FOURIER RESTRICTION TO CONVEX SURFACES OF REVOLUTION IN \mathbb{R}^3

FARUK ABI-KHUZAM AND BASSAM SHAYYA

Abstract ____

If Γ is a C^3 hypersurface in \mathbb{R}^n and $d\sigma$ is induced Lebesgue measure on Γ , then it is well known that a Tomas-Stein Fourier restriction estimate on Γ implies that Γ has a nowhere vanishing Gaussian curvature. In a recent paper, Carbery and Ziesler observed that if induced Lebesgue measure is replaced by affine surface area, then a Tomas-Stein restriction estimate on Γ implies that Γ satisfies the affine isoperimetric inequality. Since the only property needed for a hypersurface to satisfy the affine isoperimetric inequality is convexity, this raised the question of whether a Tomas-Stein restriction estimate can be obtained for flat but convex hypersurfaces in \mathbb{R}^n such as $\Gamma(x) = (x, e^{-1/|x|^m}), m = 1, 2, \ldots$ We prove that this is indeed the case in dimension n = 3.

Key words. Fourier transform, restriction, affine surface area.

²⁰⁰⁰ Mathematics Subject Classification. 42B10, 42B15.