PACKING MEASURES AND DIMENSIONS ON CARTESIAN PRODUCTS

Ondřej Zindulka

Abstract

Packing measures $\mathscr{P}^{g}(E)$ and Hewitt-Stromberg measures $\boldsymbol{\nu}^{g}(E)$ and their relatives are investigated. It is shown, for instance, that for any metric spaces X, Y and any Hausdorff functions f, g

$$
\boldsymbol{\nu}^{g}(X) \cdot \mathscr{P}^{h}(Y) \leqslant \mathscr{P}^{g h}(X \times Y)
$$

The inequality for the corresponding dimensions is established and used for a solution of a problem of Hu and Taylor: If $X \subseteq \mathbb{R}^{n}$, then

$$
\inf \left\{\overline{\operatorname{dim}}_{P} X \times Y-\overline{\operatorname{dim}}_{P} Y: Y \subseteq \mathbb{R}^{n}\right\}=\lim _{X_{n}} \inf _{X} \underline{\operatorname{dim}}_{B} X_{n}
$$

Corresponding dimension inequalities for products of measures are established.
2010 Mathematics Subject Classification: 28A78, 28A80, 54E35.
Key words: Packing measure, lower packing measure, packing dimension, lower packing dimension, cartesian product.

