ON $Sp(2)$ AND $Sp(2) \cdot Sp(1)$-STRUCTURES IN 8-DIMENSIONAL VECTOR BUNDLES

MARTIN ČADEK AND JIŘÍ VANŽURA

Abstract

Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group $SO(8)$ of ξ can be reduced to $Sp(2)$ or $Sp(2) \cdot Sp(1)$ if and only if the vector bundle associated to ξ via a certain outer automorphism of the group $Spin(8)$ has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an $Sp(2)$-structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes.

Research supported by the grant 201/93/2178 of the Grant Agency of the Czech Republic.

Keywords. Cayley numbers, principle of triality, vector bundle, reduction of the structure group, classifying spaces, characteristic classes.