WEIGHTED L_p SPACES
AND POINTWISE ERGODIC THEOREMS

RYOTARO SATO

Abstract
In this paper we give an operator theoretic version of a recent result of F. J. Martín-Reyes and A. de la Torre concerning the problem of finding necessary and sufficient conditions for a nonsingular point transformation to satisfy the Pointwise Ergodic Theorem in L_p. We consider a positive conservative contraction T on L_1 of a σ-finite measure space (X, \mathcal{F}, μ), a fixed function e in L_1 with $e > 0$ on X, and two positive measurable functions V and W on X. We then characterize the pairs (V, W) such that for any f in $L_p(V \, d\mu)$ the averages

$$R^n_0(f, e) = \frac{\left(\sum_{k=0}^n T^k f \right)}{\left(\sum_{k=0}^n T^k e \right)}$$

converge almost everywhere to a function in $L_p(W \, d\mu)$. The characterizations are given for all p, $1 \leq p < \infty$.