CLASSICAL AND UNIFORM EXPONENTS OF MULTIPLICATIVE *p*-ADIC APPROXIMATION

YANN BUGEAUD AND JOHANNES SCHLEISCHITZ

Abstract: Let p be a prime number and ξ an irrational p-adic number. Its irrationality exponent $\mu(\xi)$ is the supremum of the real numbers μ for which the system of inequalities

 $0 < \max\{|x|, |y|\} \le X, \quad |y\xi - x|_p \le X^{-\mu}$

has a solution in integers x, y for arbitrarily large real number X. Its multiplicative irrationality exponent $\mu^{\times}(\xi)$ (resp., uniform multiplicative irrationality exponent $\hat{\mu}^{\times}(\xi)$) is the supremum of the real numbers $\hat{\mu}$ for which the system of inequalities

$$0 < |xy|^{1/2} \le X, \quad |y\xi - x|_p \le X^{-\widehat{\mu}}$$

has a solution in integers x, y for arbitrarily large (resp., for every sufficiently large) real number X. It is not difficult to show that $\mu(\xi) \leq \mu^{\times}(\xi) \leq 2\mu(\xi)$ and $\hat{\mu}^{\times}(\xi) \leq 4$. We establish that the ratio between the multiplicative irrationality exponent μ^{\times} and the irrationality exponent μ can take any given value in [1,2]. Furthermore, we prove that $\hat{\mu}^{\times}(\xi) \leq (5 + \sqrt{5})/2$ for every *p*-adic number ξ .

2020 Mathematics Subject Classification: 11J61, 11J04.

Key words: rational approximation, p-adic number, exponent of approximation.