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1. Introduction

These notes are based on a mini-course given within the workshop

“Geometric measure theory, optimal mass transportation and PDEs”, Sant
Feliu de Gúıxols, June, 15th to 19th, 2015.

Nonlinear elliptic an parabolic equations with fractional diffusion is a hot topic
nowadays, involving a very large number of researchers in PDEs, Nonlinear Analy-
sis, and the Calculus of Variations. Equations with fractional diffusion are integro-
differential equations. The fractional Laplacians are the simplest linear operators
within the class and are the generators of Lévy flights or jump processes. These are
diffusions that go far beyond the classical Brownian process. Except for few results,
nonlinear theory for these equations has started to be developed only in the last
decade. Its interest and applications go from Probability theory, Potential theory,
and Fluid Dynamics (which are at its origins), to Conformal Geometry and Mathe-
matical Finance. In addition, fractional diffusions have been important in Physics for
many decades (well before the mathematical developments), and more recently also
in Biology. We are still very far from a complete mathematical understanding of the
field.

This mini-course starts explaining basic ideas concerning fractional Laplacians and
the essential tools to treat nonlinear equations involving these operators. Next we
present results on minimizers of semilinear elliptic fractional equations, and their
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applications towards a fractional version of a famous conjecture of De Giorgi. The
conjecture is still largely open in the fractional case. These results correspond to
papers [CSo, CSi1, CSi2, CC1, CC2] in collaboration with J. Solà-Morales, Y. Sire,
and E. Cinti.

Next we will focus on results from [CR1, CR2, CCR], in collaboration with
J.-M. Roquejoffre and A.-C. Coulon, on front propagation for Fisher-KPP equations
with fractional diffusion, both in homogeneous and in periodic media.

I will then explain a result with N. Consul and J.V. Mandé [CCM] on traveling
fronts for a fractional-diffusion type problem: the classical homogeneous heat equation
in a half-plane with a nonlinear Neumann boundary condition.

Finally, I will describe recent results from [CFSW] (with M.M. Fall, J. Solà-Morales,
and T. Weth) about curves and surfaces with constant nonlocal mean curvature —
a geometric quasilinear fractional equation describing minimizers of the fractional
perimeter under a volume constraint.

• All the previous papers can be found in arXiv, here: http://arxiv.org/

find/math/1/au:+Cabre_X/0/1/0/all/0/1 or in my web page: http://

www.pagines.ma1.upc.edu/~cabre

• The slides for this course can be obtained here: http://www-ma1.upc.es/

~cabre/slides_frac_2015.pdf

2. Basic facts about fractional Laplacians

The fractional Laplacian (−∆)α is a nonlocal operator defined, for 0 < α < 1,
as follows. If u ∈ C2

loc(Rn) has sufficiently slow growth at infinity —for instance
|u(x)| ≤ C(1 + |x|γ) with γ < 2α— then

(−∆)αu(x) = Cn,α P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy,

where P.V. stands for principal value and the constant Cn,α is adjusted for the symbol
of (−∆)α to be |ξ|2α (see [CSi1, NPV] for the value of the constant). Note that
u ∈ C2

loc(Rn) ensures the integrability at y = x in the principal value sense. The
statement above about its symbol says that the operator corresponds to the α-fraction
of the Laplacian, in the sense that (−∆)β(−∆)α = (−∆)α+β.

Good references for this introductory part of the course are:

• Hitchhiker’s guide to the fractional Sobolev spaces, by E. Di Nezza, G. Palatu-
cci, and E. Valdinoci [NPV], http://arxiv.org/abs/1104.4345
• Nonlocal diffusion and applications, by C. Bucur and E. Valdinoci [BV], http:
//arxiv.org/abs/1504.08292

• Nonlinear equations for fractional Laplacians I: Regularity, maximum prin-
ciples, and Hamiltonian estimates, by X. Cabré and Y. Sire [CSi1], http:

//arxiv.org/abs/1012.0867

http://arxiv.org/find/math/1/au:+Cabre_X/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Cabre_X/0/1/0/all/0/1
http://www.pagines.ma1.upc.edu/~cabre
http://www.pagines.ma1.upc.edu/~cabre
http://www-ma1.upc.es/~cabre/slides_frac_2015.pdf
http://www-ma1.upc.es/~cabre/slides_frac_2015.pdf
http://arxiv.org/abs/1104.4345
http://arxiv.org/abs/1504.08292
http://arxiv.org/abs/1504.08292
http://arxiv.org/abs/1012.0867
http://arxiv.org/abs/1012.0867
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We will be concerned with fractional diffusion equations for a function u = u(t, x)
depending also on time t. The simplest one is the homogeneous linear heat equation
with fractional diffusion:

ut + (−∆)αu = 0. (2.1)

It will be useful to have some probabilistic intuition about the fractional Laplacian.
Solutions to the standard heat equation for the classical Laplacian correspond to the
probability density (or concentration) of a substance which diffuses under Brownian
motion (see for instance the Textbook in PDEs by Sandro Salsa). The same fact holds
for the fractional Laplacian when instead of the Brownian process one considers Lévy
processes. These are pure jump process; particles may jump to far away positions.
More precisely, consider a random walk on the lattice hZn. We suppose that at any
unit of time τ , a particle jumps from any point of hZn to any other point. The

probability for which a particle jumps from the point hk ∈ hZn to the point hk̃ is

taken to be K(k − k̃) = K(k̃ − k). Note that, differently from the standard random
walk, in this process the particle may experience arbitrarily long jumps, though with
a small probability. We call u(t, x) the probability that our particle lies at x ∈ hZn
at time t ∈ τZ. Of course, we have

u(t+ τ, x) =
∑
k∈Zn

K(k)u(t, x+ hk).

It is easy to see that from this relation, and choosing K(k) = |y|−(n+2α), τ and h2α

proportional and tending to zero, one obtains in the limit the fractional diffusion
equation (2.1). See the short article [V1] by E. Valdinoci for details.

An important tool in some works on nonlinear equations with fractional Laplacians
is the following extension problem. The fractional Laplacian can be realized in a local
manner through the boundary value problem{

div (ya∇U) = 0 in Rn+1
+

U(x, 0) = u(x) on ∂Rn+1
+ = Rn,

(2.2)

where Rn+1
+ = {(x, y) ∈ Rn×R : y > 0} is the upper half-space and ∂Rn+1

+ = {y = 0}.
The parameter a belongs to (−1, 1) and is related to the power α of the fractional
Laplacian (−∆)α by the formula a = 1− 2α ∈ (−1, 1). Defining

∂U

∂νa
= − lim

y↓0
ya∂yU,

Caffarelli and Silvestre [CS] have proved the following formula relating the fractional
Laplacian (−∆)α to the Dirichlet-to-Neumann operator for (2.2):

(−∆)αu = dα
∂U

∂νa
in Rn = ∂Rn+1

+ ,

where dα is a positive constant depending only on α (see [CSi1] for its value).
To have some feeling about this fact, consider the case α = 1/2. Then, a = 0

and the first equation in (2.2) becomes ∆U = 0. It is now easy to see that, if we
call Tu := ∂νU(·, 0) (that is, T is the Dirichlet-to-Neumann operator), then we have
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T 2u = −∆xu = −∆u. One just checks that, by doing T twice, one obtains the minus
Laplacian —since the harmonic extension of −Uy(·, 0) is −Uy and Uyy = −∆xU =
−∆u.

3. Local minimizers of nonlinear elliptic fractional equations

Here we will explain the concept of minimizer for a nonlinear fractional elliptic
equation (posed, for instance, in all of Rn). We will present sharp energy estimates
for minimizers, as well as the Hamiltonian structure of semilinear equations involving
the fractional Laplacian. The Hamiltonian structure of these equations was discovered
in [CSo], in collaboration with J. Solà-Morales, for the square root of the Laplacian.
It was extended later in [CSi1] (with Yannick Sire) to all fractions α ∈ (0, 1) of the
Laplacian. The Hamiltonian structure has had an important application in the proof
of the first result on uniqueness and nondegeneracy of ground states for fractional
Laplacians. This is paper [FLS] by R. Frank, E. Lenzmann, and L. Silvestre.

The sharp energy estimates were proved first using the extension problem in [CSo,
CC1, CC2]. They can be proved also working only “downstairs” (without the exten-
sion). This was done by O. Savin and E. Valdinoci (see [BV, V2]).

The sharp energy estimates are the main tool to establish the only known results
on the fractional version of a conjecture of De Giorgi. It concerns minimizers of the
fractional Allen-Cahn equation,

(−∆)αu = u− u3 in Rn, (3.1)

and also solutions of this equation which are monotone in one direction. The setting
and the known results ([CSo, CSi2, CC1, CC2]) are well explained in

• Section 2 of [V2], A fractional framework for perimeters and phase transitions,
by E. Valdinoci, http://arxiv.org/abs/1210.5612
• Section 5 of [BV], Nonlocal diffusion and applications, by C. Bucur and E.

Valdinoci, http://arxiv.org/abs/1504.08292

In the local case (α = 1) the conjecture has been settled not long ago in very
important papers (see the two references above for more information); here 8 is a
threshold dimension. Instead, for α ∈ (0, 1) results are only known up to dimension 3.

The motivation for the fractional de Giorgi conjecture comes from its connection
with fractional perimeters and nonlocal minimal surfaces. These concepts will be
treated at the end of the course (see Section 7 below), and are also explained in the
two references papers displayed above.

4. Fisher-KPP equations with fractional diffusion in homogeneous
media

Here we will describe in more detail our results on front propagation with fractional
diffusion. Let f be a KPP-type nonlinearity. By this here we mean that f ∈ C1([0, 1])
is concave, f(0) = f(1) = 0, and f ′(1) < 0 < f ′(0). We may take for instance

http://arxiv.org/abs/1210.5612
http://arxiv.org/abs/1504.08292
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f(u) = u(1−u). We are interested in the large time behavior of solutions u = u(t, x)
to the Cauchy problem{

ut + Au = f(u) in (0,+∞)× Rn,
u(0, ·) = u0 in Rn, 0 6 u0 6 1,

(4.1)

where A is the infinitesimal generator of a Feller semigroup. By this we mean that
we are given a continuous function p = p(t, x), with t > 0 and x ∈ Rn, such that

• 0 < p ∈ C((0,+∞)× Rn) and

∫
Rn
p(t, x) dx = 1 for all t > 0, (4.2)

• p(t, ·) ∗ p(s, ·) = p(t+ s, ·) for all (s, t) ∈ (0,∞)2, (4.3)

and such that, given a function u0 ∈ L∞(Rn) and t > 0, the function

u(t, x) = Ttu0(x) := (p(t, ·) ∗ u0) (x) =

∫
Rn
p(t, y)u0(x− y) dy

is the solution of the homogeneous problem{
ut + Au = 0 in (0,+∞)× Rn,
u(0, ·) = u0 in Rn.

(4.4)

The function p is called the kernel of the semigroup {Tt}; it is also called the transition
probability function. The operator A is said to be the infinitesimal generator of a
Feller semigroup —since 0 6 u0 6 1 leads to 0 6 Ttu0 6 1. In addition, the operator
−A can be recovered from the semigroup by the expression

−Au = lim
t↓0

Ttu− u
t

.

Important examples are A = −∆ (the classical Laplacian) and A = (−∆)α with
α ∈ (0, 1) (the fractional Laplacian).

The reaction-diffusion problem (4.1) models de density of a population (or of a
substance) that diffuses (for instance to look for food, and this is modeled by the
operator A) and, at the same time, reacts —this is modeled by the nonlinearity f(u),
which represents birth (f is increasing when the density is small) ans death (f is
decreasing when the density is close to the saturation point u = 1). Given an initial
density u0 (compactly supported in space, for instance) and λ ∈ (0, 1), we want to
describe how the level sets {x ∈ Rn : u(t, x) = λ} spread as time goes to +∞.

When A = −∆ is the standard Laplacian (that corresponds to Brownian diffusion),
the following classical result describes the evolution of compactly supported data.

Theorem 4.1 (Aronson–Weinberger). Assume that A = −∆. Let u be a solution of
(4.1) with u(0, ·) 6≡ 0 compactly supported in Rn and satisfying 0 6 u(0, ·) 6 1. Let

c∗ = 2
√
f ′(0). Then,

a) if c > c∗, then u(t, x)→ 0 uniformly in {|x| > ct} as t→ +∞.
b) if c < c∗, then u(t, x)→ 1 uniformly in {|x| 6 ct} as t→ +∞.
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In addition, when A = −∆, (4.1) admits planar traveling wave solutions connecting
0 and 1, that is, solutions of the form u(t, x) = φ(x · e+ ct) with

− φ′′ + cφ′ = f(φ) in R, φ(−∞) = 0, φ(+∞) = 1. (4.5)

The constant c∗ in Theorem 4.1 is the smallest possible speed c in (4.5) for a planar
traveling wave to exist. In addition, Komogorov, Petrovskii, and Piskunov showed
that the solution of (4.1) for n = 1, A = −∆, and with initial datum the Heaviside
function H(x) = χ(0,∞)(x) converges as t → +∞ to a traveling wave with speed
c = c∗.

Recall now that the fractional Laplacian is the generator of a stable Lévy process
—a jump process. It is reasonable to expect that, when A = (−∆)α with α ∈ (0, 1),
the existence of jumps (or flights) in the diffusion process will accelerate the invasion
of the unstable state u = 0 by the stable one, u = 1. This has been sustained
in the Physics literature (see references in [CR2]) through the linearization of the
equation at the leading edge of the front (i.e., u = 0), as well as through numerical
simulations. As we will see below, these heuristics predict that the front position will
be exponential in time —in contrast with the classical case where it is linear in time
by Theorem 4.1. The purpose of [CR1, CR2] is to provide a rigorous mathematical
justification of this fact.

The key difference between Brownian and Lévy diffusions can be seen, analytically,
in the behaviour for |x| large of the heat kernel p(t, x) above. While p(t, ·) is a
Gaussian distribution when A = −∆, for A = (−∆)α and α ∈ (0, 1) the kernel p has
power tails in x, in the sense that it satisfies:

• There exist α ∈ (0, 1) and B > 1 such that, for t > 0 and x ∈ Rn,

B−1

t
n
2α (1 + |t− 1

2αx|n+2α)
6 p(t, x) 6

B

t
n
2α (1 + |t− 1

2αx|n+2α)
. (4.6)

This power decay assumption for p is crucial for the results of [CR1, CR2] to hold.
It is satisfied by A = (−∆)α when α ∈ (0, 1). For instance, as an exercise, one can
verify that, when α = 1/2, p1/2 admits the explicit expression

p1/2(t, x) = Bn
t

(t2 + |x|2)(n+1)/2
=

Bn

tn(1 + |t−1x|2)(n+1)/2
,

where Bn = Γ(n+1
2

)π−
n+1
2 is chosen to ensure property (4.2) above. That is, p1/2 is

the Poisson kernel which reproduces harmonic functions in Rn+1
+ given their trace on

Rn. To verify this, one can use the extension property described in section 2 above
to check that solving ∆t,xU = ∆xU + Utt = 0 in Rn+1

+ = {(t, x) : t > 0}, the
function U(t, x) is the solution of the evolution problem (4.4) when A = (−∆)1/2 and
u0 = U(0, ·). Alternatively, consider the composition (∂t − A)(∂t + A).

Our first result concerns a class of initial data in Rn, possibly discontinuous, which
includes compactly supported functions. We show that the position of all level sets
moves exponentially fast in time.
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Theorem 4.2 ([CR2]). Let n > 1, α ∈ (0, 1), and p be a kernel satisfying (4.2),
(4.3), and (4.6).

Let σ∗ = f ′(0)
n+2α

. Let u be a solution of (4.1), where u0 6≡ 0, 0 6 u0 6 1 is measurable,
and

u0(x) 6 C|x|−n−2α for all x ∈ Rn

and for some constant C. Then,

a) if σ > σ∗, then u(t, x)→ 0 uniformly in {|x| > eσt} as t→ +∞.
b) if σ < σ∗, then u(t, x)→ 1 uniformly in {|x| 6 eσt} as t→ +∞.

Part b) on convergence towards 1 is the most delicate part of the theorem. The
following is an easy consequence on non-existence of traveling waves.

Corollary 4.3 ([CR2]). Let n > 1, α ∈ (0, 1), and p be a kernel satisfying (4.2), (4.3),
and (4.6). Then, there exists no nonconstant traveling wave solution of (4.1). That
is, all solutions of (4.1) taking values in [0, 1] and of the form u(t, x) = ϕ(x + te),
for some vector e ∈ Rn, are identically 0 or 1. Equivalently, the only solutions
ϕ : Rn → [0, 1] of Aϕ+ e · ∇ϕ = f(ϕ) in Rn are ϕ ≡ 0 and ϕ ≡ 1.

Let us now explain some heuristics that predict the speed of propagation of fronts
both in the case of Brownian and fractional diffusions. We linearize the problem
around the leading edge of the front, that is, at u = 0. In fact, since f is concave,
the solution u of

ut −∆u = f ′(0)u and u(0, ·) = u(0, ·) in Rn

is a supersolution of (4.1). Looking at the particular case u(0, ·) = δ0, the Dirac mass

at 0, we obtain u(t, x) = (4πt)−
n
2 ef

′(0)t− |x|2
4t . Thus, u = λ if |x| = 2

√
f ′(0)t+ o(t).

Heuristic arguments. Let us now make the same heuristic argument when 0 <
α < 1 and (4.6) holds. Now the solution u of ut +Au = f ′(0)u and u(0, ·) = δ0 in Rn

is given by
u(t, x) = ef

′(0)tp(t, x).

Estimate (4.6) gives that u = λ if |t− 1
2αx|n+2α = t−

n
2α ef

′(0)t O(1), that is, if

|x| = t
1

n+2α eσ∗t O(1), where σ∗ =
f ′(0)

n+ 2α

is the same exponent as in Theorem 4.2. However, in next section we will improve the
previous theorem and we will see that linearizing at the front edge is not as accurate
in the presence of fractional diffusion as it is for Brownian diffusion. Indeed, the

factor t
1

n+2α will not appear in the correct expression for the position of the front. In
next section we will give a more accurate description of the level sets of the solution,
both in the present setting and in the case of heterogeneous media.

Nondecreasing initial data. Let us mention that in one space dimension it is also
of interest to understand the dynamics of nondecreasing initial data. As mentioned
before, for the standard Laplacian the level sets of u travel with the speed c∗, provided
that u(0, ·) decays sufficiently fast at −∞. In the fractional case, the mass at +∞
has an effect and what happens is not a mere copy of the result of Theorem 4.2 for
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compactly supported data. The mass at +∞ makes the front travel faster to the left,
indeed it travels exponentially fast but with a larger exponent σ∗∗ than σ∗. The new
exponent (see [CR2]), is given by

σ∗∗ =
f ′(0)

2α
>

f ′(0)

1 + 2α
= σ∗.

Proofs of our results. Let us briefly discuss the main ideas in the proofs of
our results. The supersolutions obtained by solving ut + Au = f ′(0)u give an upper
bound for the position (in norm) of the level sets. This leads immediately to part a)
of Theorem 4.2.

Part b) on convergence towards 1 is the delicate point and it is done in two steps.
The first one consists of showing that, for every σ < σ∗ there exists ε ∈ (0, 1) and
t > 0 such that

u(t, x) > ε for all t > t and |x| 6 eσt.

This is accomplished by constructing solutions of the equation

vt + Av = (f(δ)/δ)v (4.7)

which take values in (0, δ) —and, as a consequence of the concavity of f , are subso-
lutions of (4.1). This is done truncating an initial datum v0 at a level ε, where ε < δ,
i.e., considering min (v0, ε). We then solve the linear equation (4.7) for v with this
new datum, up to the time T where v takes the value δ. At this point we compute
how the level sets have propagated. We then truncate v(T, ·) at the level ε as before,
and we iterate this procedure.

The convergence towards 1 is shown using (4.7) and a subsolution taking values in
[ε, 1] built through the linear equation

wt + Aw = (f(ε′)/(1− ε′))(1− w)

for some 0 < ε′ < ε and an initial condition involving |x|γ, with γ ∈ (0, 2α). Here
again we use the concavity of f to ensure that f(ε′)(1 − ε′)−1(1 − w) 6 f(w) for
w ∈ [ε, 1].

5. Fisher-KPP type equations with fractional diffusion in periodic
media

We are interested in the time asymptotic location of the level sets of solutions to
the equation

ut + (−∆)αu = µ(x)u− u2, t > 0, x ∈ Rn, (5.1)

with initial condition u(·, 0) = u0, where α ∈ (0, 1), µ is periodic in each xi-variable
and satisfies 0 < minµ 6 µ(x), and (−∆)α is the fractional Laplacian. The nonlin-
earity µ(x)u−u2 is often referred to as a Fisher-KPP type nonlinearity. When µ ≡ 1
we recover the problem studied in the previous section.

Let λ1 be the principal periodic eigenvalue of the operator (−∆)α − µ(x)I. From
[BRR] one knows that if λ1 > 0, every solution to (5.1) starting with a bounded
nonnegative initial condition tends to 0 as t → +∞ (there is extinction of the pop-
ulation). Thus we assume λ1 < 0. Then, by [BRR], the solution to (5.1) tends, as
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t → +∞, to a bounded positive steady solution to (5.1), denoted by u+ = u+(x),
which can be proved to be the unique bounded positive steady solution. By unique-
ness, u+ is periodic. The convergence holds on every compact set. Hence, the level
sets of u spread to infinity for large times, and we wish to understand how fast. To
do it, we look for a function Re(t) going to +∞ as t tends to +∞ such that, for every
direction e ∈ Sd−1 and every constant c ∈ (0, 1),

lim inf
t→+∞

(
inf

{x=ρe,06ρ6Re(ct)}
u(t, x)

)
> 0 and lim sup

t→+∞

(
sup

{x=ρe,ρ>Re(c−1t)}
u(t, x)

)
= 0.

(5.2)
The case α = 1 corresponding to homogeneous media (µ ≡ 1) has been well

studied. If u0 is compactly supported, we saw in the previous section that we may
choose Re(t) = 2t regardless of the direction e of propagation. In space periodic
media (i.e., when µ is periodic in each variable), starting from a compactly supported
initial data, Freidlin and Gärtner have characterized Re(t) by

Re(t) = w∗(e)t, w∗(e) = min
e′∈Sd−1,e′·e>0

c∗(e′)

e′ · e
, (5.3)

where c∗(e′) is the minimal speed of pulsating traveling fronts in the direction e′.
For α ∈ (0, 1) and µ ≡ 1 in (5.1), we saw in the previous section that propagation

is exponential in time and that we may take Re(t) = e
t

n+2α in this case.
In the paper [CCR] we prove the following result. It gives a precise description of

the location of the level sets of the solution.

Theorem 5.1 ([CCR]). Assume that λ1 < 0. Let u be the solution to (5.1) with u0
piecewise continuous, nonnegative, u0 6≡ 0, and u0(x) = O(|x|−(n+2α)) as |x| → ∞.

Then, for every λ ∈ (0,minµ), there exist cλ > 0 and a time tλ > 0 (all depending
on λ and u0) such that, for all t > tλ,

{x ∈ Rn : u(t, x) = λ} ⊂ {x ∈ Rn : cλe
|λ1|
n+2α

t 6 |x| 6 c−1λ e
|λ1|
n+2α

t}. (5.4)

Theorem 5.1 gives that (5.2) holds with Re(t) = e
|λ1|
n+2α

t. Thus, spreading does not
depend on the direction of propagation, and this is in contrast with (5.3) for the
standard Laplacian. Note that when λ > minu+, (5.4) can not hold since u(t, x) →
u+(x) as t→ +∞.

Moreover, in the homogeneous case µ ≡ 1, we have λ1 = −1 and the estimate in the
previous theorem is much sharper than the results of the previous section. Indeed,
to guarantee the limits in (5.2), the results of [CR2] described in the previous section
needed to assume |x| 6 Ceσ1t (respectively |x| > Ceσ2t) with σ1 <

1
n+2α

< σ2.
The proof of Theorem 5.1 is quite simple: it relies on the construction of explicit

subsolutions and supersolutions, which are themselves based on a nonlinear transport
equation, (5.5), satisfied asymptotically by a correctly rescaled version of the solu-
tion u. More precisely, recall that λ1 < 0 denotes the principal periodic eigenvalue
of the operator (−∆)α − µ(x)I and that the corresponding periodic eigenfunction is
denoted by φ1.
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We write
u(t, x) = φ1(x)v(t, x)

and define

w(t, y) = v(t, r(t)y) where r(t) = e
|λ1|t
n+2α .

Thus, for t > 0 and y ∈ Rn, w solves

wt −
|λ1|

n+ 2α
y · wy + e

−2α|λ1|t
n+2α

{
(−∆)αw − Kw

φ1(r(t)y)

}
= |λ1|w − φ1(r(t)y) w2,

where we have used λ1 < 0 and we have defined

Kw(y) = Cn,α P.V.

∫
Rn

φ1(r(t)y)− φ1(r(t)y)

|y − y|n+2α
(w(y)− w(y))dy.

If we formally neglect the term e
−2α|λ1|t
n+2α

{
(−∆)αw − Kw

φ1(r(t)y)

}
which should go to 0 as

t→ +∞, we get the transport equation

w̃t −
|λ1|

n+ 2α
y · w̃y = |λ1|w̃ − φ1(r(t)y) w̃2, t > 0, y ∈ Rn. (5.5)

Equation (5.5), completed by an initial datum w̃0, is solved by

w̃(t, y) =
{
φ1(r(t)y)|λ1|−1(1− e−|λ1|t) + w̃0(r(t)y)−1e−|λ1|t

}−1
.

Taking into account (see [CR2]) that |x|n+2αu(x, t) is uniformly bounded from above
and below (but of course not uniformly in t), it is natural to consider the initial datum
w̃0(y) = (1 + |y|n+2α)−1. In this case we have

w̃(y, t) =
{
φ1(r(t)y)|λ1|−1(1− e−|λ1|t) + e−|λ1|t + |y|n+2α

}−1
.

Since φ1 is bounded above and below and t tends to +∞, coming back to the
function v(t, x) = w(t, r(t)−1x), the idea is to consider the following family of functions
modeled by w̃:

ṽ(t, x) =
a

|λ1|−1 + b(t)|x|n+2α
, ũ(t, x) = φ1(x)ṽ(t, x). (5.6)

It is then possible to adjust a > 0 and b(t) (asymptotically proportional to e−|λ1|t

and solving certain ODEs) so that the function ũ(x, t) serves as a subsolution (re-
spectively, a supersolution) to (5.1). To be able to place above (respectively, below)
the initial datum, one must first let the equation run for some time and also use some
results in [CR2] from the previous section. See [CCR] for all the details of the proof.

6. Traveling wave solutions in a half-space for boundary reactions

The article [CCM] concerns the problemvt −∆v = 0 in (0,∞)× R2
+

∂v

∂ν
= f(v) on (0,∞)× ∂R2

+

(6.1)

for the homogeneous heat equation in a half-plane with a nonlinear Neumann bound-
ary condition. To study the propagation of fronts given an initial condition, it is
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important to understand first the existence and properties of traveling fronts —or
traveling waves— for (6.1). Taking R2

+ = {(x, y) ∈ R2 : y > 0}, these are solutions
of the form v(t, x, y) := u(x− ct, y) for some speed c ∈ R. Thus, the pair (c, u) must
solve the elliptic problem∆u+ cux = 0 in R2

+ = {(x, y) ∈ R2 : y > 0}
∂u

∂ν
= f(u) on ∂R2

+,
(6.2)

where ∂u/∂ν = −uy is the exterior normal derivative of u on ∂R2
+ = {y = 0} , u is

real valued, and c ∈ R. We look for solutions u with 0 < u < 1 and having the limits

lim
x→−∞

u(x, 0) = 1 and lim
x→+∞

u(x, 0) = 0. (6.3)

Note that u is a solution of (6.2) if and only if its trace w(x) := u(x, 0) solves the
fractional diffusion equation

(−∂xx − c∂x)1/2w = f(w) in R, for w(x) := u(x, 0). (6.4)

This follows from two facts. First, if u solves the first equation in (6.2), then so does
−uy. Second, we have (−∂y)2u = ∂yyu = (−∂xx − c∂x)u.

In [CCM] we study nonlinearities f of non-balanced bistable type or of combustion
type, as defined next. Let f satisfy

f(0) = f(1) = 0 and f ′ 6 0 in (0, δ) ∪ (1− δ, 1) (6.5)

for some δ ∈ (0, 1/2). We say that f is of positively-balanced bistable type if, in
addition to (6.5), f has a unique zero —named α— in (0, 1) and f is “positively-

balanced” in the sense that
∫ 1

0
f(s)ds > 0. Instead, we say that f is of combustion

type if, in addition to (6.5), there exists 0 < β < 1 (called the ignition temperature)
such that f ≡ 0 in (0, β) and f > 0 in (β, 1).

In problem (6.2) one must find not only the solution u but also the speed c, which
is apriori unknown. Our results are collected in the following result.

Theorem 6.1 ([CCM]). Let f be of positively-balanced bistable type or of combustion
type. We have:

(i) There exists a solution pair (c, u) to problem (6.2), where c > 0, 0 < u < 1, and
u has the limits (6.3). The solution u lies in the weighted Sobolev space

H1
c (R2

+) := {w ∈ H1
loc(R2

+) : ||w||c :=

∫
R2
+

ecx{w2 + |∇w|2}dxdy <∞}.

(ii) Up to translations in the x variable, (c, u) is the unique solution pair to problem
(6.2) among all constants c ∈ R and solutions u satisfying 0 6 u 6 1 and the limits
(6.3).

(iii) For all y > 0, u is decreasing in the x variable, and has limits u(−∞, y) = 1
and u(+∞, y) = 0. Besides, limy→+∞ u(x, y) = 0 for all x ∈ R. If f is of combustion
type then we have, in addition, uy 6 0 in R2

+.
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(iv) If f1 is of positively-balanced bistable type or of combustion type, if the same
holds for another nonlinearity f2, and if we have that f1 > f2 and f1 6≡ f2, then their
corresponding speeds satisfy c1 > c2.

(v) Assume that f is of positively-balanced bistable type and that f ′(0) < 0 and
f ′(1) < 0. Then, there exists a constant b > 1 such that

1

b

e−cx

x3/2
6 u(x, 0) 6 b

e−cx

x3/2
for x > 1, and

1

b

1

(−x)1/2
6 1− u(x, 0) 6 b

1

(−x)1/2
for x < −1.

In the case of combustion nonlinearities, problem (6.2) in a half-plane has also
been studied by Caffarelli, Mellet, and Sire [CMS]. They establish the existence of a
speed admitting a monotone front. As mentioned in [CMS], our approaches towards
the existence result are different. Their work, in contrast with ours, does not use
minimization methods. In addition, [CMS] establishes the following precise behavior
of the combustion front at the side of the invaded state u = 0 —a different behavior
than ours. For some constant µ0 > 0,

u(x, 0) = µ0
e−cx

x1/2
+ O

(
e−cx

x3/2

)
as x→ +∞.

Note that Theorem 6.1 states that there is a unique c ∈ R for which the fractional
equation (6.4), that is

(−∂xx − c∂x)1/2w = f(w)

admits a solution connecting 1 and 0. Instead, the existence of traveling fronts for
the fractional diffusion equation (the same of previous sections)

∂tv + (−∂xx)αv = f(v) in R (6.6)

has been established in [MRS] when α ∈ (1/2, 1) and f is a combustion nonlinearity.
This article also shows that v tends to 0 at +∞ at the power rate 1/|x|2α−1. Note
that the equation for traveling fronts of (6.6) is

{(−∂xx)α − c∂x}w = f(w) in R,
which should be compared with (6.4). In the case of bistable nonlinearities, [GZ]
establishes that (6.6) admits a unique traveling front and a unique speed for any
α ∈ (0, 1). In contrast with the decay in [MRS] for combustion nonlinearities, in the
bistable case [GZ] shows that the front reaches its two limiting values at the rate
1/|x|2α —as in [CSo, CSi2] for balanced bistable nonlinearities.

Our result on the existence of the traveling front will be proved using a variational
method introduced by Steffen Heinze [H] to study problem (6.2) in infinite cylinders
of Rn instead of half-spaces. For these domains and for both bistable and combustion
nonlinearities, he showed the existence of a traveling front.

We first extend f linearly in C1 fashion to (−∞, 0) and to (1,+∞). Consider now
the potential G ∈ C2(R) defined by G(s) := −

∫ s
0
f(σ)dσ for s ∈ R. The following

are important properties of G. We have G(1) < G(0) = 0, G′(0) = −f(0) = 0, and
G > 0 in [0, β].
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For a > 0, consider the weighted Sobolev space (H1
a(R2

+), || ||a) defined by

H1
a(R2

+) = {w ∈ H1
loc(R2

+) : ||w||a <∞},

where the norm || ||a is defined by ||w||2a =
∫
R2
+
eax{w2 + |∇w|2}dxdy. In both the

bistable and combustion cases, the traveling front u will be constructed from a min-
imizer u to the constraint problem Ea(u) = infw∈Ba Ea(w) =: Ia, after scaling its
independent variables x and y. Here, the energy functional is

Ea(w) =
1

2

∫
R2
+

eax|∇w|2dxdy +

∫
∂R2

+

eaxG(w(x, 0))dx

and it is minimized over the submanifold

Ba = {w ∈ H1
a(R2

+) : Γa(w) = 1}, where Γa(w) =

∫
R2
+

eax|∇w|2dxdy.

The shape of the potential G will lead (for a > 0 small) to the existence of functions
u in H1

a(R2
+) with negative energy Ea(u) < 0. This will be essential in order to prove

that our variational problem attains its infimum. In addition, the constraint will
introduce a Lagrange multiplier and, through it, the apriori unknown speed c of the
traveling front.

A rearrangement technique after making the change of variables z = eax/a (also
used in [H]), produces a monotone front. Its monotonicity will be crucial in order to
establish that it has limits 1 and 0 as x→ ∓∞.

Our result on uniqueness of the speed and of the front relies heavily on the powerful
sliding method of Berestycki and Nirenberg (see [CSo] for an application of the method
to problem (6.2) with c = 0 and f balanced). Among other things, [CSo] established
the existence, uniqueness, and monotonicity of a front for (6.2) when c = 0 and f is a
balanced bistable nonlinearity. It was shown also there that in the balanced bistable
case, the front reaches its limits 1 and 0 at the power rate 1/|x|.

To prove our decay estimates as x → ±∞, we use ideas from [CMS] and [CSi2].
The estimates rely on the construction of a family of explicit fronts for some bistable
nonlinearities. These explicit fronts will be based on the fundamental solution for
the homogeneous heat equation associated to the fractional operator in (6.4), that
is, equation ∂tv + (−∂xx − c∂x)1/2v = 0. The process to find such heat kernel uses
an idea from the paper [CMS] by Caffarelli, Mellet, and Sire, to reduce equation
∆w + 2wx = 0 in R2

+ to the Helmholtz equation −∆φ + φ = 0 after the change of
variables w = e−xφ. The fundamental solution of the Helmholtz equation (a well
known modified Bessel function) is then used; see [CCM].

7. Curves and surfaces with constant nonlocal mean curvature

In the final part of the course we will explain some recent results on nonlocal (or
fractional) minimal surfaces and on surfaces with constant nonlocal mean curvature
(CNMC surfaces). These are the Euler-Lagrange equations associated with the frac-
tional perimeter functional:
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Pα(E) := cn,α

∫
E

∫
Ec

dx dy

|x− y|n+α
. (7.1)

Here α := 2α ∈ (0, 1) —and hence α ∈ (0, 1/2)— and E ⊂ Rn is a bounded smooth
set.

Its Euler-Lagrange equation can be extended to unbounded sets and leads to the
notion of nonlocal mean curvature:

HE(x) = −PV
∫
RN

1E(y)− 1Ec(y)

|x− y|n+α
dy, (7.2)

where E ⊂ Rn and x ∈ ∂E. An alternative expression is given by

HE(x) = − 2

α
PV

∫
∂E

(x− y) · ν(y)

|x− y|n+α
dy. (7.3)

Good references for nonlocal minimal surfaces (introductory and with most of the
known results; many things are still to be discovered) are the same papers that we
used for the fractional Allen-Cahn equation:

• Section 1 now of [V2], A fractional framework for perimeters and phase tran-
sitions, by E. Valdinoci, http://arxiv.org/abs/1210.5612
• Section 6 now of [BV], Nonlocal diffusion and applications, by C. Bucur and

E. Valdinoci, http://arxiv.org/abs/1504.08292

When fractional perimeter is minimized under a volume constraint one obtains
surfaces with constant nonlocal mean curvature (CNMC surfaces). There are only
two papers on this equation. We will explain the results in

• Curves and surfaces with constant nonlocal mean curvature: meeting Alexan-
drov and Delaunay, by X. Cabré, M.M. Fall, J. Solà-Morales, and T. Weth
[CFSW], http://arxiv.org/abs/1503.00469

In this work we prove the nonlocal analogue of the Alexandrov result character-
izing spheres as the only closed embedded hypersurfaces in Rn with constant mean
curvature. Here we use the moving planes method. Our second result establishes the
existence of periodic bands or “cylinders” in R2 with constant nonlocal mean curva-
ture and bifurcating from a straight band {(s1, s2) ∈ R2 : −λR < s2 < λR}. These
are Delaunay type bands in the nonlocal setting. Here we use a Lyapunov-Schmidt
procedure for the quasilinear type fractional elliptic equation∫

R

{
F

(
u(s)− u(s− t)

|t|

)
−
{
F

(
u(s) + u(s− t)

|t|

)
− F

(
2λR

|t|

)}}
dt

|t|1+α
= 0,

where F is an odd function on R, bounded and concave in (0,+∞), the unknown
function u : R → (0,+∞) is even and 2π-periodic, and the CNMC set will be given
by

E := {(s1, s2) ∈ R2 : −u(s1) < s2 < u(s1)}.

http://arxiv.org/abs/1210.5612
http://arxiv.org/abs/1504.08292
http://arxiv.org/abs/1503.00469
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