WEIGHTED NORM INEQUALITIES FOR CALDERÓN-ZYGMUND OPERATORS WITHOUT DOUBLING CONDITIONS

XAVIER TOLSA

Abstract

Let μ be a Borel measure on \mathbb{R}^d which may be non doubling. The only condition that μ must satisfy is $\mu(B(x, r)) \leq Cr^n$ for all $x \in \mathbb{R}^d$, $r > 0$ and for some fixed n with $0 < n \leq d$. In this paper we introduce a maximal operator N, which coincides with the maximal Hardy-Littlewood operator if $\mu(B(x, r)) \approx r^n$ for $x \in \text{supp}(\mu)$, and we show that all n-dimensional Calderón-Zygmund operators are bounded on $L^p(w \, d\mu)$ if and only if N is bounded on $L^p(w \, d\mu)$, for a fixed $p \in (1, \infty)$. Also, we prove that this happens if and only if some conditions of Sawyer type hold. We obtain analogous results about the weak (p, p) estimates.

This type of weights do not satisfy a reverse Hölder inequality, in general, but some kind of self improving property still holds. On the other hand, if $f \in \text{RBMO}(\mu)$ and $\varepsilon > 0$ is small enough, then $e^{\varepsilon f}$ belongs to this class of weights.

2000 Mathematics Subject Classification. Primary: 42B20; Secondary: 42B25.

Key words. Calderón-Zygmund operators, weights, non doubling measures.

Partially supported by grants MTM2004-00519 and Acción Integrada HF2004-0208 (Spain), and 2001-SGR-00431 (Generalitat de Catalunya).