ON \(L^p \) ESTIMATES FOR SQUARE ROOTS OF SECOND ORDER ELLIPTIC OPERATORS ON \(\mathbb{R}^n \)

PASCAL AUSCHER

Abstract

We prove that the square root of a uniformly complex elliptic operator \(L = -\text{div}(A \nabla) \) with bounded measurable coefficients in \(\mathbb{R}^n \) satisfies the estimate \(\|L^{1/2}f\|_p \lesssim \|\nabla f\|_p \) for \(\sup(1, \frac{2n}{n+4} - \epsilon) < p < \frac{2n}{n+4} + \epsilon \), which is new for \(n \geq 5 \) and \(p < 2 \) or for \(n \geq 3 \) and \(p > \frac{2n}{n+4} \). One feature of our method is a Calderón-Zygmund decomposition for Sobolev functions. We make some further remarks on the topic of the converse \(L^p \) inequalities (i.e. Riesz transforms bounds), pushing the recent results of \([BK2]\) and \([HM]\) for \(\frac{2n}{n+2} < p < 2 \) when \(n \geq 3 \) to the range \(\sup(1, \frac{2n}{n+2} - \epsilon) < p < 2 + \epsilon' \).

In particular, we obtain that \(L^{1/2} \) extends to an isomorphism from \(\dot{W}^{1,p}(\mathbb{R}^n) \) to \(L^p(\mathbb{R}^n) \) for \(p \) in this range. We also generalize our method to higher order operators.

\[\text{2000 Mathematics Subject Classification.} \quad 42B20, 42B25, 35J15, 35J30, 35J45, 47F05, 47B44. \]

\textit{Key words.} Calderón-Zygmund decomposition, elliptic operators, square roots, functional calculus.