WEAK AND VISCOSITY SOLUTIONS OF THE FRACTIONAL LAPLACE EQUATION

RAFFAELLA SERVADEI AND ENRICO VALDINOCI

Abstract: Aim of this paper is to show that weak solutions of the following fractional Laplacian equation

\[
\begin{cases}
(-\Delta)^s u = f & \text{in } \Omega \\
u = g & \text{in } \mathbb{R}^n \setminus \Omega
\end{cases}
\]

are also continuous solutions (up to the boundary) of this problem in the viscosity sense.

Here \(s \in (0,1) \) is a fixed parameter, \(\Omega \) is a bounded, open subset of \(\mathbb{R}^n \) (\(n \geq 1 \)) with \(C^2 \)-boundary, and \((-\Delta)^s \) is the fractional Laplacian operator, that may be defined as

\[
(-\Delta)^s u(x) := c(n, s) \int_{\mathbb{R}^n} \frac{2u(x) - u(x + y) - u(x - y)}{|y|^{n+2s}} \, dy,
\]

for a suitable positive normalizing constant \(c(n, s) \), depending only on \(n \) and \(s \).

In order to get our regularity result we first prove a maximum principle and then, using it, an interior and boundary regularity result for weak solutions of the problem.

As a consequence of our regularity result, along the paper we also deduce that the first eigenfunction of \((-\Delta)^s \) is strictly positive in \(\Omega \).

2010 Mathematics Subject Classification: 35R09, 45K05, 49N60, 35D30.

Key words: Integrodifferential operators, fractional Laplacian, weak solutions, viscosity solutions, regularity theory.