REPRESENTATION OF ALGEBRAIC DISTRIBUTIVE LATTICES WITH \aleph_1 COMPACT ELEMENTS AS IDEAL LATTICES OF REGULAR RINGS

FRIEDRICH WEHRUNG

Abstract

We prove the following result:

Theorem. Every algebraic distributive lattice D with at most \aleph_1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring R.

(By earlier results of the author, the \aleph_1 bound is optimal.) Therefore, D is also isomorphic to the congruence lattice of a sectionally complemented modular lattice L, namely, the principal right ideal lattice of R. Furthermore, if the largest element of D is compact, then one can assume that R is unital, respectively, that L has a largest element. This extends several known results of G. M. Bergman, A. P. Huhn, J. Tůma, and of a joint work of G. Grätzer, H. Lakser, and the author, and it solves Problem 2 of the survey paper [10].

The main tool used in the proof of our result is an amalgamation theorem for semilattices and algebras (over a given division ring), a variant of previously known amalgamation theorems for semilattices and lattices, due to J. Tůma, and G. Grätzer, H. Lakser, and the author.

2000 Mathematics Subject Classification. 16E50, 16D25, 06A12, 06C20.

Key words. Ring, lattice, semilattice, Boolean, ideal, simple, diagram of algebras.