HAUSDORFF DIMENSION OF UNIFORMLY NON FLAT SETS WITH TOPOLOGY

GUY DAVID

Abstract

Let \(d \) be an integer, and let \(E \) be a nonempty closed subset of \(\mathbb{R}^n \). Assume that \(E \) is locally uniformly non flat, in the sense that for \(x \in E \) and \(r > 0 \) small, \(E \cap B(x, r) \) never stays \(\epsilon_0 r \)-close to an affine \(d \)-plane. Also suppose that \(E \) satisfies locally uniformly some appropriate \(d \)-dimensional topological nondegeneracy condition, like Semmes’ Condition B. Then the Hausdorff dimension of \(E \) is strictly larger than \(d \). We see this as an application of uniform rectifiability results on Almgren quasiminimal (restricted) sets.

2000 Mathematics Subject Classification. 49Q20, 28A75.

Key words. Hausdorff dimension, quasiminimal sets, restricted sets, flatness.