UNIQUENESS AND EXISTENCE OF SOLUTIONS IN THE $BV_t(Q)$ SPACE TO A DOUBLY NONLINEAR PARABOLIC PROBLEM

J. I. DÍAZ AND J. F. PADIAL

Abstract

In this paper we present some results on the uniqueness and existence of a class of weak solutions (the so called BV solutions) of the Cauchy-Dirichlet problem associated to the doubly nonlinear diffusion equation

$$b(u)_t - \text{div}(|\nabla u - k(b(u))e|^{p-2}(\nabla u - k(b(u))e)) + g(x,u) = f(t,x).$$

This problem arises in the study of some turbulent regimes: flows of incompressible turbulent fluids through porous media, gases flowing in pipelines, etc. The solvability of this problem is established in the $BV_t(Q)$ space. We prove some comparison properties (implying uniqueness) when the set of jumping points of the BV solution has N-dimensional null measure and suitable additional conditions as, for instance, b^{-1} locally Lipschitz. The existence of this type of weak solution is based on suitable uniform estimates of the BV norm of an approximated solution.

Both authors are partially supported by the DGICYT (Spain) Project No. PB 93/0443.