The Fourier transform and Hausdorff dimension

Pertti Mattila

The Fourier transform and Hausdorff dimension

Pertti Mattila

University of Helsinki

Sant Feliu de Guíxols June 15–18, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Hausdorff dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The *s*-dimensional *Hausdorff measure* \mathcal{H}^{s} , $s \geq 0$, is defined by

$$\mathcal{H}^{s}(A) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(A),$$

where, for 0 < $\delta \leq \infty$,

$$\mathcal{H}^{s}_{\delta}(A) = \inf \{ \sum_{j} d(E_{j})^{s} : A \subset \bigcup_{j} E_{j}, d(E_{j}) < \delta \}.$$

Here d(E) denotes the diameter of the set E. The *Hausdorff dimension* of $A \subset \mathbb{R}^n$ is

$$\dim A = \inf\{s : \mathcal{H}^{s}(A) = 0\} = \sup\{s : \mathcal{H}^{s}(A) = \infty\}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Frostman's lemma

The Fourier transform and Hausdorff dimension

Pertti Mattila

For $A \subset \mathbb{R}^n$, let $\mathcal{M}(A)$ be the set of Borel measures μ such that $0 < \mu(A) < \infty$ and μ has compact support spt $\mu \subset A$.

Theorem (Frostman's lemma)

Let $0 \le s \le n$. For a Borel set $A \subset \mathbb{R}^n$, $\mathcal{H}^s(A) > 0$ if and only there is $\mu \in \mathcal{M}(A)$ such that

$$\mu(B(x,r)) \leq r^s$$
 for all $x \in \mathbb{R}^n, r > 0.$ (1)

In particular,

dim $A = \sup\{s : there is \mu \in \mathcal{M}(A) \text{ such that } (1) \text{ holds}\}.$

Riesz energies and Hausdorff dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The *s*-energy, s > 0, of a Borel measure μ is

$$I_{s}(\mu) = \iint |x - y|^{-s} d\mu x d\mu y = \int k_{s} * \mu d\mu,$$

where k_s is the *Riesz kernel*:

$$k_s(x) = |x|^{-s}, \quad x \in \mathbb{R}^n.$$

Theorem

For a closed set $A \subset \mathbb{R}^n$,

dim $A = \sup\{s : there is \mu \in \mathcal{M}(A) \text{ such that } I_s(\mu) < \infty\}.$

The Fourier transform and Hausdorff dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The Fourier transform of
$$\mu\in\mathcal{M}(\mathbb{R}^n)$$
 is

$$\widehat{\mu}(\xi) = \int e^{-2\pi i \xi \cdot x} d\mu x, \quad \xi \in \mathbb{R}^n.$$

The *s*-energy of $\mu \in \mathcal{M}(\mathbb{R}^n)$ can be written in terms of the Fourier transform:

$$I_{s}(\mu)=c(n,s)\int |\widehat{\mu}(x)|^{2}|x|^{s-n}\,dx.$$

Thus we have

 $\dim A =$

 $\sup\{s < n : \exists \mu \in \mathcal{M}(A) \text{ such that } \int |\widehat{\mu}(x)|^2 |x|^{s-n} dx < \infty\}.$

The Fourier dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The Fourier dimension of a set $A \subset \mathbb{R}^n$ is

 $\dim_F A =$

 $\sup\{s \le n : \exists \mu \in \mathcal{M}(A) \text{ such that } |\widehat{\mu}(x)| \le |x|^{-s/2} \ \forall x \in \mathbb{R}^n\}.$

Then

 $\dim_F A \leq \dim A$.

A is called a Salem set if $\dim_F A = \dim A$. Examples of Salem sets are smooth planar curves with non-zero curvature and trajectories of Brownian motion. But line segments in \mathbb{R}^n , $n \ge 2$, have zero Fourier dimension.

The Fourier dimension of graphs

The Fourier transform and Hausdorff dimension

Pertti Mattila

Fraser, Orponen and Sahlsten, IMRN 2014, proved that

Theorem

For any function $f : A \to \mathbb{R}^{n-m}$, $A \subset \mathbb{R}^m$, we have for the graph $G_f = \{(x, f(x)) : x \in A\}$,

 $\dim_F G_f \leq m$.

The Hausdorff dimension of one-dimensional Brownian graphs is almost surely 3/2, so they are not Salem sets, in fact, they have almost surely Fourier dimension one due to Fraser and Sahlsten 2015.

Projections and dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

How do the projections

$$p_{\theta}(x,y) = x \cos \theta + y \sin \theta, \quad (x,y) \in \mathbb{R}^2, \theta \in [0,\pi),$$

affect the Hausdorff dimension? Notice that p_{θ} is essentially the orthogonal projection onto the line making angle θ with the *x*-axis.

Projections and dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The following theorem was proved by John Marstrand in 1954 (\mathcal{L}^m denotes the Lebesgue measure in \mathbb{R}^m), a Fourier-analytic proof was given by Kaufman 1968:

Theorem

Let
$$A \subset \mathbb{R}^2$$
 be a Borel set. If dim $A \leq 1$, then

dim $p_{\theta}(A) = \dim A$ for almost all $\theta \in [0, \pi)$. (2)

If dim A > 1, then

 $\mathcal{L}^1(p_{\theta}(A)) > 0 \quad \text{for almost all } \theta \in [0,\pi).$ (3)

Projections and dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

Generalized projections: Peres and Schlag 2000 Discrete versions: Katz and Tao 2001, Bourgain 2010, Orponen 2015 Self-similar and related sets: Peres and Shmerkin 2009, Hochman and Shmerkin 2012, Shmerkin and Suomala 2014, Falconer and Jin 2014, Simon and Rams 2014 Restricted families of projections: E. and M. Järvenpää and Keleti 2014, Fässler and Orponen 2014, D.M. and R. Oberlin

2013

Heisenberg groups: Balogh, Durand Cartegena, Fässler, Mattila and Tyson 2013

Distance sets and dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

The *distance set* of $A \subset \mathbb{R}^n$ is

$$D(A) = \{|x - y| : x, y \in A\} \subset [0, \infty).$$

The following Falconer's conjecture seems plausible:

Conjecture

If $n \ge 2$ and $A \subset \mathbb{R}^n$ is a Borel set with dim A > n/2, then $\mathcal{L}^1(D(A)) > 0$, or even $Int(D(A)) \neq \emptyset$.

Falconer proved in 1985 that dim A > (n + 1)/2 implies $\mathcal{L}^1(D(A)) > 0$, and we also have then $Int(D(A)) \neq \emptyset$ by Sjölin and myself 1999.

Distance sets and dimension The Fourier transform and Hausdorff dimension The best known result is due to Wolff 1999 for n = 2 and to Erdogan 2005 for n > 3: Theorem If n > 2 and $A \subset \mathbb{R}^n$ is a Borel set with dim A > n/2 + 1/3, then $\mathcal{L}^{1}(D(A)) > 0$.

The proof uses restriction and Kakeya methods and results. In particular, the case $n \ge 3$ relies on Tao's bilinear restriction theorem.

Distance sets and dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

A group-theoretic approach: Greenleaf, Iosevich, Liu and Palsson 2013 Erdös problem on finite sets: Guth and Katz 2015 Distance sets in finite fields: Iosevich and Rudnev 2007 and others

Angles, directions and other configurations: losevich, Laba and others

Besicovitch sets

The Fourier transform and Hausdorff dimension

Pertti Mattila

We say that a Borel set in \mathbb{R}^n , $n \ge 2$, is a *Besicovitch set*, or a Kakeya set, if it has zero Lebesgue measure and it contains a line segment of unit length in every direction. This means that for every $e \in S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ there is $b \in \mathbb{R}^n$ such that $\{te + b : 0 < t < 1\} \subset B$. It is not obvious that Besicovitch sets exist but they do in every \mathbb{R}^n , $n \ge 2$.

Conjecture (Kakeya conjecture)

All Besicovitch sets in \mathbb{R}^n have Hausdorff dimension n.

Besicovitch sets

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Besicovitch 1919)

For any $n \ge 2$ there exists a Borel set $B \subset \mathbb{R}^n$ such that $\mathcal{L}^n(B) = 0$ and B contains a whole line in every direction. Moreover, there exist compact Besicovitch sets in \mathbb{R}^n .

The proof of Besicovitch from 1964 uses duality between points and lines.

Theorem (Davies 1971)

For every Besicovitch set $B \subset \mathbb{R}^n$, dim $B \ge 2$. In particular, the Kakeya conjecture is true in the plane.

D. Oberlin proved in 2006 that even dim_F $B \ge 2$.

Line segment conjecture

The Fourier transform and Hausdorff dimension

Pertti Mattila

Conjecture (Keleti 2014)

If A is the union of a family of line segments in \mathbb{R}^n and B is the union of the corresponding lines, then dim $A = \dim B$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is true in the plane:

Theorem (Keleti 2014)

The conjecture is true in \mathbb{R}^2 .

Line segment conjecture

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Keleti 2014)

(1) If the line segment conjecture is true for some n, then, for this n, every Besicovitch set in \mathbb{R}^n has Hausdorff dimension at least n - 1.

(2) If the line segment conjecture is true for all n, then every Besicovitch set in \mathbb{R}^n has packing and upper Minkowski dimension n for all n.

Subsets of hyperplanes

The Fourier transform and Hausdorff dimension

Pertti Mattila

For $p = (a, b) \in \mathbb{R}^{n-1} \times \mathbb{R}$ let L(p) = L(a, b) denote the hyperplane $\{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} : y = a \cdot x + b\}$. If $E \subset \mathbb{R}^n$ let $L(E) = \bigcup_{p \in E} L(p)$.

Theorem (Falconer and Mattila 2014)

Let $E \subset \mathbb{R}^n$ be a non-empty Borel set and let $A \subset \mathbb{R}^n$ be a Borel set such that $\mathcal{L}^{n-1}(L(p) \cap A) > 0$ for all $p \in E$. Then

 $\dim (L(E) \cap A) = \dim L(E) = \min \{\dim E + n - 1, n\}.$

Moreover, if dim E > 1, then

$$\mathcal{L}^n(L(E)\cap A)>0.$$

Kakeya maximal function

The Fourier transform and Hausdorff dimension

Pertti Mattila

For $a \in \mathbb{R}^n$, $e \in S^{n-1}$ and $\delta > 0$, define the tube $T_e^{\delta}(a)$ with center *a*, direction *e*, length 1 and radius δ :

$$T_e^{\delta}(a) = \{x \in \mathbb{R}^n : |(x-a) \cdot e| \le 1/2, |x-a-((x-a) \cdot e)e| \le \delta\}.$$

Then $\mathcal{L}^n(T_e^{\delta}(a)) = \alpha(n-1)\delta^{n-1}$, where $\alpha(n-1)$ is the Lebesgue measure of the unit ball in \mathbb{R}^{n-1} .

Definition

The Kakeya maximal function with width δ of $f \in L^1_{loc}(\mathbb{R}^n)$ is

$$\mathcal{K}_{\delta}f: S^{n-1} \to [0,\infty],$$

$$\mathcal{K}_{\delta}f(e) = \sup_{a \in \mathbb{R}^n} \frac{1}{\mathcal{L}^n(\mathcal{T}_e^{\delta}(a))} \int_{\mathcal{T}_e^{\delta}(a)} |f| \, d\mathcal{L}^n.$$

▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - ● ● ● ●

Kakeya maximal conjecture

The Fourier transform and Hausdorff dimension

Pertti Mattila

We have the trivial but sharp proposition:

For all $0 < \delta < 1$ and $f \in L^1_{loc}(\mathbb{R}^n)$,

$$\|\mathcal{K}_{\delta}f\|_{L^{\infty}(S^{n-1})} \leq \|f\|_{L^{\infty}(\mathbb{R}^n)},$$

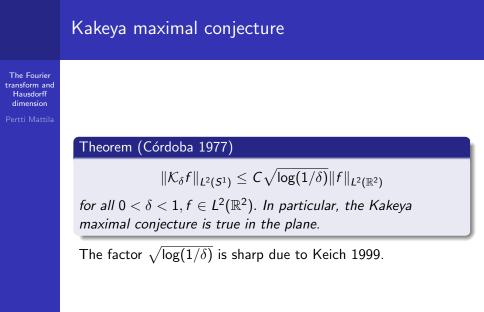
$$\|\mathcal{K}_{\delta}f\|_{L^{\infty}(S^{n-1})} \leq \alpha(n-1)^{1-n}\delta^{1-n}\|f\|_{L^{1}(\mathbb{R}^{n})}.$$

Conjecture

Proposition

$$\|\mathcal{K}_{\delta}f\|_{L^{n}(S^{n-1})} \leq C(n,\epsilon)\delta^{-\epsilon}\|f\|_{L^{n}(\mathbb{R}^{n})}$$

for all $\epsilon > 0, 0 < \delta < 1, f \in L^{n}(\mathbb{R}^{n}).$



Kakeya and Hausdorff dimension

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Bourgain 1991)

Suppose that 1 0 and $n - \beta p > 0$. If

 $\|\mathcal{K}_{\delta}f\|_{L^p(S^{n-1})} \leq C(n,p,\beta)\delta^{-\beta}\|f\|_p \quad \text{for } 0 < \delta < 1, f \in L^p(\mathbb{R}^n),$

then the Hausdorff dimension of every Besicovitch set in \mathbb{R}^n is at least $n - \beta p$. In particular, if for some p, 1 ,

 $\|\mathcal{K}_{\delta}f\|_{L^{p}(S^{n-1})} \leq C(n,p,\epsilon)\delta^{-\epsilon}\|f\|_{L^{p}(\mathbb{R}^{n})}$

holds for all $\epsilon > 0, 0 < \delta < 1, f \in L^p(\mathbb{R}^n)$, then the Hausdorff dimension of every Besicovitch set in \mathbb{R}^n is n. Thus the Kakeya maximal conjecture implies the Kakeya conjecture.

Discretized Kakeya

The Fourier transform and Hausdorff dimension

Proposition

Pertti Mattila

Let $1 and <math>0 < M < \infty$. Suppose that ______ m

$$\|\sum_{k=1}t_k\chi_{T_k}\|_{L^q(\mathbb{R}^n)}\leq M$$

whenever T_1, \ldots, T_m are δ -separated (in directions) δ -tubes and t_1, \ldots, t_m are positive numbers with

$$\delta^{n-1}\sum_{k=1}^m t_k^q \le 1.$$

Then

 $\|\mathcal{K}_{\delta}f\|_{L^{p}(S^{n-1})} \leq C(n)M\|f\|_{L^{p}(\mathbb{R}^{n})}$ for all $f \in L^{p}(\mathbb{R}^{n})$.

Bourgain and dimension of Besicovitch sets

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Bourgain 1991)

For all Lebesgue measurable sets $E \subset \mathbb{R}^n$,

$$\sigma^{n-1}(\{e \in S^{n-1} : \mathcal{K}_{\delta}(\chi_{E})(e) > \lambda\}) \leq C(n)\delta^{1-n}\lambda^{-n-1}\mathcal{L}^{n}(E)^{2}$$

for all $0 < \delta < 1$ and $\lambda > 0$. In particular, the Hausdorff dimension of every Besicovitch set in \mathbb{R}^n is at least (n+1)/2.

The above restricted weak type inequality is very close to,

$$\|\mathcal{K}_{\delta}f\|_{L^{q}(S^{n-1})} \leq C(n,p,\epsilon)\delta^{-(n/p-1+\epsilon)}\|f\|_{p}$$

for all $\epsilon > 0$ with p = (n+1)/2, q = n+1.

Wolff and dimension of Besicovitch sets

The Fourier transform and Hausdorff dimension

Pertti Mattila

Bourgain's proof used bushes; many tubes containing some point. Wolff replaced this with hairbrushes; many tubes intersecting some tube.

Theorem (Wolff 1995)

Let
$$0 < \delta < 1$$
. Then for $f \in L^{\frac{n+2}{2}}(\mathbb{R}^n)$,

$$\|\mathcal{K}_{\delta}f\|_{L^{\frac{n+2}{2}}(S^{n-1})} \leq C(n,\epsilon)\delta^{\frac{2-n}{2+n}-\epsilon}\|f\|_{L^{\frac{n+2}{2}}(\mathbb{R}^n)}$$
(4)

for all $\epsilon > 0$. In particular, the Hausdorff dimension of every Besicovitch set in \mathbb{R}^n is at least (n+2)/2.

A combinatorial theorem

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Bourgain 1999, Katz and Tao 1999)

Let $\epsilon_0 = 1/6$. Suppose that A and B are finite subsets of $\lambda \mathbb{Z}^m$ for some $m \in \mathbb{N}$ and $\lambda > 0$, $\#A \leq N$ and $\#B \leq N$. Suppose also that $G \subset A \times B$ and

$$\#\{x+y:(x,y)\in G\}\leq N.$$
 (5)

Then

$$\#\{x-y:(x,y)\in G\}\leq N^{2-\epsilon_0}.$$

The best value of ϵ_0 is not known, but it cannot be taken bigger than $\log 6 / \log 3 = 0.39907 \dots$

Application to dimension of Besicovitch sets The Fourier transform and Hausdorff dimension Theorem (Bourgain 1999, Katz and Tao 1999) For any Besicovitch set B in \mathbb{R}^n , dim $B \ge 6n/11 + 5/11$. Theorem (Katz and Tao 2002) For any Besicovitch set B in \mathbb{R}^n , dim $B \ge (2 - \sqrt{2})(n - 4) + 3$. The second theorem improves Wolff's (n+2)/2 bound for all n > 5. Wolff's estimate is still the best known for n = 3, 4.

Restriction problem

The Fourier transform and Hausdorff dimension

When does $\widehat{f}|S^{n-1}$ make sense? If $f \in L^1(\mathbb{R}^n)$ it obviously does, if $f \in L^2(\mathbb{R}^n)$ it obviously does not. $\widehat{f}|S^{n-1}$ makes sense for $f \in L^p(\mathbb{R}^n)$ if we have for some $q < \infty$ an inequality

$$\|\widehat{f}\|_{L^{q}(S^{n-1})} \leq C(n,p,q) \|f\|_{L^{p}(\mathbb{R}^{n})}$$
 (6)

valid for all $f \in \mathcal{S}(\mathbb{R}^n)$.

The restriction problems ask for which p and q (6) holds. By duality (6) is equivalent, with the same constant C(n, p, q), to

$$\|\widehat{f}\|_{L^{p'}(\mathbb{R}^n)} \leq C(n,p,q) \|f\|_{L^{q'}(S^{n-1})}.$$
 (7)

Here p' and q' are conjugate exponents of p and q and \hat{f} means the Fourier transform of the measure $f\sigma^{n-1}$.

Stein-Tomas theorem

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Tomas 1975, Stein 1986)

We have for $f \in L^2(S^{n-1})$,

$$\|\widehat{f}\|_{L^{q}(\mathbb{R}^{n})} \leq C(n,q)\|f\|_{L^{2}(S^{n-1})}$$

for $q \ge 2(n+1)/(n-1)$. The lower bound 2(n+1)/(n-1) is the best possible.

The sharpness of the range of q follows using the Knapp example.

Restriction conjecture

The Fourier transform and Hausdorff dimension

Conjecture

Pertti Mattila

$$\|\widehat{f}\|_{L^q(\mathbb{R}^n)} \leq C(n,q) \|f\|_{L^p(S^{n-1})}$$
 for $q > 2n/(n-1)$ and $q = rac{n+1}{n-1}p'.$

This is equivalent to

$$\|\widehat{f}\|_{L^q(\mathbb{R}^n)} \leq C(n,q) \|f\|_{L^\infty(S^{n-1})} \quad ext{for } q > 2n/(n-1),$$

and to

$$\|\widehat{f}\|_{L^q(\mathbb{R}^n)} \leq C(n,q) \|f\|_{L^q(S^{n-1})} \quad ext{for } q > 2n/(n-1).$$

The range q > 2n/(n-1) would be optimal. Stein-Tomas theorem implies that these inequalities are true when $q \ge 2(n+1)/(n-1)$.

Restriction conjecture in the plane

The Fourier transform and Hausdorff dimension

Pertti Mattila

Fefferman 1970 and Zygmund 1974 proved in the plane

$$\|\widehat{f}\|_{L^q(\mathbb{R}^2)} \leq C(q) \|f\|_{L^p(S^1)}$$
 for $q>4$ and $q=4p'$

Thus the restriction conjecture is true in the plane.

Restriction implies Kakeya

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Bourgain 1991)

Suppose that $2n/(n-1) < q < \infty$ and

 $\|\widehat{f}\|_{L^{q}(\mathbb{R}^{n})} \lesssim_{n,q} \|f\|_{L^{q}(S^{n-1})} \text{ for } f \in L^{q}(S^{n-1}).$ (8)

Then with p = q/(q-2),

$$\|\mathcal{K}_{\delta}f\|_{L^{p}(S^{n-1})} \lesssim_{n,q} \delta^{4n/q-2(n-1)} \|f\|_{p}$$

for all $0 < \delta < 1$, $f \in L^{p}(\mathbb{R}^{n})$. In particular, the restriction conjecture implies the Kakeya maximal conjecture.

The proof uses Khintchine's inequalities and the Knapp example.

Bilinear restriction

The Fourier transform and Hausdorff dimension

Pertti Mattila

Theorem (Tao 2003)

Let c > 0 and let $S_j \subset \{x \in S^{n-1} : x_n > c\}, j = 1, 2$, with $d(S_1, S_2) \ge c > 0$. Then

$$\|\widehat{f_1}\widehat{f_2}\|_{L^q(\mathbb{R}^n)} \leq C(n,q,c) \|f_1\|_{L^2(S_1)} \|f_2\|_{L^2(S_2)}$$

for q > (n+2)/n and for all $f_j \in L^2(S_j)$ with spt $f_j \subset S_j, j = 1, 2$.

The lower bound (n+2)/n is the best possible due to the Knapp example.

Progress on restriction conjecture

The Fourier transform and Hausdorff dimension

Conjecture: $\|\hat{f}\|_{L^q(\mathbb{R}^n)} \lesssim \|f\|_{L^{\infty}(S^{n-1})}$ for q > 2n/(n-1), q > 3 for n = 3. Tomas 1975: q > (2n+2)/(n-1), q > 4 for n = 3. Stein 1986: q = (2n+2)/(n-1), q = 4 for n = 3. Bourgain 1991: $q > (2n+2)/(n-1) - \epsilon_n$, q > 31/8 = 4 - 1/8 for n = 3. Tao, Vargas and Vega 1998, Tao 2003 by bilinear restriction: q > (2n+4)/nq > 10/3 = 31/8 - 13/24 for n = 3. Bennett, Carbery and Tao 2006, Bourgain and Guth 2011 by multilinear restriction: q > 33/10 = 10/3 - 1/30 for n = 3. (Dvir 2009), Guth 2014 by polynomial method:

q > 13/4 = 33/10 - 3/40 = 3 + 1/4 for n = 3.

Distance sets and bilinear restriction

The Fourier transform and Hausdorff dimension

Pertti Mattila

The proof of the Wolff-Erdogan distance set theorem is based on the following: Define quadratic spherical averages of $\mu \in \mathcal{M}(\mathbb{R}^n)$ for r > 0,

$$\sigma(\mu)(r) = \int_{S^{n-1}} |\widehat{\mu}(rv)|^2 \, d\sigma^{n-1}v.$$

If s > n/2, $I_s(\mu) < \infty$ and $\int_1^{\infty} \sigma(\mu)(r)^2 r^{n-1} dr < \infty$, then $\delta(\mu) \ll \mathcal{L}^1$. This gives: If $t \le s, s + t \ge n$, $I_s(\mu) < \infty$ and $\sigma(\mu)(r) \le Cr^{-t}$ for all r > 0, then $\mathcal{L}^1(D(spt\mu)) > 0$.

Distance sets and bilinear restriction

The Fourier transform and Hausdorff dimension

Pertti Mattila

Wolff proved that for all $0 < s < 2, \epsilon > 0$ and $\mu \in \mathcal{M}(\mathbb{R}^2)$ with spt $\mu \subset B(0, 1)$,

$$\sigma(\mu)(r) \leq C(s,\epsilon)r^{\epsilon-s/2}I_s(\mu) \quad \text{for } r>1.$$

Erdogan extended this to higher dimensions: For all $(n-2)/2 < s < n, n \ge 2, \epsilon > 0$ and $\mu \in \mathcal{M}(\mathbb{R}^n)$ with spt $\mu \subset B(0, 1)$,

$$\sigma(\mu)(r) \leq \mathcal{C}(n,s,\epsilon) r^{\epsilon-(n+2s-2)/4} \mathit{I}_s(\mu) \quad ext{for } r>1.$$

Combining these leads to

dim
$$A > n/2 + 1/3$$
 implies $\mathcal{L}^1(D(A)) > 0$.

Wolff's power s/2 is sharp, Erdogan's (n + 2s - 2)/4 probably is not sharp when n > 2. The proofs of these estimates are based on Kakeya and restriction type methods. Erdogan's estimate explicitly uses Tao's bilinear theorem.