ON L^p ESTIMATES FOR SQUARE ROOTS OF SECOND ORDER ELLIPTIC OPERATORS ON \mathbb{R}^n

PASCAL AUSCHER

Abstract ____

We prove that the square root of a uniformly complex elliptic operator $L = -\operatorname{div}(A\nabla)$ with bounded measurable coefficients in \mathbb{R}^n satisfies the estimate $\|L^{1/2}f\|_p \lesssim \|\nabla f\|_p$ for $\sup(1, \frac{2n}{n+4} - \varepsilon) , which is new for <math>n \ge 5$ and p < 2 or for $n \ge 3$ and $p > \frac{2n}{n-2}$. One feature of our method is a Calderón-Zygmund decomposition for Sobolev functions. We make some further remarks on the topic of the converse L^p inequalities (i.e. Riesz transforms bounds), pushing the recent results of [**BK2**] and [**HM**] for $\frac{2n}{n+2} when <math>n \ge 3$ to the range $\sup(1, \frac{2n}{n+2} - \varepsilon) . In particular, we obtain that <math>L^{1/2}$ extends to an isomorphism from $\dot{W}^{1,p}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for p in this range. We also generalize our method to higher order operators.

 $^{2000\} Mathematics\ Subject\ Classification.\ 42B20,\ 42B25,\ 35J15,\ 35J30,\ 35J45,\ 47F05,\ 47B44.$

 $K\!ey$ words. Calderón-Zygmund decomposition, elliptic operators, square roots, functional calculus.