WEIGHTED SQUARE FUNCTION INEQUALITIES

Adam Osękowski

Abstract: For an integrable function f on $[0, 1)^d$, let S(f) and Mf denote the corresponding dyadic square function and the dyadic maximal function of f, respectively. The paper contains the proofs of the following statements.

(i) If w is a dyadic A_1 weight on $[0,1)^d$, then

 $||S(f)||_{L^{1}(w)} \leq \sqrt{5}[w]_{A_{1}}^{1/2} ||Mf||_{L^{1}(w)}.$

The exponent 1/2 is shown to be the best possible.

(ii) For any p > 1, there are no constants c_p , α_p depending only on p such that for all dyadic A_p weights w on $[0, 1)^d$,

$$||S(f)||_{L^{1}(w)} \le c_{p}[w]_{A_{p}}^{\alpha_{p}}||Mf||_{L^{1}(w)}.$$

2010 Mathematics Subject Classification: Primary: 42B25; Secondary: 46E30, 60G42.

Key words: Square function, maximal operator, dyadic, weight, Bellman function.