Publ. Mat. **57** (2013), 393–420 DOI: 10.5565/PUBLMAT_57213_06

PACKING MEASURES AND DIMENSIONS ON CARTESIAN PRODUCTS

Ondřej Zindulka

Abstract: Packing measures $\mathscr{P}^{g}(E)$ and Hewitt-Stromberg measures $\nu^{g}(E)$ and their relatives are investigated. It is shown, for instance, that for any metric spaces X, Y and any Hausdorff functions f, g

$$\boldsymbol{\nu}^{g}(X) \cdot \mathscr{P}^{h}(Y) \leqslant \mathscr{P}^{gh}(X \times Y).$$

The inequality for the corresponding dimensions is established and used for a solution of a problem of Hu and Taylor: If $X \subseteq \mathbb{R}^n$, then

$$\inf\{\overline{\dim}_{\mathsf{P}}X \times Y - \overline{\dim}_{\mathsf{P}}Y : Y \subseteq \mathbb{R}^n\} = \liminf_{X_n \nearrow X} \underline{\dim}_{\mathsf{B}}X_n.$$

Corresponding dimension inequalities for products of measures are established.

2010 Mathematics Subject Classification: 28A78, 28A80, 54E35.

Key words: Packing measure, lower packing measure, packing dimension, lower packing dimension, cartesian product.