition
(e).
If we knew that the operator Rϕµ : L2(ϕµ) → L2(ϕµ) was bounded,

then we could apply theorems of Vihtilä [Vih] and [ENV2] to derive
that ϕµ has zero density, that is,

lim
r→0

Dϕµ(B(x, r)) = 0 for ϕµ-almost every x ∈ R
d.

The ideas in the paper [ENV2] indicate that under this zero density
condition, one can perform a smoothing operation on the measures µ
and ϕµ, while distorting the condition (e) an arbitrarily small amount.
Notice also that the condition (e) indicates that a T (1)-theorem may
be applicable to obtain the operator boundedness of Rϕµ. The obstacle
behind applying a T (1)-theorem directly is that the measure µ does not
have bounded density, but instead we only have Dµ ∈ L2,∞(µ).
We therefore introduce an exceptional set Ω outside of which the

maximal density Dµ is bounded above by some massive threshold T ≫
A. The fancy T (1)-theorem of Nazarov-Treil-Volberg [NTV2] yields
that if we suppress the Riesz kernel with the distance function Φ(x) =
dist(x,Rd\Ω), then the resulting suppressed Riesz transform operator
RΦ is bounded in L2(ϕµ) with operator norm at most CT . (See Lemma
19.1.) In particular, if we introduce the measure µ′ = χRd\Ωϕµ, then
Rµ′ is bounded in L2(µ′). Thus, the measure µ′ has the zero density
condition. (See Section 19.6.)
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Using the condition (e), the boundedness of Rµ′ in L
2(µ′) enables us

to conclude that the L2(µ′) function

H = (|Rµ′(1)| − C4(logA)GA(χ
AQ0\A2 Q0

µ)− C4A
−γ)+

has L2(µ′) norm at most ‖RΦ,ϕµ(χΩ)‖L2(ϕµ). (See Claim 19.5 and the

discussion following it.) But, since Dµ ∈ L2,∞(µ), the natural estimate
for the measure of Ω (where the maximal density is larger than T )
is µ(Ω) ≤ CT−2 (Lemma 19.2), and so we can only conclude that
‖RΦ,ϕµ(χΩ)‖L2(ϕµ) ≤ C for some constant C.
Only knowing that H is at most constant size in L2(µ′) is insuf-

ficient for us to be able to derive a contradiction. However, non-
homogeneous Calderón-Zygmund theory also yields that if 1 < p <
2, then ‖RΦ,ϕµ(χΩ)‖pLp(ϕµ) ≤ C(p)T−(2−p), which is arbitrarily small.

Thus, we have that H has arbitrarily small Lp(µ′) norm! (See Section
19.1.) The idea to work in Lp is one of the main technical innovations
of the aforementioned paper [RT].
We then carry out the smoothing operation in Section 20. This

ultimately provides us (after some rescalings) with measures µ̃ and ν̃
that have C∞ densities with respect to md, and satisfy
• supp(ν̃) ⊂ AQ0 and Dν̃(Q0) ≥ 1

2
,

• supp(µ̃) ⊂ AQ0\A8Q0 and Dµ̃(AQ0) ≤ C(logA)A−γ,
• the function (|R(ν̃)|−GA(µ̃)−C4A

−γ)+ has arbitrarily small Lp(ν̃)
norm.
In Section 21 we perform the third modification, analogous to the

Eiderman-Nazarov-Volberg variational construction. We show that by
minimizing a suitable functional, one can redistribute the Lebesgue
density of ν̃ on its support to arrive at a measure ν̃a with bounded
density with respect to md, ν̃a(Q0) ≥ 1

3
, and such that, if

Ha = (|R(ν̃a)| −GA(µ̃)− C4A
−γ)+,

then the positive part of the expression Hp
a + pR∗(Hp−1

a Eν̃a) is point-
wise arbitrarily small on the support of ν̃a for some measurable unit
vector field E. The all important maximum principle for the fractional
Laplacian permits the extension of this inequality to the entire space.
Finally, in Section 22, we appeal to the simple argument that began

this section to above to show that the function Hp
a + pR∗(Hp−1

a Eν̃a)
cannot have small positive part in the entire space under the assump-
tions that Dν̃a(Q0) ≥ 1

3
, and Dµ̃(AQ0) ≤ CA−γ , if A is sufficiently

large. This will ensure that part (i) of Alternative 16.2 holds.
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18. Suppressed kernels

18.1. The suppressed kernel. For a 1-Lipschitz function Φ, define
the suppressed Riesz kernel

KΦ(x, y) =
x− y

(|x− y|2 + Φ(x)Φ(y))
s+1
2

.

Now set Φδ(x) = max(Φ(x), δ). In this case we write KΦ,δ(x, y) instead
of KΦδ(x, y).
Notice that if ν is a finite measure, and x ∈ Rd is such that Φ(x) > 0,

then we may define the potential

RΦ(ν)(x) =

∫

Rd

KΦ(x, y)dν(y).

Moreover, if δ > 0, then the potential

RΦ,δ(ν)(x) =

∫

Rd

KΦ,δ(x, y)dν(y)

is a continuous function on Rd.

Lemma 18.1. There is a constant C > 0 such that for every x, y ∈ Rd,

|KΦ(x, y)| ≤ Cmin
( 1

Φ(x)s
,

1

Φ(y)s
,

1

|x− y|s
)

Proof. Fix x, y ∈ Rd. The estimate

|KΦ(x, y)| ≤
1

|x− y|s

is trivial. In lieu of this, and the antisymmetry of KΦ, it suffices to
prove the assertion that

|KΦ(x, y)| ≤
C

Φ(x)s

under the assumption that |x−y| < 1
2
Φ(x). But then Φ, as a 1-Lipschitz

function, satisfies Φ(y) ≥ Φ(x)− |x− y| ≥ 1
2
Φ(x). Consequently,

|KΦ(x, y)| ≤
2(s+1)/2|x− y|

Φ(x)s+1
≤ 2(s−1)/2

Φ(x)s
.

The lemma is proved. �

For a diffuse measure ν, and for f, ψ ∈ Lip0(R
d) we set 〈RΦ(fν), ψ〉ν

to be the bilinear form (3.1) with kernel k = KΦ.
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Lemma 18.2. There is a constant C > 0 such that if x, y ∈ Rd with
x 6= y, then

|K(x− y)−KΦ(x, y)| ≤
CΦ(x)

|x− y|s+1
.

Proof. The claim is only non-trivial if Φ(x) > 0, so let us assume
that this is the case. The desired estimate follows immediately from
Lemma 18.1 if |x − y| ≤ Φ(x). For x, y with |x − y| > Φ(x), we also
have that Φ(y) ≤ |x−y|+Φ(x) ≤ 2|x−y|. It follows that the quantity
|K(x− y)−KΦ(x, y)|, which equals

|x− y|
[(
|x− y|2 + Φ(x)Φ(y))(s+1)/2 − |x− y|s+1

]

|x− y|s+1
(
|x− y|2 + Φ(x)Φ(y)

)(s+1)/2
,

is at most

1

|x− y|s
[(

1 + 2
Φ(x)

|x− y|
)(s+1)/2

−1
]
≤ CΦ(x)

|x− y|s+1
,

as required. �

The kernel bound of the previous lemma will be used to prove the
following comparison result.

Lemma 18.3. There is a constant C > 0 such that if ν is a finite
measure, and Φ(x) > 0, then

∣∣∣RΦ(ν)(x)−
∫

|x−y|>Φ(x)

K(x− y)dν(y)
∣∣∣≤ C sup

r≥Φ(x)

Dν(B(x, r)).

Proof. First notice that, by Lemma 18.1,
∫

B(x,Φ(x))

|KΦ(x, y)|dν(y) ≤
∫

B(x,Φ(x))

C

Φ(x)s
dν(y) ≤ CDν(B(x,Φ(x))).

We shall now consider∫

|x−y|>Φ(x)

|K(x− y)−KΦ(x, y)|dν(y).

Applying the estimate in Lemma 18.2 yields that this integral is bounded
by

C

∫

|x−y|>Φ(x)

Φ(x)

|x− y|s+1
dν(y) ≤ CΦ(x)

∫

r≥Φ(x)

ν(B(x, r))

rs
dr

r2
.

The right hand side of the previous inequality is clearly dominated by
C supr≥Φ(x)Dν(B(x, r)), and this completes the proof. �
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18.2. The non-homogeneous T (1)-theorem for suppressed ker-
nels. The main result about suppressed kernels that we shall use is the
Nazarov-Treil-Volberg T (1)-theorem, see [NTV2] and also Chapter 5
of [Tol1].

Theorem 18.4. Let µ be a finite measure. Suppose that Ω is an open
set, and put Φ(x) = dist(x,Rd\Ω). Assume that

(1) Dµ(B(x, r)) ≤ 1 whenever r ≥ Φ(x), and
(2) supδ>0 |RΦ,δ(µ)(x)| ≤ 1 for every x ∈ Rd.

Then there is a constant C > 0 such that for every f ∈ L2(µ),

sup
δ>0

∫

Rd

|RΦ,δ(fµ)|2dµ(x) ≤ C‖f‖2L2(µ).

Assuming the assumptions of this theorem are satisfied for a finite
diffuse measure µ, we may then apply Lemma 3.4 to get that

|〈RΦ(fµ), ψ〉µ| ≤ C‖f‖L2(µ)‖ψ‖L2(µ),

and so this bilinear form gives rise to a bounded linear operator RΦ,µ

on L2(µ).

18.3. The bilinear forms 〈R(ϕµ), ψ〉µ and 〈RΦ(ϕµ), ψ〉µ. Suppose
that µ is a finite measure with Dµ ∈ L1(µ). Then µ is diffuse. Indeed,
just note that for any x ∈ Rd and R > 0,

∫

B(0,R)

1

|x− y|s−1
dµ(y) ≤ C

∫ 2R

0

µ(B(x, r))

rs
dr ≤ CRDµ(x).

and consequently
∫∫

B(0,R)×B(0,R)

1

|x− y|s−1
dµ(x)dµ(y) ≤ CR

∫

B(0,R)

Dµdµ <∞.

Consequently, for any Lipschitz function Φ, the bilinear forms 〈R(ϕµ), ψ〉µ
and 〈RΦ(ϕµ), ψ〉µ are well defined for ϕ, ψ ∈ Lip0(R

d).
Fix an open set Ω, and set Φ(x) = dist(x,Rd\Ω). For η > 0, put

gη = (1− dist( · ,Rd\Ω)
η

)+. This function satisfies

• gη ≡ 1 on Rd\Ω,
• gη(x) = 0 if dist(x,Rd\Ω) > η,
• ‖gη‖Lip ≤ 1

η
.

Lemma 18.5. Suppose that Dµ ∈ L1(µ). Then for every ϕ, ψ ∈
Lip0(R

d),

lim
η→0

∣∣〈RΦ(ϕµ), gηψ〉µ − 〈R(ϕµ), gηψ〉µ
∣∣= 0.
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Proof. Let’s write out 〈RΦ(ϕµ), gηψ〉µ− 〈R(ϕµ), gηψ〉µ as a double in-
tegral:

∫∫

Rd×Rd

[KΦ(x, y)−K(x− y)]Hϕ,gηψ(x, y)dµ(x)dµ(y).

Notice that the domain of integration can be restricted to x, y ∈ Ω
without changing the value of the double integral. Furthermore, notice
that the integrand is zero if both Φ(x) = dist(x,Rd\Ω) > η and Φ(y) =
dist(y,Rd\Ω) > η. Consequently, it shall suffice to show that

lim
η→0

∫∫

(x,y)∈Ω×Ω:
Φ(x)<η

|KΦ(x, y)−K(x− y)||Hϕ,gηψ(x, y)|dµ(y)dµ(x) = 0

If η is small enough, then

|Hϕ,gηψ(x, y)| ≤ C(ϕ, ψ)
|x− y|
η

.

Thus, for such η > 0, the integral

I =

∫

x∈Ω:Φ(x)<η,

∫

y∈B(x,Φ(x))

|K(x− y)−KΦ(x, y)||Hϕ,gηψ(x, y)|dµ(y)dµ(x)

is at most a constant multiple of
∫

x∈Ω:Φ(x)<η,

∫

B(x,Φ(x))

1

η|x− y|s−1
dµ(y)dµ(x).

Applying the easy estimate
∫
B(x,η)

1
η|x−y|s−1dµ(y) ≤ CDµ(x), we con-

clude that

I ≤ C(ϕ, ψ)

∫

x∈Ω:Φ(x)<η

Dµ(x)dµ(x).

On the other hand, trivially |Hϕ,gηψ(x, y)| ≤ C(ϕ, ψ) for all x, y ∈ Rd.
Therefore we may use Lemma 18.2 to estimate the integral

∫

x∈Ω:Φ(x)<η,

∫

Rd\B(x,Φ(x))

|K(x− y)−KΦ(x, y)||Hϕ,gηψ(x, y)|dµ(y)dµ(x)

by a constant multiple (which may depend on ψ and ϕ) of
∫

x∈Ω:Φ(x)<η,

∫

Rd\B(x,Φ(x))

Φ(x)

|x− y|s+1
dµ(y)dµ(x).
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This integral is again dominated by
∫

x∈Ω:Φ(x)<η

Dµ(x)dµ(x).

It remains to show that

lim
η→0+

∫

x∈Ω:Φ(x)<η

Dµ(x)dµ(x) = 0.

But this follows readily from the Dominated Convergence Theorem as
Dµ ∈ L1(µ), and χ{x∈Ω:Φ(x)<η} tends to zero pointwise as η → 0+ (Ω is
an open set). �

19. Step I: Calderón-Zygmund theory (From a
distribution to an Lp-function)

Fix A,A1 > 1. Throughout this section, let us suppose that there
is a finite measure µ supported in AQ0, and functions ϕ ∈ Lip0(AQ0)
with 0 ≤ ϕ ≤ 1, and F ∈ L1(µ) that satisfy
(A) Dµ ∈ L2,∞(µ) (with norm ‖Dµ‖2,∞),
(B) 〈R(ϕµ), ψ〉µ = 〈F, ψ〉µ for every ψ ∈ Lip0(R

d), and
(C) |F | ≤ A1(1 +Dµ).
We set µϕ = ϕµ.

19.1. Cotlar’s lemma and the exceptional set Ω.

Lemma 19.1. There exists a constant C(µ) > 0 depending on ‖Dµ‖2,∞,
‖ϕ‖Lip, A, A1, d, and s, such that for every T > 1 there is an open
set Ω = Ω(T ) ⊂ Rd such that if Φ = Φ(T ) = dist(·,Rd\Ω) then the
following properties hold

(i) (small measure of Ω) µ(Ω) ≤ C(µ)

T 2
,

(ii) (controlled density) for every x ∈ Rd and r > Φ(x)
2

, Dµ(B(x, r)) ≤
2sT , and
(iii) (the Cotlar estimate) for every x ∈ Rd and δ > 0,

|RΦ,δ(µϕ)(x)| ≤ C(µ)T.

The sets Ω(T ) will further satisfy that if t ≤ T , then Ω(t) ⊃ Ω(T ).
Fix T ≥ 1. We shall split the proof of this lemma into a few pieces.

Throughout the remainder of this section C(µ) will denote a constant
that may depend on ‖Dµ‖2,∞, ‖ϕ‖Lip, A, A1, d, and s, and can change
from line to line.
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19.2. Doubling balls. We shall call a ballB(x, r) doubling if µ(B(x, 15r)) ≤
225sµ(B(x, r)). Equivalently, B(x, r) is doubling if Dµ(B(x, 15r)) ≤
15sDµ(B(x, r)).
Fix x ∈ Rd, r > 0. Set ρℓ = 15ℓr. If B(x, ρℓ) fails to be doubling for

every ℓ ∈ {0, . . . , j − 1} with j ≥ 1, then

Dµ(B(x, ρj)) > 15sDµ(B(x, ρj−1)) > · · · > 15sjDµ(B(x, r)).

In particular, this inequality combined with the finiteness of µ ensures
that if µ(B(x, r)) > 0 then there is the least index k ≥ 0 for which
B(x, ρk) is doubling. For j ≤ k we have

(19.1) Dµ(B(x, ρj)) ≤ 15−s(k−j)Dµ(B(x, ρk)),

and so clearly also

Dµ(B(x, ρk)) ≥ Dµ(B(x, r)).

19.3. The construction of Ω. Consider the collection B of balls
B(x, 3r) with the properties thatB(x, r) is doubling and

∫
B(x,3r)

Dµdµ >

Tµ(B(x, r)). Set Ω =
⋃
B∈B B.

Now let Bj = B(xj , 3rj) be a Vitali subcollection of B. That is,
(Bj)j is a (possibly finite) sequence of pairwise disjoint balls from B
that satisfy ⋃

j

5Bj =
⋃

j

B(xj , 15rj) ⊃
⋃

B∈B
B.

Lemma 19.2. There is a constant C(µ) > 0 such that

µ(Ω) ≤ C(µ)

T 2
.

Proof. First note that, for a doubling ball B(x, r),
∫

B(x,3r)∩
{
Dµ≤ T

2·225s
}Dµdµ ≤ T

2 · 225sµ(B(x, 3r)) ≤ T

2
µ(B(x, r)).

Set

DT,µ(x) =

{
0 if Dµ(x) ≤ T

2·225s ,

Dµ(x) otherwise.

Then, for each ball Bj = B(xj , 3rj) in the Vitali subcollection we
have ∫

B(xj ,3rj)

DT,µdµ ≥ T

2
µ(B(xj , rj)).
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Consequently

µ(Ω) ≤
∑

j

µ(B(xj , 15rj)) ≤ 225s
∑

j

µ(B(xj, rj))

≤ 2 · 225s
T

∑

j

∫

Bj

DT,µ dµ ≤ 2 · 225s
T

∫
{
Dµ>

T
2·225s

}Dµ dµ,

where the penultimate inequality follows from the pairwise disjointness
of the Vitali subcollection. On the other hand, we have that
∫
{
Dµ>

T
2·225s

}Dµ dµ ≤
∫ ∞

0

µ
({
x ∈ R

d : Dµ(x) > max
(
t,

T

2 · 225s
)})

dt

≤
C‖Dµ‖22,∞

T
,

and the proof is complete. �

Lemma 19.3. Whenever x ∈ Rd and r ≥ Φ(x)
2

, we have Dµ(B(x, r)) ≤
2sT .

Proof. First suppose that B(x, r) is doubling and Dµ(B(x, r)) ≥ 2sT .
Then for every y ∈ B(x, r), we have

Dµ(y) ≥
µ(B(y, 2r))

(2r)s
≥ T.

Thus ∫

B(x,3r)

Dµdµ > Tµ(B(x, r)),

and so B(x, 3r) ∈ B. It therefore follows that Φ(x) ≥ 3r.

But now if r ≥ Φ(x)
2

and Dµ(B(x, r)) ≥ 2sT , then by considering the

smallest doubling ball B(x, 15kr) containing B(x, r) (see Section 19.2)
we reach a contradiction with the conclusion of the previous paragraph.
The lemma follows. �

19.4. The proof of Lemma 19.1. Having defined the set Ω, and
verified properties (i) and (ii) from Lemma 19.1, we now complete
the proof by proving property (iii), the Cotlar estimate. The ideas
primarily originate in the work of David and Mattila [Dav1, DM].
Fix x ∈ Rd and δ > 0. From Lemma 18.3, applied with the Lipschitz

function Φδ and finite measure µϕ, we see that it suffices to estimate∫
|x−y|≥Φδ(x)

K(x−y)dµϕ(y), asDµ(B(x, r)) ≤ CT for every r ≥ Φδ(x) ≥
Φ(x).
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Now set ρj = 15jΦδ(x), j ∈ N, and set k to be the least index such
that B(x, ρk) is doubling and µ(B(x, ρk)) > 0. Then by (19.1), we have
for 0 ≤ j ≤ k,

Dµ(B(x, ρj)) ≤
1

15s(k−j)
Dµ(B(x, ρk)) ≤

CT

15s(k−j)
.

Using this bound in a crude manner, we obtain that∫

Φδ(x)≤|x−y|≤ρk
|K(x− y)|dµϕ(y) ≤ C

∑

0≤j≤k
Dµ(B(x, ρj)) ≤ CT.

Also notice that since supp(µ) ⊂ AQ0, we have that ρk ≤ CA.
The upshot of these remarks is that it now suffices to prove the

estimate

(19.2)
∣∣∣
∫

|x−y|≥ r
K(x− y)dµϕ(y)

∣∣∣≤ C(µ)T,

where B(x, r) is a doubling ball with µ(B(x, r)) > 0 and Φ(x) < r <
CA. Observe that since r > Φ(x), the ball B(x, 3r) intersects Rd\Ω,
and so

∫
B(x,3r)

Dµdµ ≤ Tµ(B(x, r)).

We shall use property (B) to prove (19.2). In order to do so, we will
introduce two cut-off functions. Let ψ ∈ Lip0(B(x, 3

2
r)) satisfy ψ ≡ 1

in B(x, r), ψ ≥ 0 in Rd and ‖ψ‖Lip ≤ C
r
, and let f ∈ Lip0(B(x, 3r))

satisfy f ≡ 1 on B(x, 2r), f ≥ 0 on Rd, and ‖f‖Lip ≤ C
r
.

First notice that for every x′ ∈ supp(ψ),
∣∣∣
∫

|x−y|>r
K(x− y)dµϕ(y)−R([1 − f ]µϕ)(x

′)
∣∣∣≤ CT.

Indeed, since supp(ψ) ⊂ B(x, 3
2
r), and f ≡ 1 on B(x, 2r), we get that

the left hand side is bounded by

C

rs
µ(B(x, 3r)) +

∣∣∣
∫

|x−y|>3r

[K(x− y)−K(x′ − y)]dµϕ(y)
∣∣∣

≤ CT + Cr

∫ ∞

r

µ(B(x, t))

ts
dt

t2
≤ CT.

Averaging this bound with respect to the measure ψdµ, we obtain
that∣∣∣

∫

|x−y|>r
K(x− y)dµϕ(y)−

1

‖ψ‖L1(µ)

〈R([1− f ]µϕ), ψ〉µ
∣∣∣≤ CT.

On the other hand, write

〈R(fµϕ), ψ〉µ =

∫∫

B(x,3r)×B(x,3r)

K(y − z)Hfϕ,ψ(y, z)dµ(y)dµ(z).



THE RIESZ TRANSFORM AND THE WOLFF ENERGY 57

Since |Hfϕ,ψ(y, z)| ≤ C(‖ϕ‖Lip + 1
r
)|y − z|, we get that

|〈R(fµϕ), ψ〉µ| ≤ C
(
‖ϕ‖Lip +

1

r

) ∫∫

B(x,3r)×B(x,3r)

1

|y − z|s−1
dµ(y)dµ(z).

The right hand side here is bounded by a constant multiple of
(
‖ϕ‖Lip +

1

r

)
r

∫

B(x,3r)

Dµdµ ≤ C(‖ϕ‖Lipr + 1)Tµ(B(x, r)),

which is in turn bounded by CA(1 + ‖ϕ‖Lip)T‖ψ‖L1(µ). Thus

1

‖ψ‖L1(µ)

∣∣∣〈R(fµϕ), ψ〉µ
∣∣∣≤ CA(1 + ‖ϕ‖Lip)T.

It remains to estimate 1
‖ψ‖L1(µ)

|〈R(µϕ), ψ〉µ|, and this is where con-

dition (B) will be used:

|〈R(µϕ), ψ〉µ| = |〈F, ψ〉µ| ≤ CA1

∫

B(x,3r)

(1+Dµ)dµ ≤ CA1Tµ(B(x, r)),

and this is bounded by CA1T‖ψ‖L1(µ).
Bringing together our estimates, we see that (19.2) holds, and so the

proof of the lemma is completed.

19.5. The Non-homogeneous T (1)-theorem. Fix T ≥ 1. Set Ω =
Ω(T ) and Φ = Φ(T ) as in Lemma 19.1. Since

|RΦ,δ(
µϕ
T
)(x)| ≤ C(µ) for all x ∈ R

d and δ > 0,

and µϕ(B(x,r))

T
≤ 2srs whenever r ≥ Φ(x), we may apply the Nazarov-

Treil-Volberg T (1)-theorem for suppressed kernels (see Theorem 18.4
and the discussion immediately following it), to conclude that RΦ,µϕ is
a bounded operator on L2(µϕ) with norm at most C(µ)T .

Lemma 19.4. Let p ∈ (1, 2). Then there is a constant C(µ, p) > 0
such that

‖RΦ,µϕ(χΩ)‖pLp(µϕ) ≤
C(µ, p)

T 2−p .

Readers with an advanced knowledge of non-homogeneous Calderón-
Zygmund theory can view this lemma as a corollary of the fact that
the L2(µϕ) boundedness of the operator RΦ,µϕ self-improves to yield
that if 1 < p <∞, then RΦ,µϕ is also bounded on Lp(µϕ) with operator
norm at most C(µ, p)T (see Chapter 5 of [Tol1]). However, by using
the structure of Ω, we provide a simple self-contained proof.
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Proof. Recall that Ω = Ω(T ) is an open set, so there is a sequence
fn ∈ Lip0(Ω) that pointwise increases to χΩ. If 1 ≤ t ≤ T , then we
set Ω(t) and Φ(t) to be as in Lemma 19.1. Thus RΦ(t),µϕ is a bounded

operator on L2(µϕ) with norm at most C(µ)t, and µ(Ω(t/2)) ≤ C(µ)
t2

.
Since Ω(t) ⊃ Ω(T ), Lemma 3.3 yields that for µϕ-almost every x 6∈
Ω(t),

RΦ,µϕ(fn)(x) =

∫

Rd

K(x− y)fn(y)dµ(y) = RΦ(t),µϕ(fn)(x).

But fn converges to χΩ in L2(µϕ) as n→ ∞, and so we have that

RΦ,µϕ(χΩ) = RΦ(t),µϕ(χΩ) µϕ-almost everywhere on R
d\Ω(t).

Now write∫

Rd

|RΦ,µϕ(χΩ)|pdµϕ ≤
∫

Ω

|RΦ,µϕ(χΩ)|pdµϕ

+
∑

0≤j≤log2 T

∫

Ω(2−(j+1)T )\Ω(2−jT )

|RΦ,µϕ(χΩ)|pdµϕ

+

∫

Rd\Ω(1)

|RΦ,µϕ(χΩ)|pdµϕ

With t = 2−jT ,∫

Ω(t/2)\Ω(t)

|RΦ,µϕ(χΩ)|pdµϕ =

∫

Ω(t/2)\Ω(t)

|RΦ(t),µϕ(χΩ)|pdµϕ,

and so by Hölder’s inequality∫

Ω(t/2)\Ω(t)

|RΦ(t),µϕ(χΩ)|pdµϕ ≤ ‖RΦ(t),µϕ(χΩ)‖pL2(µϕ)
µ(Ω(t/2))1−

p
2 .

Plugging in the estimate for the operator norm of RΦ(t),µϕ and the
measure estimate for µ(Ω(t/2)), we therefore arrive at the inequality

∫

Ω(t/2)\Ω(t)

|RΦ(t),µϕ(χΩ)|pdµϕ ≤ C(µ)
( t
T

)p 1

t2−p
= C(µ)

t2(p−1)

T p
.

Similarly
∫

Rd\Ω(1)

|RΦ,µϕ(χΩ)|pdµϕ =

∫

Rd\Ω(1)

|RΦ(1),µϕ(χΩ)|pdµϕ ≤ C(µ)

T p
.

Bringing these estimates together, we therefore see that
∫

Rd

|RΦ,µϕ(χΩ)|pdµϕ ≤ C(µ)
∞∑

j=0

2−2(p−1)jT (p−2),

which proves the lemma. �
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For the remainder of the paper we shall fix p = 3
2
. Any other fixed

choice of p ∈ (1, 2) would work just as well in the subsequent argument.
Set µ′ = χRd\Ωµϕ. Then Dµ′(x) ≤ 2sT for every x ∈ supp(µ′).

Notice that, for any f, ψ ∈ Lip0(R
d), we have

〈RΦ(fµ
′), ψ〉µ′ = 〈R(fµ′), ψ〉µ′ .

Therefore, Lemma 3.1 yields that

|〈R(fµ′), ψ〉µ′| = |〈RΦ(fµ
′), ψ〉µ′| = |RΦ,µϕ(fχRd\Ωµϕ), ψχRd\Ω〉µϕ |

≤ C(µ)T‖f‖L2(µ′)‖ψ‖L2(µ′),

and so the operator Rµ′ : L
2(µ′) → L2(µ′) emerging from this bilinear

form is bounded with norm at most C(µ)T .
We now wish to see how the property (B) relates to the measure µ′.

Claim 19.5. For every ψ ∈ Lip0(R
d),

〈Rµ′(1), ψ〉µ′ = 〈R(µ′), ψ〉µ′ = 〈F, ψ〉µ′ − 〈RΦ,µϕ(χΩ), ψχRd\Ω〉µϕ .
Proof. We first notice that Corollary 3.2 yields

〈Rµ′(1), ψ〉µ′ = 〈RΦ,µϕ(χRd\Ω), χRd\Ωψ〉µϕ .
Now write

〈RΦ,µϕ(χRd\Ω), χRd\Ωψ〉µϕ =〈RΦ,µϕ(1), χRd\Ωψ〉µϕ
− 〈RΦ,µϕ(χΩ), χRd\Ωψ〉µϕ .

The second term in the right hand side of the equality is precisely the
second term appearing in the right hand side of the claimed identity,
so it suffices to show that 〈RΦ,µϕ(1), χRd\Ωψ〉µϕ = 〈F, ψ〉µ′.
Since the functions gη converge to χRd\Ω in L2(µ), we see that

〈RΦ,µϕ(1), χRd\Ωψ〉µϕ = lim
η→0

〈RΦ,µϕ(1), gηψ〉µϕ .

On the other hand, for η > 0,

〈RΦ,µϕ(1), gηψ〉µϕ = 〈RΦ(ϕµ), gηψϕ〉µ,
and consequently, Lemma 18.5 ensures that

〈RΦ,µϕ(1), χRd\Ωψ〉µϕ = lim
η→0

〈R(ϕµ), gηψϕ〉µ.

We therefore deduce from the property (B) that

〈R(ϕµ), gηψϕ〉µ = 〈F, gηψϕ〉µ.
Finally, applying the the dominated convergence theorem yields that

lim
η→0

〈F, gηψϕ〉µ = 〈F, χRd\Ωψϕ〉µ = 〈F, ψ〉µ′.

The claim is proven. �
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From the claim we find that the Lp(µ′) function Rµ′(1) satisfies

Rµ′(1) = F −RΦ,µϕ(χΩ) µ′-a.e.,

and

‖RΦ,µϕ(χΩ)‖pLp(µ′) ≤ C(µ, p)T−(2−p).

19.6. The boundedness of the Riesz transform implies zero
density of the measure (at least if s ∈ (d− 1, d)). Since the Riesz
transform operator Rµ′ is bounded in L2(µ′), and s ∈ (d − 1, d), we
may deduce from a result in Eiderman-Nazarov-Volberg [ENV2] that
for µ′-almost every x ∈ Rd

lim sup
r→0

Dµ′(B(x, r)) = 0.

This result is only known in the case s ∈ (d − 1, d). (As we will
be broadly following the scheme of the paper [ENV2], we shall run
up against the authors’ obstruction to extending this result to s <
d− 1: it occurs when we wish to extend the inequality that appears in
Lemma 21.1 below from an inequality on the support of a measure to
an inequality in the entire space.)
We actually know of two ways to arrive at the desired statement.

We shall describe momentary how to obtain the theorem directly from
results in [ENV2]. However, it is perhaps worth mentioning that one
can alternatively derive the same conclusion directly from Theorem 1.3
of [JN2], where it is proved that there is some large exponent q > 0
such that ∫

Rd

[∫ ∞

0

(µ′(B(x, r))

rs

)q dr
r

]
dµ′(x) <∞.

The main advantage in doing so is that Theorem 1.3 of [JN2] follows
from Proposition 9.2 above (which already plays an essential role in
this paper) without much difficulty, see Sections 4 and 5 of [JN2].
To derive the desired result directly from [ENV2], consider the set

F =
{
x ∈ R

d : lim sup
r→0+

Dµ′(B(x, r)) > 0
}
=

⋃

n

Fn,

where Fn = {x ∈ Rd : lim supr→0+ Dµ′(B(x, r)) > 1
n
}. A stan-

dard application of the Vitali covering lemma ensures that Hs(Fn) ≤
Cnµ′(Rn). But also we have that the s-Riesz transform associated to
the measure χFnµ

′ (whose support has finite Hs-measure) is bounded
in L2(χFnµ

′). The theorem stated in Section 22 of [ENV2] then yields
that µ(Fn) = 0. Thus µ(F ) = 0, which is precisely what was to be
proved.
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Since µ′ is a finite measure, we may apply Egoroff’s theorem (and
Borel regularity) to find a closed set E ⊂ Rd such that µ′(Rd\E) ≤
T−4/p, and also

lim
r→0

sup
x∈E

Dµ′(B(x, r)) = 0.

Then

‖Rµ′(χRd\E)‖pLp(µ′) ≤ ‖Rµ′(χRd\E)‖pL2(µ′)µ
′(Rd)1−

p
2

≤ C(µ)T pµ′(Rd\E)p/2 ≤ C(µ)T−(2−p).

19.7. The measure ν. Set ν = χEµ
′. Then Rν(1), as a function in

Lp(ν), equals
F −H,

where H = RΦ,µϕ(χΩ) +Rµ′(χRd\E) satisfies

‖H‖pLp(ν) ≤ C(µ)T−(2−p).

For future reference, let us record that this implies that

•
∫

Rd

(|Rν(1)| − |F |)p+dν ≤ C(µ)T−(2−p).

In addition, the measure ν has the following properties,
• Dµ(x) ≤ 2sT for all x ∈ supp(ν),
• limr→0 supx∈supp(ν)Dν(B(x, r)) = 0,

• ν(Q0) ≥ µ(Q0)− C(µ)
T 2 , and

• ν(AQ0) = ν(Rd) ≤ µ(AQ0).

20. Step II: The smoothing operation

Throughout this section we shall suppose that part (ii) of Alternative
16.2 holds. Fix A > 0 large enough and consider the finite measure µ
given in the second part of the alternative.
Since Dµ ∈ L2,∞(µ), and GA(χ

AQ0\A2 Q0
µ) ≤ CDµ, we have that

GA(χ
AQ0\A2 Q0

µ) ∈ Lp(µ) (recall that we have fixed p = 3
2
). We infer

from property (e) of Alternative 16.2 and Hölder’s inequality that there
is a constant C(µ) > 0 such that for all ψ ∈ Lip0(R

d),

|〈R(ϕµ), ψ〉µ| ≤ C(µ)‖ψ‖Lp′(µ),
where p′ = p

p−1
. Consequently, there exists F ∈ Lp(µ) ⊂ L1(µ) so that

〈R(ϕµ), ψ〉µ = 〈F, ψ〉µ for every ψ ∈ Lip0(R
d),

and |F | ≤ C4GA(µA) + C4A
−γ , where µA = (logA)χ

AQ0\A2 Q0
µ. There-

fore |F | ≤ A1(1 +Dµ), where A1 = C logA.
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Now fix a huge number T to be chosen later (its order of magni-
tude will be much larger than some high power of A). The Calderón-
Zygmund theory of the previous section provides us with a finite mea-
sure ν ≤ ϕµ whose associated Riesz transform operator Rν is bounded
in L2(ν) with norm at most C(µ)T for some constant C(µ) > 0 which
may depend on d, s, A, ‖ϕ‖Lip and ‖Dµ‖2,∞. Additionally, the mea-
sures ν and µA have the following properties:
• If S(δ) = supx∈Rd,r<δDν(B(x, r)), then limδ→0 S(δ) = 0.

• For every x ∈ supp(ν), we have Dµ(x) ≤ 2sT , and so DµA(x) ≤
2s(logA)T .
• ν(Q0) ≥ 1− C(µ)T−2.
• ν(AQ0) ≤ µ(AQ0) ≤ A−γAs.
• The inequality∫

Rd

[
|Rν(1)| − C4GA(µA)− C4A

−γ
]p
+
dν ≤ C(µ)T−(2−p)

holds.
The goal of this section is to show that one can replace ν and µA by

smoothed measures, while distorting other important characteristics of
these measures by an arbitrarily small amount. The construction we
use is in essence a trivial version of the construction in [ENV2].
Fix a separation parameter 0 < σ ≪ 1, an enlargement parameter

M ≫ 1, a density parameter 0 < κ ≪ 1, and a scale parameter
0 < δ ≪ 1, to be chosen in that order.
We shall suppose that δ is chosen small enough to ensure that

(20.1) S(2Mδ) ≤ κ.

20.1. The small boundary mesh. Consider a cube mesh of side-
length δ with the property that the 8σδ-neighbourhood of the union of
all boundaries of the cubes carries ν measure at most Cσν(Rd). See
Appendix B for a proof of the existence of such a small boundary mesh.
We shall label the (finite collextion of) cubes in the mesh that inter-

sect supp(ν) by (Qj)j. Set E
′ =

⋃
j(1− 8σ)Qj , and ν

′ = χE′ν. Notice

that ν ′(Q0) ≥ ν(Q0)− Cσν(Rd).
Choose a nonnegative function ψ ∈ Lip0(B(0, σδ)) satisfying ‖ψ‖∞ ≤
C

(σδ)d
, and

∫
ψdmd = 1. We define the smoothed measures

ν̃ = ψ ∗ ν ′, and µ̃ = ψ ∗ µA.
Since ν̃ has bounded density with respect to md, we have that the

potential

R(ν̃)(x) =

∫

Rd

K(x− y)dν̃(y)
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is a continuous function on Rd.
Certainly we have that both supp(µ̃) and supp(ν̃) are contained in

2AQ0, and also ν̃(2Q0) ≥ ν ′(Q0), while

Dµ̃(2AQ0) ≤ DµA(AQ0) ≤ C(logA)A−γ, and Dν̃(2AQ0) ≤ C.

The smoothed measure ν̃ is supported in the union of the cells
⋃
jWj,

where Wj is the σδ-neighbourhood of (1 − 8σ)Qj. Set W̃j to be the

σδ-neighbourhood of Wj . Notice that dist(W̃j , W̃k) ≥ σδ if j 6= k. For
each W ∈ {Wj}j that intersects supp(ν), fix some xW ∈ W ∩ supp(ν).
Notice that

∫

Rd

|Rν(χRd\E′)|pdν ′ ≤ ‖Rν(χRd\E′)‖pL2(ν)ν(R
d)1−p/2

≤ C(µ)T pν
(
R
d\E ′)p/2ν(Rd)1−p/2

≤ C(µ)T pσp/2ν(Rd) ≤ C(µ)T−(2−p),

provided that σ ≤ T−4/p. Thus,
∫

Rd

[
|Rν′(1)|−C4GA(µA)− C4A

−γ
]p
+
dν ′ ≤ C(µ)T−(2−p).(20.2)

In order to see how replacing ν ′ by ν̃ and µA by µ̃ impacts the
inequality (20.2), we shall prove two comparison lemmas. We introduce
the notation −

∫
W
fdν = 1

ν(W )

∫
W
f dν.

Lemma 20.1. There is a constant C > 0 such that for any cell W and
x ∈ W ,

|R(ν̃)(x)| ≤ −
∫

W

|Rν′(1)|dν ′ +
CMsκ

σs
+
CT

M
.

Lemma 20.2. There is a constant C > 0 such that for any cell W and
x ∈ W ,

−
∫

W

GA(µA)dν
′ ≤ GA(µ̃)(x) + CTδ log2

(A
δ

)
.

These two comparison lemmas will be proved in the next subsection.
Let us fix σ = T−4/p and M = T 2. Then fixing κ so that Msκ

σs
≤ 1

T
yields that for any cell W and x ∈ W ,

|R(ν̃)(x)| ≤ −
∫

W

|Rν′(1)|dν ′ +
C

T
.
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But now we may impose that δ be small enough so that CTδ log2
(
A
δ

)
≤

1
T
. Then for any cell W and x ∈ W ,

|R(ν̃)(x)| − C4GA(µ̃)(x)− C4A
−γ

≤ −
∫

W

(
|Rν′(1)| − C4GA(µA)− C4A

−γ)dν ′ + C

T
.

Now raise both sides to the power p after taking the positive part.
Then on W we have that[

|R(ν̃)| − C4GA(µ̃)− C4A
−γ
]p
+

≤ 2p−1
[
−
∫

W

(
|Rν′(1)| − C4GA(µA)− C4A

−γ)dν ′
]p
+
+
C

T p
.

Next we integrate both sides of this inequality with respect to ν̃. Since
ν̃(W ) = ν ′(W ), from Jensen’s inequality (applied with the convex func-
tion t→ tp+) we obtain that

∫

W

[
|R(ν̃)| − C4GA(µ̃)− C4A

−γ
]p
+
dν̃

≤ 2p−1

∫

W

[
|Rν′(1)| − C4GA(µA)− C4A

−γ
]p
+
dν ′ +

C

T p
ν ′(W ).

After that, summing over the cells yields
∫

Rd

[
|R(ν̃)| − C4GA(µ̃)− C4A

−γ
]p
+
dν̃

≤ 2p−1

∫

Rd

[
|Rν′(1)| − C4GA(µA)− C4A

−γ
]p
+
dν ′ +

C

T p
ν ′(Rd).

Finally, from (20.2) we conclude that
∫

Rd

[
|R(ν̃)| − C4GA(µ̃)− C4A

−γ
]p
+
dν̃ ≤ C(µ)

T 2−p +
Cν(Rd)

T p
.(20.3)

Now set ν̃1 = ν̃(2·) and µ̃1 = 2µ̃(2·). Then for every x ∈ Rd

R(ν̃1)(x) = 2sR(ν̃)(2x) and GA(µ̃1)(x) = 2sGA(µ̃)(2x).

Thus from (20.3) we have that
∫

Rd

[
|R(ν̃1)| − C4GA(µ̃1)− 2sC4A

−γ
]p
+
dν̃1

≤ 2s
(C(µ)
T 2−p +

Cν(Rd)

T p

)
≤ λ,

(20.4)

where λ = C(µ)
T 2−p is arbitrarily small.
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Notice the following properties of ν̃1 and µ̃1:

• ν̃1(Q0) ≥ ν̃(2Q0) ≥ µ(Q0)−
C(µ)

T 2
≥ 1− C(µ)

T 2
,

• supp(ν̃1) ⊂ AQ0, supp(µ̃1) ⊂ AQ0\A8Q0,

• Dµ̃1(AQ0) ≤ CDµ̃(2AQ0) ≤ C(logA)A−γ,

• Dν̃1(AQ0) ≤ CDν̃(2AQ0) ≤ C.

It therefore remains to show that the statement (20.4) is absurd given
the other properties of µ̃1 and ν̃1 if A and T are chosen large enough.
For the time being though, let us supply the proofs of Lemmas 20.1
and 20.2.

20.2. The comparison estimates. Fix a cell W ∈ {Wj}j and its σδ-

neighbourhood W̃ . Notice that, since W̃ and supp(ν ′)\W are separated
sets, the potential

R(χRd\W ν
′)(x) =

∫

Rd\W
K(x− y)dν ′(y)

is a continuous function on W̃ . Moreover, by Lemma 3.3, this potential

coincides with Rν′(χRd\W ) ν ′-almost everywhere on W (or W̃ ). We
begin with an oscillation estimate.

Lemma 20.3. There is a constant C > 0 such that for any cell W ,

oscW̃ (R(χRd\Wν
′)) = sup

x,x′∈W̃
|R(χRd\W ν

′)(x)−R(χRd\W ν
′)(x′)|

≤ CMs

σs
κ +

CT

M
.

Proof. First notice that any x ∈ W̃ is at a distance of at least σδ

from supp(ν ′)\W . Thus, if x, x′ ∈ W̃ and z ∈ supp(ν ′)\W , we have
the trivial estimate |K(x − z) − K(x′ − z)| ≤ C

(σδ)s
. If in addition

z ∈ supp(ν ′)\B(xW ,Mδ), then we have that |K(x− z)−K(x′ − z)| ≤
Cδ

|xW−z|s+1 .

Now fix x, x′ ∈ W̃ . With a view to applying the two kernel bounds
of the previous paragraph, we write

|R(χRd\W ν
′)(x)−R(χRd\W ν

′)(x′)| ≤
∫

Rd\W
|K(x− z)−K(x′ − z)|dν ′(z)

=

∫

B(xW ,Mδ)\W
· · · dν ′(z) +

∫

Rd\B(xW ,Mδ)

· · · dν ′(z) = I + II.
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We estimate I trivially using (20.1),

I ≤ C

(σδ)s
ν ′(B(xW ,Mδ)) ≤ Cκ

(Mδ)s

(σδ)s
= C

Ms

σs
κ.

However, since Dν′(xW ) ≤ CT , we also have

II ≤ C

∫

Rd\B(xW ,Mδ)

δ

|xW − z|s+1
dν ′(z) ≤ C

T

M
,

and the lemma is proved. �

Corollary 20.4. For any cell W , and any x ∈ W ,

|R(χRd\W ν̃)(x)−R(χRd\Wν
′)(x)| ≤ CMs

σs
κ +

CT

M
.

Proof. Since ν̃ = ψ ∗ ν ′, the estimate follows immediately from Lemma
20.3 by noticing that R(χRd\W ν̃)(x) = [ψ ∗ R(χRd\W ν

′)](x). �

Lemma 20.5. There is a constant C > 0 such that for every cell W
and x ∈ W ,

|R(χW ν̃)(x)| ≤
Cκ

σs
.

Proof. We shall estimate the integral
∫
W

1
|x−y|sdν̃(y) for x ∈ W . By

Tonelli’s theorem, we see that this integral is bounded by

C

∫

W

[
−
∫

B(z,σδ)

1

|x− z − y|sdmd(y)
]
dν ′(z).

The inner integral average has size at most C(σδ)−s, whereas ν ′(W ) ≤
Cκδs (using (20.1), and by combining these estimates the lemma fol-
lows. �

Proof of Lemma 20.1. First note that by Lemma 20.3, we have

|R(χRd\W ν
′)(x)| ≤

∣∣∣−
∫

W

R(χRd\W ν
′)dν ′

∣∣∣+CM
s

σs
κ +

CT

M
.

for any x ∈ W . But, due to Lemma 3.3, we have that

−
∫

W

R(χRd\W ν
′)dν ′ = −

∫

W

Rν′(χRd\W )dν ′.

On the other hand, the antisymmetry of the kernel K yields that∫

W

Rν′(χRd\W )dν ′ =

∫

W

Rν′(1)dν
′,

and so from Corollary 20.4,

|R(χRd\W ν̃)(x)| ≤ −
∫

W

|Rν′(1)|dν ′ +
CMs

σs
κ +

CT

M
.
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Finally, appealing to the estimate for |R(χW ν̃)| from Lemma 20.5 com-
pletes the proof. �

We now move on to proving Lemma 20.2. For this, we set

GA,δ(ν)(x) =
1

A

∫

Rd

1

max(3
√
dδ, |x− y|)s−1

dν(y),

and

Gδ
A(ν) = GA(ν)−GA,δ(ν).

Lemma 20.6. There is a constant C > 0 such that for each cell W ,
we have
(i) if x ∈ supp(ν ′) ∩ W̃ , then

Gδ
A(µA)(x) ≤

CTδ

A
logA,

and

(ii) oscW̃ [GA,δ(µA)] ≤
CTδ

A
log2

(A
δ

)
.

Proof. The estimate (i) follows readily from the estimate DµA(x) ≤
CT logA for x ∈ supp(ν ′):

Gδ
A(µA)(x) ≤

C

A

∫ 3
√
dδ

0

µA(B(x, r))

rs−1

dr

r
≤ CTδ logA

A
.

For (ii), we ape the proof of Lemma 20.3. Notice that if x, x′ ∈ W̃ ,
then

|GA,δ(µA)(x)−GA,δ(µA)(x
′)|

≤ CµA(B(xW , 3
√
dδ))

Aδs−1
+
C

A

∫

|xW−y|>δ

δ

|xW − y|sdµA(y)

The first term here is bounded by CTδ
A

logA. Since supp(µA) ⊂ AQ0,
the second term is bounded by

Cδ

A

∫ CA

δ

DµA(B(xW , r))
dr

r
≤ C log

(A
δ

)δT logA

A
,

where we have used that DµA(xW ) ≤ CT logA. �

Corollary 20.7. For every cell W and x ∈ W ,

|GA,δ(µA)(x)−GA,δ(µ̃)(x)| ≤
CδT

A
log2

(A
δ

)
.
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To prove the Corollary, just notice that GA,δ(µ̃) = ψ ∗GA,δ(µA), and
so the estimate follows from the oscillation estimate of statement (ii)
in Lemma 20.6.
Lemma 20.2 now easily follows from Lemma 20.6 and Corollary 20.7.

Indeed, fix W , and first use statement (i) of Lemma 20.6 to see that

−
∫

W

GA(µA)dν
′ ≤ −

∫

W

GA,δ(µA)dν
′ +

CTδ

A
logA.

But now for any x ∈ W , statement (ii) of Lemma 20.6 yields

−
∫

W

GA,δ(µA)dν
′ ≤ GA,δ(µA)(x) +

CTδ

A
log2

(A
δ

)
,

and Corollary 20.7 implies that

GA,δ(µA)(x) ≤ GA,δ(µ̃)(x) +
CTδ

A
log2

(A
δ

)
.

To complete the proof of the lemma we only need combine these three
inequalities and to notice that GA,δ(µ̃)(x) ≤ GA(µ̃)(x).

21. Step III: The variational argument

We continue to work under the assumption that Part (ii) of Alter-
native 16.2 is in force. With A sufficiently large and λ > 0 arbitrarily
small, the smoothing procedure of the previous section provides us with
measures µ̃ and ν̃ (we relabel the measure µ̃1 of the previous section by
µ̃ and the measure ν̃1 by ν̃) with C

∞ densities with respect to Lebesgue
measure satisfying

(1) supp(ν̃) ⊂ AQ0, ν̃(Q0) ≥ 1
2
, and ν̃(AQ0) ≤ CAs,

(2) supp(µ̃) ⊂ AQ0\A8Q0, andDµ̃(AQ0) ≤ τ , where τ = C(logA)A−γ ,
(3) the inequality (20.4), that is,

∫

Rd

[
|R(ν̃)| −GA(µ̃)− τ

]p
+
dν̃ ≤ λ.(21.1)

Instead of the integral inequality (21.1), we would like to have that
(|R(ν̃)| − GA(µ̃) − τ)+ is pointwise very small on supp(ν̃). This is of
course not necessarily the case, but a simple variational argument from
[ENV2] shows that if one is willing to redistribute ν̃ across its support,
then one can indeed obtain such a conclusion.

21.1. The Functional. For a ∈ L∞(md), a ≥ 0, define ν̃a = aν̃. Set

Ha = (|R(ν̃a)| −GA(µ̃)− τ)+.
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Consider the functional

I(a) =

∫

Rd

Hp
adν̃a +

λ

ν̃a(Q0)
.

Next, set

m = inf
a≥0:

‖a‖L∞(md)
≤1

I(a).

We shall first show that a minimizer exists. Certainlym is finite. The
Banach-Alaoglu theorem ensures that there is a minimizing sequence
(ak)k ∈ L∞(md), with ak ≥ 0 and ‖ak‖L∞(md) ≤ 1, such that I(ak) → m
and ak converges weakly over L1(md) to a function a ∈ L∞(md) with
‖a‖L∞(md) ≤ 1. Notice that a ≥ 0.
Since ν̃ has a bounded compactly supported density with respect to

md, we see that

ν̃ak(Q0) → ν̃a(Q0).

On the other hand, since supx∈Rd
∫
Rd

1
|x−y|sdν̃(y) < ∞, we have that

supk ‖Hak‖L∞(md) < ∞. In addition, for any x ∈ Rd, the function

y 7→ x−y
|x−y|s+1

dν̃
dmd

(y) ∈ L1(md), and so R(ν̃ak) → R(ν̃a) pointwise. As a

consequence of these two facts, Hp
ak

→ Hp
a in L1(χAQ0md) as k → ∞.

But now,
∣∣∣
∫

Rd

Hp
ak
dν̃ak −

∫

Rd

Hp
adν̃a

∣∣∣≤
∫

Rd

|Hp
ak

−Hp
a |dν̃ak +

∣∣∣
∫

Rd

Hp
ad(ν̃ak − ν̃a)

∣∣∣,

and∫

Rd

|Hp
ak

−Hp
a |dν̃ak ≤

∥∥ dν̃
dmd

∥∥
L∞(md)

∫

AQ0

|Hp
ak

−Hp
a |dmd → 0 as k → ∞,

while, as Hp
a
dν̃
dmd

∈ L1(md), the weak convergence of ak to a yields that

∣∣∣
∫

Rd

Hp
ad(ν̃ak − ν̃a)

∣∣∣→ 0 as k → ∞.

We conclude that I(ak) → I(a) as k → ∞.
Of course, the constant function a = 1 is admissible for the mini-

mization problem, and so we see that

I(a) = m ≤ I(1) =

∫

Rd

(|R(ν̃)|−GA(µ̃)−τ)p+dν̃+
λ

ν̃(Q0)
≤ λ+2λ = 3λ.

By considering each term in I(a) separately, this inequality yields that

(21.2)

∫

Rd

Hp
adν̃a ≤ 3λ,
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and

(21.3) ν̃a(Q0) ≥
1

3
.

21.2. The First Variation. Let us now take the first variation of the
functional I. Consider a Borel set U with ν̃a(U) > 0. For t ∈ (0, 1),
consider the function at = a− taχU . The function at is admissible for
the minimization problem, and so

I(at)− I(a) ≥ 0 for all t ∈ (0, 1).

Let us first consider the increment of the second term in the definition
of the functional I. For this, we notice that

1

ν̃at(Q0)
=

1

ν̃a(Q0)

(
1 + t

ν̃a(U ∩Q0)

ν̃a(Q0)
+ o(t)

)
as t→ 0+.

Combined with (21.3), this gives us that

(21.4)
λ

ν̃at(Q0)
− λ

ν̃a(Q0)
≤ 9λtν̃a(U) + o(t) as t→ 0+.

Next we calculate the first order increment of the first term in the
expression for I(a). For this, we claim that there is a Borel measurable
unit vector field E such that the function

1

t

[
Hp
at −Hp

a − tpHp−1
a 〈E,R(χU ν̃a)〉

]

converges to zero uniformly on Rd as t→ 0+.
To see this, recall that both R(ν̃a) and R(χU ν̃a) are bounded contin-

uous functions, and R(ν̃at) = R(ν̃a)− tR(χU ν̃a). Now, if at some point
x ∈ Rd it holds that |R(ν̃a)| ≤ τ

2
, then Ha = 0 and if t > 0 is small

enough (depending only on the uniform bound for R(χU ν̃a)), then we
have that Hat = 0.
Otherwise |R(ν̃a)| ≥ τ

2
at x, and we can write

|R(ν̃at)| = |R(ν̃a)| − t
〈 R(ν̃a)

|R(ν̃a)|
,R(χU ν̃a)

〉
+O

(t2|R(χU ν̃a)|2
τ

)

as t → 0+. But then since the function u → up+ has locally uniformly
continuous derivative on R, we see that as t→ 0+,

Hp
at −Hp

a = −pHp−1
a t

〈 R(ν̃a)

|R(ν̃a)|
,R(χU ν̃a)

〉
+ o(t),

and the claim follows with the Borel measurable unit vector field

E = − R(ν̃a)

|R(ν̃a)|
χ
{|R(ν̃a)|≥ τ2 }

+ eχ
{|R(ν̃a)|<τ2 }

,

for any fixed unit vector e.
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From the claim we find that as t→ 0+,

(21.5)

∫

Rd

[Hp
at −Hp

a ]dν̃a = tp

∫

Rd

Hp−1
a 〈E,R(χU ν̃a)〉dν̃a + o(t).

Additionally, we also have that∫

Rd

Hp
atdν̃at =

∫

Rd

Hp
atdν̃a−t

∫

U

Hp
atdν̃a =

∫

Rd

Hp
atdν̃a−t

∫

U

Hp
adν̃a+o(t),

where the second equality follows from noticing that the expression
Hp−1
a 〈E,R(χU ν̃a)〉 is a bounded function.
Notice that the integral appearing on the right hand side of (21.5)

can be rewritten as∫

Rd

Hp−1
a 〈E,R(χU ν̃a)〉dν̃a = −

∫

U

R∗(Hp−1
a Eν̃a)dν̃a.

So see that the increment in t in I(at)− I(a) does not exceed

t
[
9λν̃a(U)−

∫

U

Hp
adν̃a − p

∫

U

R∗(Hp−1
a Eν̃a)dν̃a

]
+o(t)

as t→ 0+. The minimizing property therefore yields that∫

U

[
Hp
a + pR∗(Hp−1

a Eν̃a)
]
dν̃a ≤ 9λν̃a(U),

for every Borel set U ⊂ Rd with ν̃a(U) > 0. But Hp
a + pR∗(Hp−1

a Eν̃a)
is a continuous function, so we arrive at the following lemma.

Lemma 21.1 (The First Variation). There is a Borel measurable unit
vector field E such that on supp(ν̃a) we have

(21.6) Hp
a + pR∗(Hp−1

a Eν̃a) ≤ 9λ.

But now we may apply the maximum principle for the fractional
Laplacian4 in the form of Lemma A.3. This yields that the inequality
(21.6) in fact holds throughout Rd.

22. Contradiction

We continue to work under the assumption that statement (ii) of
Alternative 16.2 holds. Then with A sufficiently large, and λ as small
as we wish, there are two finite measures µ̃ and ν̃a that have bounded
densities with respect to md, are both supported in AQ0, and satisfy
the following properties:

(1) ν̃a(Q0) ≥ 1
3
, and ν̃a(AQ0) ≤ CAs,

(2) supp(µ̃) ⊂ AQ0\A8Q0, andDµ̃(AQ0) ≤ τ , where τ = C(logA)A−γ ,

4We reiterate that this is the underlying reason behind the restriction to s ∈
(d− 1, d) throughout the paper.
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(3) with Ha = (|R(ν̃a)| −GA(µ̃)− τ)+, we have that

(22.1)

∫

Rd

Hp
adν̃a ≤ 3λ,

and for some Borel measurable unit vector field E,

(22.2) Hp
a + pR∗(Hp−1

a Eν̃a) ≤ 9λ in R
d.

We shall show that this is preposterous if A is large enough and λ is
small enough. This will force us into part (i) of Alternative 16.2, which
is our desired result.

22.1. The Ψ-function. Fix a non-negative function f ∈ C∞
0 (Rd) so

that f ≡ 1 on Q0, while supp(f) ⊂ 2Q0.
We define ψ via its Fourier Transform:

(22.3) ψ̂(ξ) = b
[
ξ|ξ|d−1−sf̂(ξ)

]
,

where the constant b ∈ C\{0} has been chosen to ensure that5 R∗(ψmd) =
f . From (22.3), it is a standard exercise in Fourier analysis to show
that there is a constant C > 0 such that

Ψ(x) := |ψ(x)| ≤ C

(1 + |x|)2d−s for every x ∈ R
d.

(For instance, see Lemma C.1 of the appendix.) In particular, we
observe that Ψ ∈ L1(md) with norm at most some constant depending
on d and s.
Notice that

1

3
≤ ν̃a(Q0) ≤

∫

Rd

fdν̃a =

∫

Rd

R∗(ψmd)dν̃a

=

∫

Rd

〈R(ν̃a), ψ〉dmd ≤
∫

Rd

|R(ν̃a)|Ψdmd.

Our task is to show that the right hand side of this inequality is smaller
than 1

3
with a decent choice of τ and λ.

To obtain this contradiction, notice that for any α > 0,

|R(ν̃a)| ≤ τ +GA(µ̃) +Ha ≤ τ +GA(µ̃) +
1

p′
λαp

′

+
1

p

Hp
a

λαp
,

where the second inequality follows from Young’s inequality (ab ≤ ap
′

p′
+

bp

p
for a, b ≥ 0).

5Recall that, if g is a smooth vector valued function with suitable decay, then
̂R∗(gmd)(ξ) = b′ 1

|ξ|d−s+1 ξ · ĝ(ξ) for some b′ ∈ C.
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But now using (22.2), we get that

|R(ν̃a)| ≤ τ +GA(µ̃) + λαp
′

+ 9λ1−αp − λ−αpR∗(Hp−1
a Eν̃a)(22.4)

in Rd. We shall estimate each term on the right hand side of this
inequality when integrated against the measure Ψmd.
First noting that GA(µ̃) ≤ Cτ on A

16
Q0∪(Rd\2AQ0) and Ψ ≤ C

A2d−s ≤
C
Ad

on 2AQ0\ A16Q0, we get
∫

Rd

GA(µ̃)Ψdmd ≤ Cτ

∫

Rd

Ψdmd +
C

Ad

∫

2AQ0

GA(µ̃)dmd.

By Tonelli’s theorem

1

Ad

∫

2AQ0

GA(µ̃)dmd ≤
1

Ad

∫

AQ0

∫

2AQ0

1

A|x− y|s−1
dmd(x)dµ̃(y).

Since we have the straightforward bound
∫
2AQ0

1
A|x−y|s−1dmd(x) ≤ CAd−s,

we bound the right hand side of the previous inequality by Dµ̃(AQ0) ≤
τ . Consequently, we see that

∫

Rd

GA(µ̃)Ψdmd ≤ Cτ.

On the other hand, notice that
∫

Rd

R∗(Hp−1
a Eν̃a)Ψdmd = −

∫

Rd

Hp−1
a 〈E,R(Ψmd)〉dν̃a,

but since ‖R(Ψmd)‖L∞(md) ≤ C, we get from (22.1) that
∣∣∣
∫

Rd

R∗(Hp−1
a Eν̃a)Ψdmd

∣∣∣≤ Cν̃a(R
d)1/p‖Ha‖(p−1)/p

Lp(ν̃a)
≤ CAs/pλ(p−1)/p,

here we have also used that E is a unit vector field.
Bringing our estimates together, we see that there is a constant C > 0

such that for any α > 0,

1

3
≤ C

(
τ + λαp

′

+ λ1−αp + λ−αpλ(p−1)/pAs/p
)

Now fix α < p−1
p2

. Let us fix A so large (depending only on d and s)

that we have Cτ ≤ 1
6
. Then for arbitrarily small λ > 0,

1

6
≤ C

(
λαp

′

+ λ1−αp + λ−αpλ(p−1)/pAs/p
)
.

However, one only needs to choose λ to be smaller than some large
negative power of A to make this absurd. We conclude that statement
(ii) of Alternative 16.2 cannot hold true for large enough A.
This completes the proof of Theorem 4.1.
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Appendices

Appendix A. The maximum principle

In this appendix we review the maximum principle for the fractional
Laplacian operator. The standard reference for potential theory for the
fractional Laplacian is Landkof’s book [Lan].
Fix s ∈ (d− 1, d). Set α = d− s+ 1. Consider the α-Poisson kernel

of the ball B(0, r):

P α
r (x) =

{
Γ(d

2
) 1
πd/2+1 sin

(
πα
2

)
rα
(
|x|2 − r2

)−α/2|x|−d if |x| ≥ r

0 if |x| < r.

Set kα(x) = 1
|x|d−α (=

1
|x|s−1 ). The following three properties of the

α-Poisson kernel are proved in an appendix in Landkof [Lan] (see also
p.112).

(1) P α
r ∗ kα(x) = kα(x) for |x| ≥ r,

(2) P α
r ∗ kα(x) < kα(x) for |x| < r,

(3)
∫
Rd
P α
r (x)dmd(x) = 1.

For a signed measure ν, set Iα(ν) = kα ∗ ν.
Note that properties (1) and (2) combine to yield that for any finite

(positive) measure µ,

Iα(µ)(x) ≥ P α
r ∗ (Iα(µ))(x) for any x ∈ R

d and r > 0,

while if ν is a finite signed measure, and dist(x, supp(ν)) > r, then
Iα(ν)(x) = [P α

r ∗ Iα(ν)](x).
Lemma A.1. Suppose that ν is a finite signed (vector) measure in Rd.
Let x ∈ Rd\ supp(ν) and r < dist(x, supp(ν)). Then

R∗(ν)(x) = [P α
r ∗ (R∗(ν)](x).

Proof. Let ε > 0 and choose ϕε ∈ C∞
0 (B(0, ε)) with

∫
Rd
ϕεdmd = 1.

Then notice that

ϕε ∗ R∗(ν)(x) = R∗(ϕε ∗ ν)(x) = bαIα(div(ϕε ∗ ν))(x),
for some bα ∈ R\{0}. But if ε < dist(x, supp(ν))− r, then

bαIα(div(ϕε ∗ ν))(x) = bαP
α
r ∗ Iα(div(ϕε ∗ ν))(x)

= P α
r ∗ [R∗(ϕε ∗ ν)](x)

= [ϕε ∗ P α
r ∗ R∗(ν)](x).

Consequently ϕε ∗R∗(ν)(x) = [ϕε ∗P α
r ∗R∗(ν)](x), and letting ε→ 0+

proves the lemma. �
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Let us recall that if ν is a finite signed measure with bounded density
with respect to md, then R(ν) is a bounded continuous function on Rd

and lim|x|→∞ |R(ν)(x)| = 0.

Lemma A.2 (Strong Maximum Principle). Suppose that ν is a finite
signed vector measure, and µ is a finite (positive) measure, both of
which have bounded density with respect to md. If R∗(ν)−Iα(µ) attains
a point of global maximum outside of supp(ν), then R∗(ν) − Iα(µ) is
constant in Rd.

Proof. Suppose that R∗(ν) − Iα(µ) attains its maximum at some x 6∈
supp(ν). For any r < dist(x, supp(ν)), we then have

R∗(ν)(x)− Iα(µ)(x) = [P α
r ∗ R∗(ν)](x)− Iα(µ)(x)

≤ P α
r ∗ [R∗(ν)− Iα(µ)](x).

But since the maximum of R∗(ν)− Iα(µ) is attained at x, property (3)
of the non-negative kernel P α

r ensures that R∗(ν) − Iα(µ) is constant
in Rd\B(0, r). Since r < dist(x, supp(ν)) was chosen arbitrarily, the
lemma follows. �

Lemma A.3. Suppose that µ is a finite positive measure, ν is a finite
signed measure, and ν̃ is a finite signed vector measure with supp(ν̃) ⊂
supp(ν), with all three measures having bounded density with respect to
md. Then for any τ > 0,

sup
Rd

[
(|R(ν)| − Iα(µ)− τ)p+ −R∗(ν̃)

]

≤ max
(
0, sup

supp(ν)

[
(|R(ν)| − Iα(µ)− τ)p+ −R∗(ν̃)

])
.

(A.1)

Proof. The convex function v : R → [0,∞), v(t) = tp+ can be repre-
sented by the formula

v(t) = max
λ≥0

{λt− v∗(λ)}, for t ∈ R,

where v∗ : [0,∞) → [0,∞), v∗(t) = p

p′pp′
tp

′

is the Legendre transform

of v (the exact form of v∗ is not important).
Now suppose that the continuous function H = (|R(ν)| − Iα(µ) −

τ)p+ − R∗(ν̃) has a positive supremum on Rd (otherwise the result is
proved). Because H tends to zero at infinity, it attains its maximum
at some x0 ∈ Rd. Then for some e ∈ Sd−1 and λ ≥ 0,

H(x0) = λ〈R(ν)(x0), e〉 − λIα(µ)(x0)− λτ − v∗(λ)−R∗(ν̃)(x0),

while,

λ〈R(ν), e〉 − λIα(µ)− λτ − v∗(λ)−R∗(ν̃) ≤ H on R
d.
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But now by writing

λ〈R(ν), e〉 − R∗(ν̃) = R∗(−ν̃ − λνe)

we obtain from Lemma A.2 that

H(x0) = R∗(−ν̃ − λνe)(x0)− λIα(µ)(x0)− λτ − v∗(λ)

≤ sup
supp(ν)

[
R∗(−ν̃ − λνe)− λIα(µ)− λτ − v∗(λ)

]

≤ sup
supp(ν)

H.

The result follows. �

Appendix B. The small boundary mesh

In this appendix we show how to find a small boundary mesh relative
to a finite measure ν. For δ > 0 and σ ∈ (0, 1), we want to find a mesh
of cubes of sidelength δ so that the σδ neighbourhood of the boundary
of the cubes has measure at most Cσν(Rd), where C > 0 depends only
on the dimension.
For a coordinate j ∈ {1, . . . , d}, set

Ej = R
j−1 ×

⋃

k∈Z
[kδ − σδ, kδ + σδ]× R

d−j.

Fix M > 0. Notice that from the union bound and Chebyshev’s
inequality, we have

1

δd
md

({
t ∈ [0, δ]d : ν

( d⋃

j=1

(Ej + tjej)
)
> Mσν(Rd)

})

≤ 1

Mσδν(Rd)

d∑

j=1

∫ δ

0

ν(Ej + tjej)dtj.

But now ∫ δ

0

ν(Ej + tjej)dtj =

∫

Rd

∫ δ

0

χEj+tjej (x)dtjdν(x).

Any fixed x ∈ Rd can lie in the set Ej+tjej only if tj lies in the union of

two intervals of total width 2σδ. Thus
∫ δ
0
ν(Ej + tjej)dtj ≤ 2σδν(Rd).

We conclude that

1

δd
md

({
t ∈ [0, δ]d : ν

( d⋃

j=1

(Ej + tjej)
)
> Mσν(Rd)

})
≤ 2d

M
.

But since the σδ neighbourhood of the boundary of any δ-mesh of
cubes is contained in the union

⋃d
j=1(Ej + tjej) for some t ∈ [0, δ]d, we
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see that there must exists some δ-mesh whose σδ neighbourhood has ν
measure at most 3dσν(Rd) (just set M = 3d).

Appendix C. Lipschitz continuous solutions of the
fractional Laplacian equation

We denote by S(Rd) the space of Schwartz class functions on Rd,
and set S ′(Rd) to be the space of tempered distributions.
We define the action of the fractional Laplacian (−∆)α/2 on a Schwartz

class function f ∈ S(Rd) via the Fourier transform:

(−∆)α/2f = F−1(|ξ|αf̂ (ξ)).
To show that the fractional Laplacian of a Lipschitz continuous func-
tion can be interpreted as a tempered distribution, we shall require a
standard lemma.

Lemma C.1. Fix β > 0. Suppose that p ∈ C∞(Rd\{0}) satisfies, for
every multi-index γ,

|Dγp(ξ)| ≤ Cγ |ξ|β−|γ| for every ξ ∈ R
d\{0}.

Then, for every f ∈ S(Rd), the function F−1(pf̂) ∈ C∞(Rd), and

|DγF−1(pf̂)(x)| ≤ Cγ
(1 + |x|)d+β+|γ|

for every x ∈ Rd and multi-index γ.

Proof. The fact that F−1(pf̂) is a smooth bounded function merely

follows from the fact that the function ξ 7→ |ξ|mf̂(ξ) lies in L1(md) for

every m ≥ 0. We shall prove that |F−1(pf̂)(x)| ≤ C
|x|d+β for |x| > 1.

The estimate for the derivatives follows in the same manner.
Fix k0 ∈ N with 2−k0−1 ≤ 1

|x| < 2−k0. Suppose that (ηj)j≥0 is a

partition of unity in the frequency space such that
∑

j≥0 ηj ≡ 1 on Rd,

supp(η0) ⊂ B(0, 2−k0+1) and supp(ηj) ⊂ B(0, 2−k0+j+1)\B(0, 2−k0+j−1),

and

|Dγηj | ≤
C(γ)

2(−k0+j)|γ|
on R

d,

for every multi-index γ.
First note that

|F−1(pf̂η0)(x)| ≤ C

∫

B(0,2−k0+1)

|p||f̂ |dmd ≤ C2−k0(d+β) ≤ C

|x|d+β .

Now fix j ≥ 1. Notice that, for m ∈ N,

|x|2m|F−1(pf̂ηj)(x)| = cm|F−1(∆m(pf̂ηj))(x)|.
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But, for any multi-index γ, we have that |Dγ f̂ | ≤ Cγ2
−|γ|(−k0+j), and

|Dγp| ≤ Cγ2
(β−|γ|)(−k0+j), on supp(ηj). Thus

|x|2m|F−1
(
pf̂ηj

)
(x)| ≤ Cm

∫

B(0,2−k0+j+1)\B(0,2−k0+j−1)

2(−k0+j)(β−2m)dmd

≤ Cm2
(−k0+j)(d+β−2m).

But now, if m > d+β
2
, then

|x|2m|F−1(pf̂
∑

j≥0

ηj)(x)| ≤ Cm
∑

j≥0

2(−k0+j)(d+β−2m) ≤ Cm|x|2m−d−β .

The lemma follows. �

It is an immediate consequence of the lemma that, if f ∈ S(Rd),
then for any multi-index γ,

(C.1) |Dγ[(−∆)α/2f ](x)| ≤ Cγ
(1 + |x|)d+α+|γ| for every x ∈ R

d.

As such, when considering a class of generalized functions for which
a distributional notion of the fractional Laplacian may be defined, a
natural class of smooth functions presents itself. Denote by Sα(Rd) the
class of smooth functions g ∈ C∞(Rd) such that for every multi-index
γ there is a constant Cγ > 0 such that

|(Dγg)(x)| ≤ Cγ
(1 + |x|)d+α+|γ| for all x ∈ R

d.

In this language, we may restate (C.1) as

(C.2) (−∆)α/2S(Rd) ⊂ Sα(Rd).

The space of distributions acting on Sα(Rd) is denoted by S ′
α(R

d).
For F ∈ S ′

α(R
d), we may define (−∆)α/2F ∈ S ′(Rd) by

〈(−∆)α/2F, f〉 = 〈F, (−∆)α/2f〉, f ∈ S(Rd).

Notice that if u satisfies
∫
Rd

|u(x)|
(1+|x|)d+αdmd(x) <∞, then (−∆)α/2u is

the tempered distribution given by the absolutely convergent integral

〈(−∆)α/2u, f〉 =
∫

Rd

u[(−∆)α/2f ]dmd for f ∈ S(Rd).

We shall henceforth assume that α > 1. Under this assumption, note

that if u ∈ Lip(Rd) then the condition
∫
Rd

|u(x)|
(1+|x|)d+αdmd(x) <∞ holds.
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We call a compact set E α-removable (in the Lipschitz category) if for
any u that is Lipschitz continuous in a neighbourhood U of E, satisfies∫
Rd

|u(x)|
(1+|x|)d+αdmd(x) <∞, and such that

〈(−∆)α/2u, f〉 = 0 for all f ∈ C∞
0 (U) with supp(f) ∩ E = ∅,

we in fact have that

〈(−∆)α/2u, f〉 = 0 for all f ∈ C∞
0 (U).

The main goal of this section is to show that the α-removable sets
coincide with the sets of s-Calderón-Zygmund capacity zero, where
s = d − α + 1. Recall that if T is compactly supported tempered
distribution, then we may define 〈T, f〉 against any smooth function,
not necessarily with compact support. Also recall that K(x) = x

|x|s+1

is the s-Riesz kernel. For a compact set E, set

γs(E) = sup
{
〈T, 1〉 : T is a distribution satisfying supp(T ) ⊂ E,

K ∗ T ∈ L∞(md), ‖K ∗ T‖L∞(md) ≤ 1
}
.

and

γs,+(E) = sup
{
µ(Rd) :µ is a measure satisfying supp(µ) ⊂ E,

K ∗ µ ∈ L∞(md), ‖K ∗ µ‖L∞(md) ≤ 1
}
.

It is clear that γs,+(E) ≤ γs(E). Building upon prior results of Tolsa
[Tol3] and Volberg [Vol], Prat [Pra] proved that for any s ∈ (0, d) there
is a constant C > 0 such that

γs(E) ≤ Cγs,+(E) for every compact set E ⊂ R
d.

On the other hand, Theorem 1.1 implies that the capacty γs,+ is
equivalent to a certain capacity that arises in non-linear potential the-
ory. Set

caps(E) = sup
{
µ(Rd) : supp(µ) ⊂ E and

sup
x∈Rd

∫ ∞

0

(µ(B(x, r))

rs

)2dr

r
≤ 1

}
.

Usually the set function caps(E) is denoted by cap2
3
(d−s),3

2
(E), see

[AH], largely because of the role it plays in approximation theory for

the homoegeneous Sobolev space Ḣ
2
3
(d−s),3

2 (Rd), see Chapters 10 and
11 of [AH].
We now state a Corollary of Theorem 1.1.
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Lemma C.2. If s ∈ (d − 1, d), then there is a constant C > 0 such
that

1

C
caps(E) ≤ γs,+(E) ≤ C caps(E)

for every compact set E ⊂ Rd.

Given Theorem 1.1, the proof that follows is quite standard, and
strings together a collection of known (but non-trivial) results.

Proof. Fix a compact set E. The left hand inequality holds for all s,
interger or not. Indeed, suppose first that there is a non-zero measure
µ supported on E such that

sup
x∈Rd

∫ ∞

0

(µ(B(x, r))

rs

)2dr

r
≤ 1.

Then certainly W2(µ,Q) ≤ µ(Q) for every cube Q, and hence the s-
Riesz transform is bounded in L2(µ) (as indicated in the introduction,
this direction of Theorem 1.1 is well-known and holds for all s). But
then non-homogeneous Calderón-Zygmund theory ensures that the s-
Riesz transform is also of weak-type 1-1, see [NTV], with norm at
most some constant C > 0 depending on d and s. A standard (but
mysterious) argument involving the Hahn-Banach theorem, see [Chr]
Theorem VII.23, yields that there is a function h, 0 ≤ h ≤ 1 such that∫

E

hdµ ≥ 1

2
µ(E),

while ‖K ∗ (hµ)‖L∞(md) ≤ 16C. It follows that

γ+,s(E) ≥
1

32C
caps(E).

For the right hand inequality, suppose that µ is a measure supported
on E for which ‖K ∗µ‖L∞(md) ≤ 1. Then it is an elementary exercise in
the Fourier transform to show that this implies that there is a constant
C > 0 such that µ(B(x, r)) ≤ Crs for any x ∈ Rd, r > 0 (see for
instance [ENV2]). But now we may apply the T (1)-theorem [NTV2]
to deduce that the s-Riesz transform of µ is bounded in L2(µ) with
norm at most some constant C ′ > 0. Applying Theorem 1.1 we find a
constant C ′′ > 0 such that∫

Rd

∫ ∞

0

(µ(B(x, r))

rs

)2dr

r
dµ(x) ≤ C ′′µ(Rd) = C ′′µ(E).

We now use the Chebyshev inequality to find a set E ′ ⊂ E with µ(E ′) ≥
1
2
µ(E) and ∫ ∞

0

(µ(B(x, r))

rs

)2dr

r
≤ 2C ′′ on E ′.
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Therefore, if we set µ′ = χE′µ, then µ′(E) ≥ 1
2
µ(E) and

∫ ∞

0

(µ′(B(x, r))

rs

)2dr

r
≤ 2C ′′ on supp(µ′).

But now it is easy to see that
∫ ∞

0

(µ′(B(x, r))

rs

)2dr

r
≤ 32s2C ′′ on R

d,

and so consequently the measure µ′

32s2C′′ is admissible for the definition

of caps(E). We conclude that caps(E) ≥ 1
32s4C′′γs,+(E). �

As a consequence of these remarks, Theorem 1.2 of the introduction
will be proved once we verify the following proposition:

Proposition C.3. Suppose that α ∈ (1, 2). A compact set E is α-
removable if and only if γs(E) = 0, where s = d− α + 1.

The fact that γs(E) > 0 ensures that E is non-removable is the easier
assertion. Indeed, in this case E supports a non-trivial distribution T
with K ∗ T ∈ L∞(md). But then

u(x) =
1

| · |d−α ∗ T

is a Lipschitz continuous function such that (−∆)α/2u = 0 outside of
E, but not in Rd.
On the other hand suppose that E is non-removable. Then there is

a function u that is Lipschitz continuous in some open neighbourhood

U of E satisfying
∫
Rd

|u(x)|
(1+|x|)d−αdmd(x) <∞ and

〈(−∆)α/2u, ϕ〉 = 〈T, ϕ〉, for every ϕ ∈ C∞
0 (U)

where T is a non-zero distribution supported on E. We may define a
distribution w ∈ S ′

α(R
d) by

〈w, g〉 = 〈T, 1

| · |d−α ∗ g〉 for g ∈ Sα(Rd).

(Merely notice that 1
| · |d−α ∗ g ∈ C∞(Rd) as g and all its derivatives lie

in L1(Rd) ∩ L∞(Rd).)
Notice that w can be represented by the smooth function x 7→

〈T, 1
|x−·|d−α 〉 in Rd\E. For any f ∈ S(Rd), the mapping property (C.2)

ensures that

〈w, (−∆)α/2f〉 = 〈T, 1

| · |d−α ∗ (−∆)α/2f〉,
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but the right hand side is just bα〈T, f〉 for some non-zero bα ∈ C. Thus
there is a constant Bα ∈ C such that, if we set v = Bαw, then v satisfies
(−∆)α/2v = T.
In particular notice that

〈(u− v), (−∆)α/2f〉 = 0 for all f ∈ C∞
0 (U).

Now pick some open neighbourhood V of E that is compactly con-
tained in U . Fix ρ = 1

4
min(dist(E, V c), dist(E,U c)). For an open set

W , we denote Wρ = {x ∈ W : dist(x,W c) > ρ}.
Notice that v ∈ Lip(Rd\Vρ), and lim|x|→∞ v = 0. From this we infer

the following properties of the distribution F = u− v:
• 〈(−∆)α/2F, ϕ〉 = 0 for every ϕ ∈ C∞

0 (U),
• F ∈ Lip(U\Vρ),
• F is locally integrable outside V and moreover

∫

Rd\V

|F (y)|
(1 + |y|)d+αdmd(y) <∞.

Take a function ϕ ∈ C∞
0 (B(0, 1)) with

∫
Rd
ϕdmd = 1. For ε > 0,

set ϕε = ε−dϕ( ·
ε
). For ε < ρ, consider the smooth function Fε =

ϕε ∗F . Since the fractional Laplacian is a linear operator, we have that
(−∆)α/2Fε = 0 in Uε, and moreover (−∆)α/2(∇Fε) = 0 in Uε.

Certainly
∫
Rd

|∇Fε(x)|
(1+|x|)d+αdmd(x) < ∞, and so we may write, for any

ball B(x, r) ⊂ Uε,

∇Fε = P α
x,r ∗ ∇Fε,

where P α
x,r = P α

r (x + · ) and P α
r is the α-Poisson kernel introduced in

Appendix A. For the derivation of this formula, see the discussion in
Chapter 1.6 of [Lan] leading to the formula (1.6.19).
Consider Mε := maxV |∇uε|, so Mε = |∇uε(x0)| for some x0 ∈ V .

We wish to bound Mε independently of ε. To this end, notice that
since B(x0, ρ) ⊂ Uρ ⊂ Uε, we have that

Mε = |∇Fε(x0)| = |P α
x0,ρ

∗ (∇Fε)(x0)|.

Let us introduce a smooth function ψ ∈ C∞(Rd) such that ψ ≡ 0 in

Rd\Uρ, and ψ ≡ 1 inside U2ρ (an open set that contains B(x0, ρ)).
Then we split the convolution P α

x0,ρ ∗ (∇Fε)(x0) into a local term I =
P α
x0,ρ

∗ (ψ∇Fε)(x0), and a non-local term II = P α
x0,ρ

∗ ([1−ψ]∇Fε)(x0).
We first examine the local term. Note that since the Poisson kernel

P α
x0,ρ has integral 1, and is non-negative, there exists some λ = λ(V, ρ) ∈

(0, 1) such that 0 ≤
∫
V
P α
x0,ρ(x0 − y)dmd(y) ≤ λ, and consequently∣∣∫

V
P α
x0,ρ

(x0 − y)∇Fε(y)dmd(y)
∣∣≤ λMε.
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On the other hand, the function F ∈ Lip(U\Vρ), and so ‖∇Fε‖L∞(Uρ\V ) ≤
‖F‖Lip(U\Vρ). We therefore infer that

I ≤ λMε + ‖F‖Lip(U\Vρ).

Regarding the non-local term, we may integrate by parts to deduce
that

|II| ≤
∫

Rd

|∇(P α
x0,ρ

(x0 − y)[1− ψ(y)])||Fε(y)|dmd(y).

As ε → 0, the right hand side converges to
∫
Rd

|∇(P α
x0,ρ

(x0 − y)[1 −
ψ(y)])||F (y)|dmd(y) < ∞. Consequently, we infer that there is a con-
stant C > 0 (that may depend on F , U , V , and E), such that for all
sufficiently small ε > 0,

Mε ≤ λMε + C,

i.e., ‖Fε‖Lip(V ) ≤ C
1−λ . From the Arzela-Ascoli theorem we deduce that

F = u− v ∈ Lip(V ).
Since v can be represented by a Lipschitz function outside of any

neighbourhood of E, we conclude that v is a Lipschitz continuous func-
tion in Rd, and so its derivative, CK ∗ T , lies in L∞(md). The only
obstruction to concluding that γs(E) > 0 is that we do not know that
〈T, 1〉 6= 0. However, since T is non-zero, we can find some ψ ∈ C∞

0 (Rd)
so that

〈ψT, 1〉 = 〈T, ψ〉 6= 0.

But then by the localization property of distributions which have bounded
convolution with the Riesz kernel, see Lemma 4 of [Pra] or Lemma 3.1
of [MPV], we have that K ∗ (ψT ) ∈ L∞(md). Thus γs(E) > 0.
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