POTENTIAL MAPS, HARDY SPACES, AND TENT SPACES ON SPECIAL LIPSCHITZ DOMAINS

MARTIN COSTABEL, ALAN McINTOSH, AND ROBERT J. TAGGART

Abstract: Suppose that Ω is the open region in \mathbb{R}^n above a Lipschitz graph and let d denote the exterior derivative on \mathbb{R}^n. We construct a convolution operator T which preserves support in Ω, is smoothing of order 1 on the homogeneous function spaces, and is a potential map in the sense that dT is the identity on spaces of exact forms with support in Ω. Thus if f is exact and supported in Ω, then there is a potential u, given by $u = Tf$, of optimal regularity and supported in Ω, such that $du = f$. This has implications for the regularity in homogeneous function spaces of the de Rham complex on Ω with or without boundary conditions. The operator T is used to obtain an atomic characterisation of Hardy spaces H^p of exact forms with support in Ω when $n/(n+1) < p \leq 1$. This is done via an atomic decomposition of functions in the tent spaces $T^p(\mathbb{R}^n \times \mathbb{R}^+)$ with support in a tent $T(\Omega)$ as a sum of atoms with support away from the boundary of Ω. This new decomposition of tent spaces is useful, even for scalar valued functions.

2010 Mathematics Subject Classification: 35B65, 35C15, 58J10, 47G10, 42B30.

Key words: Exterior derivative, differential forms, Lipschitz domain, potential map, Sobolev space, Hardy space, tent space.