BOUNDEDNESS OF THE WEYL FRACTIONAL INTEGRAL ON ONE-SIDED WEIGHTED LEBESGUE AND LIPSCHITZ SPACES

S. OMBROSI AND L. DE ROSA

Abstract

In this paper we introduce the one-sided weighted spaces $L_w^-(\beta)$, $-1 < \beta < 1$. The purpose of this definition is to obtain an extension of the Weyl fractional integral operator I^+_α from L^p_w into a suitable weighted space. Under certain condition on the weight w, we have that $L_w^-(0)$ coincides with the dual of the Hardy space H^1_w. We prove for $0 < \beta < 1$, that $L_w^-(\beta)$ consists of all functions satisfying a weighted Lipschitz condition. In order to give another characterization of $L_w^- (\beta)$, $0 \leq \beta < 1$, we also prove a one-sided version of John-Nirenberg Inequality.

Finally, we obtain necessary and sufficient conditions on the weight w for the boundedness of an extension of I^+_α from L^p_w into $L_w^- (\beta)$, $-1 < \beta < 1$, and its extension to a bounded operator from $L_w^-(0)$ into $L_w^- (\alpha)$.

2000 Mathematics Subject Classification. Primary: 26A33; Secondary: 42B25.

Key words. Weyl fractional integral, weights, weighted Lebesgue and Lipschitz spaces, weighted BMO.

This research has been partially supported by UBACYT 2000-2002 and CONICET.