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Hausdorff dimension

The s-dimensional Hausdorff measure Hs , s ≥ 0, is defined by

Hs(A) = lim
δ→0
Hs
δ(A),

where, for 0 < δ ≤ ∞,

Hs
δ(A) = inf{

∑
j

d(Ej)
s : A ⊂

⋃
j

Ej , d(Ej) < δ}.

Here d(E ) denotes the diameter of the set E .
The Hausdorff dimension of A ⊂ Rn is

dim A = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.
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Frostman’s lemma

For A ⊂ Rn, let M(A) be the set of Borel measures µ such
that 0 < µ(A) <∞ and µ has compact support sptµ ⊂ A.

Theorem (Frostman’s lemma)

Let 0 ≤ s ≤ n. For a Borel set A ⊂ Rn,Hs(A) > 0 if and only
there is µ ∈M(A) such that

µ(B(x , r)) ≤ r s for all x ∈ Rn, r > 0. (1)

In particular,

dim A = sup{s : there is µ ∈M(A) such that (1) holds}.
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Riesz energies and Hausdorff dimension

The s-energy, s > 0, of a Borel measure µ is

Is(µ) =

∫∫
|x − y |−s dµx dµy =

∫
ks ∗ µ dµ,

where ks is the Riesz kernel:

ks(x) = |x |−s , x ∈ Rn.

Theorem

For a closed set A ⊂ Rn,

dim A = sup{s : there is µ ∈M(A) such that Is(µ) <∞}.
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The Fourier transform and Hausdorff dimension

The Fourier transform of µ ∈M(Rn) is

µ̂(ξ) =

∫
e−2πiξ·x dµx , ξ ∈ Rn.

The s-energy of µ ∈M(Rn) can be written in terms of the
Fourier transform:

Is(µ) = c(n, s)

∫
|µ̂(x)|2|x |s−n dx .

Thus we have

dim A =

sup{s < n : ∃µ ∈M(A) such that

∫
|µ̂(x)|2|x |s−n dx <∞}.
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The Fourier dimension

The Fourier dimension of a set A ⊂ Rn is

dimF A =

sup{s ≤ n : ∃µ ∈M(A) such that |µ̂(x)| ≤ |x |−s/2 ∀x ∈ Rn}.

Then
dimF A ≤ dim A.

A is called a Salem set if dimF A = dim A.
Examples of Salem sets are smooth planar curves with non-zero
curvature and trajectories of Brownian motion. But line
segments in Rn, n ≥ 2, have zero Fourier dimension.
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The Fourier dimension of graphs

Fraser, Orponen and Sahlsten, IMRN 2014, proved that

Theorem

For any function f : A→ Rn−m,A ⊂ Rm, we have for the
graph Gf = {(x , f (x)) : x ∈ A},

dimF Gf ≤ m.

The Hausdorff dimension of one-dimensional Brownian graphs
is almost surely 3/2, so they are not Salem sets, in fact, they
have almost surely Fourier dimension one due to Fraser and
Sahlsten 2015.
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Projections and dimension

How do the projections

pθ(x , y) = x cos θ + y sin θ, (x , y) ∈ R2, θ ∈ [0, π),

affect the Hausdorff dimension? Notice that pθ is essentially
the orthogonal projection onto the line making angle θ with the
x-axis.
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Projections and dimension

The following theorem was proved by John Marstrand in 1954
(Lm denotes the Lebesgue measure in Rm), a Fourier-analytic
proof was given by Kaufman 1968:

Theorem

Let A ⊂ R2 be a Borel set. If dim A ≤ 1, then

dim pθ(A) = dim A for almost all θ ∈ [0, π). (2)

If dim A > 1, then

L1(pθ(A)) > 0 for almost all θ ∈ [0, π). (3)
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Projections and dimension

Generalized projections: Peres and Schlag 2000
Discrete versions: Katz and Tao 2001, Bourgain 2010, Orponen
2015
Self-similar and related sets: Peres and Shmerkin 2009,
Hochman and Shmerkin 2012, Shmerkin and Suomala 2014,
Falconer and Jin 2014, Simon and Rams 2014
Restricted families of projections: E. and M. Järvenpää and
Keleti 2014, Fässler and Orponen 2014, D.M. and R. Oberlin
2013
Heisenberg groups: Balogh, Durand Cartegena, Fässler, Mattila
and Tyson 2013
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Distance sets and dimension

The distance set of A ⊂ Rn is

D(A) = {|x − y | : x , y ∈ A} ⊂ [0,∞).

The following Falconer’s conjecture seems plausible:

Conjecture

If n ≥ 2 and A ⊂ Rn is a Borel set with dim A > n/2, then
L1(D(A)) > 0, or even Int(D(A)) 6= ∅.

Falconer proved in 1985 that dim A > (n + 1)/2 implies
L1(D(A)) > 0, and we also have then Int(D(A)) 6= ∅ by Sjölin
and myself 1999.
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Distance sets and dimension

The best known result is due to Wolff 1999 for n = 2 and to
Erdogan 2005 for n ≥ 3:

Theorem

If n ≥ 2 and A ⊂ Rn is a Borel set with dim A > n/2 + 1/3,
then L1(D(A)) > 0.

The proof uses restriction and Kakeya methods and results. In
particular, the case n ≥ 3 relies on Tao’s bilinear restriction
theorem.
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Distance sets and dimension

A group-theoretic approach: Greenleaf, Iosevich, Liu and
Palsson 2013
Erdös problem on finite sets: Guth and Katz 2015
Distance sets in finite fields: Iosevich and Rudnev 2007 and
others
Angles, directions and other configurations: Iosevich, Laba and
others
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Besicovitch sets

We say that a Borel set in Rn, n ≥ 2, is a Besicovitch set, or a
Kakeya set, if it has zero Lebesgue measure and it contains a
line segment of unit length in every direction. This means that
for every e ∈ Sn−1 = {x ∈ Rn : |x | = 1} there is b ∈ Rn such
that {te + b : 0 < t < 1} ⊂ B. It is not obvious that
Besicovitch sets exist but they do in every Rn, n ≥ 2.

Conjecture (Kakeya conjecture)

All Besicovitch sets in Rn have Hausdorff dimension n.
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Besicovitch sets

Theorem (Besicovitch 1919)

For any n ≥ 2 there exists a Borel set B ⊂ Rn such that
Ln(B) = 0 and B contains a whole line in every direction.
Moreover, there exist compact Besicovitch sets in Rn.

The proof of Besicovitch from 1964 uses duality between points
and lines.

Theorem (Davies 1971)

For every Besicovitch set B ⊂ Rn, dim B ≥ 2. In particular, the
Kakeya conjecture is true in the plane.

D. Oberlin proved in 2006 that even dimF B ≥ 2.
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Line segment conjecture

Conjecture (Keleti 2014)

If A is the union of a family of line segments in Rn and B is the
union of the corresponding lines, then dim A = dim B.

This is true in the plane:

Theorem (Keleti 2014)

The conjecture is true in R2.
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Line segment conjecture

Theorem (Keleti 2014)

(1) If the line segment conjecture is true for some n, then, for
this n, every Besicovitch set in Rn has Hausdorff dimension at
least n − 1.
(2) If the line segment conjecture is true for all n, then every
Besicovitch set in Rn has packing and upper Minkowski
dimension n for all n.
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Subsets of hyperplanes

For p = (a, b) ∈ Rn−1 × R let L(p) = L(a, b) denote the
hyperplane {(x , y) ∈ Rn−1 × R : y = a · x + b}. If E ⊂ Rn let
L(E ) =

⋃
p∈E L(p).

Theorem (Falconer and Mattila 2014)

Let E ⊂ Rn be a non-empty Borel set and let A ⊂ Rn be a
Borel set such that Ln−1

(
L(p) ∩ A

)
> 0 for all p ∈ E . Then

dim
(
L(E ) ∩ A

)
= dim L(E ) = min{dim E + n − 1, n}.

Moreover, if dim E > 1, then

Ln
(
L(E ) ∩ A

)
> 0.
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Kakeya maximal function

For a ∈ Rn, e ∈ Sn−1 and δ > 0, define the tube T δ
e (a) with

center a, direction e, length 1 and radius δ:

T δ
e (a) = {x ∈ Rn : |(x−a)·e| ≤ 1/2, |x−a−((x−a)·e)e| ≤ δ}.

Then Ln(T δ
e (a)) = α(n − 1)δn−1, where α(n − 1) is the

Lebesgue measure of the unit ball in Rn−1.

Definition

The Kakeya maximal function with width δ of f ∈ L1
loc(Rn) is

Kδf : Sn−1 → [0,∞],

Kδf (e) = sup
a∈Rn

1

Ln(T δ
e (a))

∫
T δ
e (a)
|f | dLn.



The Fourier
transform and

Hausdorff
dimension

Pertti Mattila

Kakeya maximal conjecture

We have the trivial but sharp proposition:

Proposition

For all 0 < δ < 1 and f ∈ L1
loc(Rn),

‖Kδf ‖L∞(Sn−1) ≤ ‖f ‖L∞(Rn),

‖Kδf ‖L∞(Sn−1) ≤ α(n − 1)1−nδ1−n‖f ‖L1(Rn).

Conjecture

‖Kδf ‖Ln(Sn−1) ≤ C (n, ε)δ−ε‖f ‖Ln(Rn)

for all ε > 0, 0 < δ < 1, f ∈ Ln(Rn).
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Kakeya maximal conjecture

Theorem (Córdoba 1977)

‖Kδf ‖L2(S1) ≤ C
√

log(1/δ)‖f ‖L2(R2)

for all 0 < δ < 1, f ∈ L2(R2). In particular, the Kakeya
maximal conjecture is true in the plane.

The factor
√

log(1/δ) is sharp due to Keich 1999.
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Kakeya and Hausdorff dimension

Theorem (Bourgain 1991)

Suppose that 1 < p <∞, β > 0 and n − βp > 0. If

‖Kδf ‖Lp(Sn−1) ≤ C (n, p, β)δ−β‖f ‖p for 0 < δ < 1, f ∈ Lp(Rn),

then the Hausdorff dimension of every Besicovitch set in Rn is
at least n − βp. In particular, if for some p, 1 < p <∞,

‖Kδf ‖Lp(Sn−1) ≤ C (n, p, ε)δ−ε‖f ‖Lp(Rn)

holds for all ε > 0, 0 < δ < 1, f ∈ Lp(Rn), then the Hausdorff
dimension of every Besicovitch set in Rn is n. Thus the Kakeya
maximal conjecture implies the Kakeya conjecture.
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Discretized Kakeya

Proposition

Let 1 < p <∞, q = p
p−1 , 0 < δ < 1 and 0 < M <∞. Suppose

that

‖
m∑

k=1

tkχTk
‖Lq(Rn) ≤ M

whenever T1, . . . ,Tm are δ-separated (in directions) δ-tubes
and t1, . . . , tm are positive numbers with

δn−1
m∑

k=1

tqk ≤ 1.

Then

‖Kδf ‖Lp(Sn−1) ≤ C (n)M‖f ‖Lp(Rn) for all f ∈ Lp(Rn).
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Bourgain and dimension of Besicovitch sets

Theorem (Bourgain 1991)

For all Lebesgue measurable sets E ⊂ Rn,

σn−1({e ∈ Sn−1 : Kδ(χE )(e) > λ}) ≤ C (n)δ1−nλ−n−1Ln(E )2

for all 0 < δ < 1 and λ > 0. In particular, the Hausdorff
dimension of every Besicovitch set in Rn is at least (n + 1)/2.

The above restricted weak type inequality is very close to,

‖Kδf ‖Lq(Sn−1) ≤ C (n, p, ε)δ−(n/p−1+ε)‖f ‖p

for all ε > 0 with p = (n + 1)/2, q = n + 1.
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Wolff and dimension of Besicovitch sets

Bourgain’s proof used bushes; many tubes containing some
point. Wolff replaced this with hairbrushes; many tubes
intersecting some tube.

Theorem (Wolff 1995)

Let 0 < δ < 1. Then for f ∈ L
n+2

2 (Rn),

‖Kδf ‖
L
n+2

2 (Sn−1)
≤ C (n, ε)δ

2−n
2+n
−ε‖f ‖

L
n+2

2 (Rn)
(4)

for all ε > 0. In particular, the Hausdorff dimension of every
Besicovitch set in Rn is at least (n + 2)/2.
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A combinatorial theorem

Theorem (Bourgain 1999, Katz and Tao 1999)

Let ε0 = 1/6. Suppose that A and B are finite subsets of λZm

for some m ∈ N and λ > 0, #A ≤ N and #B ≤ N. Suppose
also that G ⊂ A× B and

#{x + y : (x , y) ∈ G} ≤ N. (5)

Then
#{x − y : (x , y) ∈ G} ≤ N2−ε0 .

The best value of ε0 is not known, but it cannot be taken
bigger than log 6/ log 3 = 0.39907 . . . .
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Application to dimension of Besicovitch sets

Theorem (Bourgain 1999, Katz and Tao 1999)

For any Besicovitch set B in Rn, dim B ≥ 6n/11 + 5/11.

Theorem (Katz and Tao 2002)

For any Besicovitch set B in Rn, dim B ≥ (2−
√

2)(n− 4) + 3.

The second theorem improves Wolff’s (n + 2)/2 bound for all
n ≥ 5. Wolff’s estimate is still the best known for n = 3, 4.
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Restriction problem

When does f̂ |Sn−1 make sense? If f ∈ L1(Rn) it obviously
does, if f ∈ L2(Rn) it obviously does not.
f̂ |Sn−1 makes sense for f ∈ Lp(Rn) if we have for some q <∞
an inequality

‖f̂ ‖Lq(Sn−1) ≤ C (n, p, q)‖f ‖Lp(Rn) (6)

valid for all f ∈ S(Rn).
The restriction problems ask for which p and q (6) holds.
By duality (6) is equivalent, with the same constant C (n, p, q),
to

‖f̂ ‖Lp′ (Rn) ≤ C (n, p, q)‖f ‖Lq′ (Sn−1). (7)

Here p′ and q′ are conjugate exponents of p and q and f̂
means the Fourier transform of the measure f σn−1.



The Fourier
transform and

Hausdorff
dimension

Pertti Mattila

Stein-Tomas theorem

Theorem (Tomas 1975, Stein 1986)

We have for f ∈ L2(Sn−1),

‖f̂ ‖Lq(Rn) ≤ C (n, q)‖f ‖L2(Sn−1)

for q ≥ 2(n + 1)/(n − 1). The lower bound 2(n + 1)/(n − 1) is
the best possible.

The sharpness of the range of q follows using the Knapp
example.
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Restriction conjecture

Conjecture

‖f̂ ‖Lq(Rn) ≤ C (n, q)‖f ‖Lp(Sn−1) for q > 2n/(n − 1) and

q = n+1
n−1 p′.

This is equivalent to

‖f̂ ‖Lq(Rn) ≤ C (n, q)‖f ‖L∞(Sn−1) for q > 2n/(n − 1),

and to

‖f̂ ‖Lq(Rn) ≤ C (n, q)‖f ‖Lq(Sn−1) for q > 2n/(n − 1).

The range q > 2n/(n − 1) would be optimal. Stein-Tomas
theorem implies that these inequalities are true when
q ≥ 2(n + 1)/(n − 1).
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Restriction conjecture in the plane

Fefferman 1970 and Zygmund 1974 proved in the plane

‖f̂ ‖Lq(R2) ≤ C (q)‖f ‖Lp(S1) for q > 4 and q = 4p′

.
Thus the restriction conjecture is true in the plane.
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Restriction implies Kakeya

Theorem (Bourgain 1991)

Suppose that 2n/(n − 1) < q <∞ and

‖f̂ ‖Lq(Rn) .n,q ‖f ‖Lq(Sn−1) for f ∈ Lq(Sn−1). (8)

Then with p = q/(q − 2),

‖Kδf ‖Lp(Sn−1) .n,q δ
4n/q−2(n−1)‖f ‖p

for all 0 < δ < 1, f ∈ Lp(Rn). In particular, the restriction
conjecture implies the Kakeya maximal conjecture.

The proof uses Khintchine’s inequalities and the Knapp
example.
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Bilinear restriction

Theorem (Tao 2003)

Let c > 0 and let Sj ⊂ {x ∈ Sn−1 : xn > c}, j = 1, 2, with
d(S1, S2) ≥ c > 0. Then

‖f̂1f̂2‖Lq(Rn) ≤ C (n, q, c)‖f1‖L2(S1)‖f2‖L2(S2)

for q > (n + 2)/n and for all fj ∈ L2(Sj) with
spt fj ⊂ Sj , j = 1, 2.

The lower bound (n + 2)/n is the best possible due to the
Knapp example.
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Progress on restriction conjecture

Conjecture: ‖f̂ ‖Lq(Rn) . ‖f ‖L∞(Sn−1) for q > 2n/(n − 1),
q > 3 for n = 3.
Tomas 1975: q > (2n + 2)/(n − 1), q > 4 for n = 3.
Stein 1986: q = (2n + 2)/(n − 1), q = 4 for n = 3.
Bourgain 1991: q > (2n + 2)/(n − 1)− εn,
q > 31/8 = 4− 1/8 for n = 3.
Tao, Vargas and Vega 1998, Tao 2003 by bilinear restriction:
q > (2n + 4)/n,
q > 10/3 = 31/8− 13/24 for n = 3.
Bennett, Carbery and Tao 2006, Bourgain and Guth 2011 by
multilinear restriction: q > 33/10 = 10/3− 1/30 for n = 3.
(Dvir 2009), Guth 2014 by polynomial method:
q > 13/4 = 33/10− 3/40 = 3 + 1/4 for n = 3.
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Distance sets and bilinear restriction

The proof of the Wolff-Erdogan distance set theorem is based
on the following: Define quadratic spherical averages of
µ ∈M(Rn) for r > 0,

σ(µ)(r) =

∫
Sn−1

|µ̂(rv)|2 dσn−1v .

If s > n/2, Is(µ) <∞ and
∫∞

1 σ(µ)(r)2rn−1 dr <∞, then
δ(µ)� L1.
This gives: If t ≤ s, s + t ≥ n, Is(µ) <∞ and
σ(µ)(r) ≤ Cr−t for all r > 0, then L1(D(sptµ)) > 0.
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Distance sets and bilinear restriction

Wolff proved that for all 0 < s < 2, ε > 0 and µ ∈M(R2) with
sptµ ⊂ B(0, 1),

σ(µ)(r) ≤ C (s, ε)r ε−s/2Is(µ) for r > 1.

Erdogan extended this to higher dimensions: For all
(n − 2)/2 < s < n, n ≥ 2, ε > 0 and µ ∈M(Rn) with
sptµ ⊂ B(0, 1),

σ(µ)(r) ≤ C (n, s, ε)r ε−(n+2s−2)/4Is(µ) for r > 1.

Combining these leads to

dim A > n/2 + 1/3 implies L1(D(A)) > 0.

Wolff’s power s/2 is sharp, Erdogan’s (n + 2s − 2)/4 probably
is not sharp when n > 2. The proofs of these estimates are
based on Kakeya and restriction type methods. Erdogan’s
estimate explicitly uses Tao’s bilinear theorem.


