A STABILITY RESULT FOR NONLINEAR NEUMANN PROBLEMS IN REIFENBERG FLAT DOMAINS IN \mathbb{R}^N

Antoine Lemenant and Emmanouil Milakis

Abstract

In this paper we prove that if Ω_k is a sequence of Reifenberg-flat domains in \mathbb{R}^N that converges to Ω for the complementary Hausdorff distance and if in addition the sequence Ω_k has a “uniform size of holes”, then the solutions u_k of a Neumann problem of the form

\begin{align*}
-\text{div} a(x, \nabla u_k) + b(x, u_k) &= 0 \quad \text{in } \Omega_k \\
\left(a(x, \nabla u_k) \cdot \nu\right) &= 0 \quad \text{on } \partial \Omega_k
\end{align*}

converge to the solution u of the same Neumann problem in Ω. The result is obtained by proving the Mosco convergence of some Sobolev spaces, that follows from the extension property of Reifenberg-flat domains.

2010 Mathematics Subject Classification. 35J65, 49Q20, 49J45.
Key words. Boundary value problems, nonlinear elliptic equations, Hausdorff distance, Reifenberg-flat sets, Mosco convergence.