ON THE PRODUCT OF TWO π-DECOMPOSABLE
SOLUBLE GROUPS

L. S. KAZARIN, A. MARTÍNEZ-PASTOR, AND M. D. PÉREZ-RAMOS

Abstract

Let the group $G = AB$ be a product of two π-decomposable subgroups $A = O_\pi(A) \times O_{\pi'}(A)$ and $B = O_\pi(B) \times O_{\pi'}(B)$ where π is a set of primes. The authors conjecture that $O_\pi(A)O_\pi(B) = O_\pi(B)O_\pi(A)$ if π is a set of odd primes. In this paper it is proved that the conjecture is true if A and B are soluble. A similar result with certain additional restrictions holds in the case $2 \in \pi$. Moreover, it is shown that the conjecture holds if $O_{\pi'}(A)$ and $O_{\pi'}(B)$ have coprime orders.

2000 Mathematics Subject Classification. 20D20, 20D40.

Key words. Products of groups, π-decomposable groups, Hall subgroups.