This paper considers the radial variation function $F(r, t)$ of an analytic function $f(z)$ on the disc D. We examine $F(r, t)$ when f belongs to a Besov space A^{s}_{pq} and look for ways in which F imitates the behaviour of f. Regarded as a function of position (r, t) in D, we show that F obeys a certain integral growth condition which is the real variable analogue of that satisfied by f. We consider also the radial limit $F(t)$ of F as a function on the circle. Again, $F \in B^{s}_{pq}$ whenever $f \in A^{s}_{pq}$, where B^{s}_{pq} is the corresponding real Besov space. Some properties of F are pointed out along the way, in particular that $F(r, t)$ is real analytic in D except on a small set. The exceptional set E on the circle at which $\lim_{r \to 1} f(re^{it})$ fails to exist, is also considered; it is shown to have capacity zero in the appropriate sense. Equivalent descriptions of E are also given for certain restricted values of p, q, s.

2000 Mathematics Subject Classification. 30H05, 31A05, 46E15.

Key words. Radial variation, Besov space, Radial limit.