ON THE DIOPHANTINE EQUATION

$$
x^{p}-x=y^{q}-y
$$

M. Mignotte ${ }^{\dagger}$ and A. Реthő ${ }^{\ddagger}$

Abstract \quad We consider the diophantine equation

$\quad x^{p}-x=y^{q}-y$ | in integers (x, p, y, q). We prove that for given p and q with $2 \leq$ |
| :--- |
| $p<q(*)$ has only finitely many solutions. Assuming the abc- |
| conjecture we can prove that p and q are bounded. In the special |
| case $p=2$ and y a prime power we are able to solve $(*)$ completely. |

${ }^{\dagger}$ This work was began and finished during two visits of the first author to the University of Debrecen and he wants to thank the people of this University for their kind hospitality.
${ }^{\ddagger}$ Research supported in part by the Hungarian Foundation for Scientific Research, Grant No. 25157/98.

