POTENTIAL MAPS, HARDY SPACES, AND TENT SPACES ON SPECIAL LIPSCHITZ DOMAINS

Martin Costabel, Alan McIntosh, and Robert J. Taggart

Abstract

Suppose that Ω is the open region in \mathbb{R}^{n} above a Lipschitz graph and let d denote the exterior derivative on \mathbb{R}^{n}. We construct a convolution operator T which preserves support in $\bar{\Omega}$, is smoothing of order 1 on the homogeneous function spaces, and is a potential map in the sense that $d T$ is the identity on spaces of exact forms with support in $\bar{\Omega}$. Thus if f is exact and supported in $\bar{\Omega}$, then there is a potential u, given by $u=T f$, of optimal regularity and supported in $\bar{\Omega}$, such that $d u=f$. This has implications for the regularity in homogeneous function spaces of the de Rham complex on Ω with or without boundary conditions. The operator T is used to obtain an atomic characterisation of Hardy spaces H^{p} of exact forms with support in $\bar{\Omega}$ when $n /(n+1)<p \leq 1$. This is done via an atomic decomposition of functions in the tent spaces $\mathcal{T}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{+}\right)$with support in a tent $T(\Omega)$ as a sum of atoms with support away from the boundary of Ω. This new decomposition of tent spaces is useful, even for scalar valued functions.

2010 Mathematics Subject Classification: 35B65, 35C15, 58J10, 47G10, 42B30.
Key words: Exterior derivative, differential forms, Lipschitz domain, potential map, Sobolev space, Hardy space, tent space.

