ON L^{p} ESTIMATES FOR SQUARE ROOTS OF SECOND ORDER ELLIPTIC OPERATORS ON \mathbb{R}^{n}

Pascal Auscher

Abstract

Abstract

We prove that the square root of a uniformly complex elliptic operator $L=-\operatorname{div}(A \nabla)$ with bounded measurable coefficients in \mathbb{R}^{n} satisfies the estimate $\left\|L^{1 / 2} f\right\|_{p} \lesssim\|\nabla f\|_{p}$ for $\sup \left(1, \frac{2 n}{n+4}-\varepsilon\right)<$ $p<\frac{2 n}{n-2}+\varepsilon$, which is new for $n \geq 5$ and $p<2$ or for $n \geq 3$ and $p>\frac{2 n}{n-2}$. One feature of our method is a Calderón-Zygmund decomposition for Sobolev functions. We make some further remarks on the topic of the converse L^{p} inequalities (i.e. Riesz transforms bounds), pushing the recent results of $[\mathbf{B K 2}]$ and $[\mathbf{H M}]$ for $\frac{2 n}{n+2}<p<2$ when $n \geq 3$ to the range $\sup \left(1, \frac{2 n}{n+2}-\varepsilon\right)<p<2+\varepsilon^{\prime}$. In particular, we obtain that $L^{1 / 2}$ extends to an isomorphism from $\dot{W}^{1, p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ for p in this range. We also generalize our method to higher order operators.

2000 Mathematics Subject Classification. 42B20, 42B25, 35J15, 35J30, 35J45, 47F05, 47B44.
Key words. Calderón-Zygmund decomposition, elliptic operators, square roots, functional calculus.

