COMPOSITION OF MAXIMAL OPERATORS

Menita Carozza and Antonia Passarelli di Napoli

Abstract

Consider the Hardy-Littlewood maximal operator

\[Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy. \]

It is known that \(M \) applied to \(f \) twice is pointwise comparable to the maximal operator \(M_{L \log L} f \), defined by replacing the mean value of \(|f| \) over the cube \(Q \) by the \(L \log L \)-mean, namely

\[M_{L \log L} f(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \log \left(e + \frac{|f|}{|f|_Q} \right) (y) \, dy, \]

where \(|f|_Q = \frac{1}{|Q|} \int_Q |f| \) (see [L], [LN], [P]).

In this paper we prove that, more generally, if \(\Phi(t) \) and \(\Psi(t) \) are two Young functions, there exists a third function \(\Theta(t) \), whose explicit form is given as a function of \(\Phi(t) \) and \(\Psi(t) \), such that the composition \(M_{\Phi} \circ M_{\Psi} \) is pointwise comparable to \(M_{\Theta} \). Through the paper, given an Orlicz function \(A(t) \), by \(M_A f \) we mean

\[M_A f(x) = \sup_{Q \ni x} ||f||_{A,Q} \]

where \(||f||_{A,Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q A \left(\frac{|f|}{\lambda} \right) (x) \, dx \leq 1 \right\} \).

This work has been supported by M.U.R.S.T. (40%).