A NONLINEAR EIGENVALUE PROBLEM WITH INDEFINITE WEIGHTS RELATED TO THE SOBOLEV TRACE EMBEDDING

Julián Fernández Bonder and Julio D. Rossi

Abstract

In this paper we study the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^p_V(\partial\Omega)$, where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues $\lambda_k \nearrow +\infty$ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end this article with the study of the second eigenvalue proving that it coincides with the second variational eigenvalue.

2000 Mathematics Subject Classification. 35P30, 35J70, 35J20.

Key words. p-Laplacian, eigenvalue problems, nonlinear boundary conditions.

Supported by ANPCyT PICT No. 03-05009. J. D. Rossi is a member of CONICET.