INTRINSIC GEOMETRY ON THE CLASS OF
PROBABILITY DENSITIES AND EXPONENTIAL
FAMILIES

HENRYK GZYL AND LÁZARO RECHT

Abstract

We present a way of thinking of exponential families as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G^+ of the group G of all invertible elements in the algebra \mathcal{A} of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class \mathcal{D} of densities with respect to a given measure will happen to be representatives of equivalence classes defining a projective space in \mathcal{A}. The natural geometry is defined by an intrinsic group action which allows us to think of the class of positive, invertible functions G^+ as a homogeneous space. Also, the parallel transport in G^+ and \mathcal{D} will be given by the original group action. Besides studying some relationships among these constructions, we examine some Riemannian geometries and provide a geometric interpretation of Pinsker’s and other classical inequalities. Also we provide a geometric reinterpretation of some relationships between polynomial sequences of convolution type, probability distributions on N in terms of geodesics in the Banach space $\ell_1(\alpha)$.

2000 Mathematics Subject Classification. Primary: 46L05, 53C05, 53C56, 62B01, 60B99, 60E05; Secondary: 53C30, 51M05, 55M, 62A25, 22E, 33E.

Key words. Exponential families, projective geometry, parallel transport, sequences of convolution type.