L^p BOUNDS FOR RIESZ TRANSFORMS AND SQUARE ROOTS ASSOCIATED TO SECOND ORDER ELLIPTIC OPERATORS

Steve Hofmann^{*}and José María Martell[†]

Abstract _____

We consider the Riesz transforms $\nabla L^{-1/2}$, where $L \equiv -\operatorname{div} A(x) \nabla$, and A is an accretive, $n \times n$ matrix with bounded measurable complex entries, defined on \mathbb{R}^n . We establish boundedness of these operators on $L^p(\mathbb{R}^n)$, for the range $p_n , where$ $<math>p_n = 2n/(n+2), n \geq 2$, and we obtain a weak-type estimate at the endpoint p_n . The case p = 2 was already known: it is equivalent to the solution of the square root problem of T. Kato.

²⁰⁰⁰ Mathematics Subject Classification. 42B20, 35J15.

Key words. Riesz transforms, square roots of divergence form elliptic operators. *Partially supported by NSF.

[†]Partially supported by MCYT Grant BFM2001-0189.