Introducción.- El teorema de anulación de Le Potier [5] se apoya en dos resultados. De una parte en el isomorfismo de Le Potier (Lema 8 de [5]) y de otra en el teorema de anulación de Akizuki-Nakano para fibrados de línea [1]. Yo generalicé el teorema de anulación de Kodaira a fibrados de línea semi-negativos ([3] teorema B' y [2]). Pero esta generalización no era suficiente para dar un resultado análogo relativo a fibrados vectoriales de rango cualquiera a través del isomorfismo de Le Potier. En este trabajo se obtiene el teorema 1, relativo a fibrados de línea seminegativos, que generaliza el resultado de Akizuki-Nakano y que, a través del isomorfismo de Le Potier, da lugar al teorema 2 concerniente a fibrados vectoriales de rango cualquiera, que generaliza el teorema de Le Potier.

1. Un teorema de anulación para fibrados de línea.- Sea \mathcal{M} una variedad kähleriana compacta de dimensión n. Sea $\mathcal{E} \rightarrow \mathcal{M}$ un fibrado de línea sobre \mathcal{M}, holomorfo, dotado de una métrica hermítica h. Sea Ω la forma de curvatura de la única conexión de tipo $(1,0)$ en \mathcal{E} compatible con h. Sea $\gamma = \sqrt{-1} \Omega$. Sea $s(\gamma)$ la forma hermítica definida por $s(\gamma)(X,Y) = \gamma(X,JY)$. Sea (U, z^1, \ldots, z^n) una carta local tal que $\mathcal{E}|_U$ es trivial. Sea s una sección de $\mathcal{E}|_U$ que no se anula en ningún punto. Una (p,q)-forma con coeficientes en \mathcal{E} se expresará en U:

\[
(1,1) \quad \varphi = \frac{1}{p!q!} \varphi_{\lambda_1 \ldots \lambda_p \tau_1 \ldots \tau_q} dz^\lambda_1 \wedge \ldots \wedge dz^\lambda_p \wedge dz^{\tau_1} \wedge \ldots \wedge dz^{\tau_q} \wedge s
\]

El producto escalar local se expresará por:

\[
(1,2) \quad (\varphi, \psi) = \frac{1}{p!q!} \varphi_{\lambda_1 \ldots \lambda_p \tau_1 \ldots \tau_q} \psi_{\lambda_1 \ldots \lambda_p \tau_1 \ldots \tau_q}
\]
donde h indica, por abuso de lenguaje, la función h(s,s). El producto escalar global se define por: \(\langle \varphi, \psi \rangle = \int_M (\varphi, \psi) \eta \), siendo \(\eta \) el elemento de volumen. Sobre las \((p,q)\)-formas con coeficientes en E tenemos la diferencial \(d_E = d_E^p + d_E^q \), la codiferencial \(\delta_E = \delta_E^p + \delta_E^q \) y las dos laplacianas \(\Delta_E^p = 2(d_E^p \delta_E^p + d_E^q \delta_E^q) \), \(\Delta_E^q = 2(d_E^q \delta_E^q + d_E^p \delta_E^p) \). Se sabe que la diferencia entre estas dos laplacianas viene dada por:

\[
(1,3) \quad \Delta_E^p - \Delta_E^q = 2(\Lambda e(\gamma) - e(\gamma) \Lambda)
\]
donde \(e(\gamma) \) significa el producto exterior por \(\gamma \).

Haciendo un cálculo análogo al de la demostración del teorema de descomposición de Hodge-Lepage, se obtiene la siguiente expresión local:

\[
(1,4) \quad (\Lambda e(\gamma) - e(\gamma) \Lambda) \varphi_{\lambda_1 \ldots \lambda_p} \tau_1 \ldots \tau_q = \text{tr} s(\gamma) \varphi_{\lambda_1 \ldots \lambda_p} \tau_1 \ldots \tau_q
\]

\[
- \frac{1}{(p-1)!} s(\gamma) \varphi_{\lambda_1 \ldots \lambda_p} \varphi_{\lambda_2 \ldots \lambda_q} \tau_1 \ldots \tau_q
\]

\[
- \frac{1}{(q-1)!} s(\gamma) \varphi_{\lambda_1 \ldots \lambda_p} \varphi_{\lambda_2 \ldots \lambda_q} \tau_1 \ldots \tau_q
\]

De (1,4) se obtiene:

\[
(1,5) \quad ((\Lambda e(\gamma) - e(\gamma) \Lambda) \varphi, \varphi) = \text{tr} s(\gamma) (\varphi, \varphi) -
\]

\[
- \frac{h}{(p-1)!q!} s(\gamma) \delta_{\beta} \varphi_{\lambda_2 \ldots \lambda_p} \tau_2 \ldots \tau_q
\]

\[
- \frac{h}{p!(q-1)!} s(\gamma) \delta_{\alpha} \varphi_{\alpha_1 \ldots \alpha_p} \mu_1 \ldots \mu_q
\]

Proposición 1.- Sea \(g \) una métrica kähleriana sobre \(M \), \(h \) una métrica hermitiana en \(E \). Supongamos \(s(\gamma) \leq 0 \) y rango de
s(γ) constante (=k) en todos los puntos de M. Sea m el menor valor absoluto de los valores propios no nulos de s(γ) en todos los puntos de M. Sea δ un número real positivo menor que \(m/(2n-1) \). Sea \(g^\gamma = g - s(\gamma) \). Si φ es una \((p,q)\)-forma con coeficientes en E con \(p + q < k \), se tiene:

\[
((\Lambda e(\gamma) - e(\gamma) \wedge) \phi, \phi) \leq 0
\]

en todo punto; donde el producto escalar \((\ ,\)\) y el operador \(\wedge \) están referidos a la métrica kähleriana \(g^\gamma \). Si en un punto \((\Lambda e(\gamma) - e(\gamma) \wedge) \phi, \phi) = 0\), \(\phi = 0 \) en dicho punto.

Demostración. - Sea \(x_0 \) un punto de M. Tomemos un sistema de coordenadas en un entorno de \(x_0 \) tal que la matriz de \(g \) en \(x_0 \) sea la identidad y la de \(s(\gamma) \) sea

\[
\begin{pmatrix}
-\gamma_1 \\
\vdots \\
-\gamma_n
\end{pmatrix}
\]

con \(\gamma_i > 0 \) si \(1 \leq i \leq k \) y \(\gamma_i = 0 \) si \(i > k \). Tendremos:

\[
((\Lambda e(\gamma) - e(\gamma) \wedge) \phi, \phi) = \sum_{\lambda_1 \cdots \lambda_p} \left\{ -\frac{h}{p!q!} \sum_{i=1}^{n} \frac{\gamma_i}{\gamma_i + \delta} \right\} \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right)
\]

\[
+ \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right) \left(\prod_{j=1}^{q} \left(\frac{1}{\gamma_{\tau_j} + \delta} \right) \right) \left(\prod_{u=1}^{q} \left(\frac{1}{\gamma_{\tau_u} + \delta} \right) \right)
\]

\[
= \sum_{\lambda_1 \cdots \lambda_p} \gamma_i \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right) \left(\prod_{j=1}^{q} \left(\frac{1}{\gamma_{\tau_j} + \delta} \right) \right) \left(\prod_{u=1}^{q} \left(\frac{1}{\gamma_{\tau_u} + \delta} \right) \right)
\]

\[
\leq \sum_{\lambda_1 \cdots \lambda_p} \gamma_i \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right) \left(\prod_{j=1}^{q} \left(\frac{1}{\gamma_{\tau_j} + \delta} \right) \right) \left(\prod_{u=1}^{q} \left(\frac{1}{\gamma_{\tau_u} + \delta} \right) \right)
\]

\[
\left\| e_{\lambda_1 \cdots \lambda_p} \tau_1 \cdots \tau_q \right\|^2
\]

\[
\leq \sum_{\lambda_1 \cdots \lambda_p} \gamma_i \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right) \left(\prod_{j=1}^{q} \left(\frac{1}{\gamma_{\tau_j} + \delta} \right) \right) \left(\prod_{u=1}^{q} \left(\frac{1}{\gamma_{\tau_u} + \delta} \right) \right)
\]

\[
\left\| e_{\lambda_1 \cdots \lambda_p} \tau_1 \cdots \tau_q \right\|^2
\]

\[
= \sum_{\lambda_1 \cdots \lambda_p} \gamma_i \left(\prod_{j=1}^{p} \left(\frac{1}{\gamma_{\lambda_j} + \delta} \right) \right) \left(\prod_{j=1}^{q} \left(\frac{1}{\gamma_{\tau_j} + \delta} \right) \right) \left(\prod_{u=1}^{q} \left(\frac{1}{\gamma_{\tau_u} + \delta} \right) \right)
\]

\[
\left\| e_{\lambda_1 \cdots \lambda_p} \tau_1 \cdots \tau_q \right\|^2
\]

63
Si \(\gamma_1 \neq 0 \) se tiene \(1 - \frac{\gamma_1}{\gamma_1 + \delta} < \frac{1}{2n} \). Sea \(\alpha_1 = 1 - \frac{\gamma_1}{\gamma_1 + \delta} \). Fijados los índices \(\lambda_1 \ldots \lambda_p \), \(\tau_1 \ldots \tau_q \) se estudiemos el signo del coeficiente:

\[
A = \sum_{j=1}^{p} \frac{\gamma_j}{\gamma_j + \delta} + \sum_{u=1}^{q} \frac{\gamma_u}{\gamma_u + \delta} - \sum_{i=1}^{n} \frac{\gamma_i}{\gamma_i + \delta}
\]

Supongamos que entre los índices \(\lambda_1 \ldots \lambda_p \) hay \(s \) entre los \(k \) primeros y entre \(\tau_1 \ldots \tau_q \) hay \(s' \) entre los \(k \) primeros. Se tendrá:

\[
A = s + s' - k - \sum_{\mu \leq k} \alpha_{\lambda_\mu} - \sum_{\tau \leq k} \alpha_{\tau_i} + \sum_{i=1}^{k} \alpha_i
\]

\(s + s' - k \) es negativo ya que \(p + q < k \). Se tiene pues:

\[
\sum_{i=1}^{k} \alpha_i - \sum_{\mu \leq k} \alpha_{\lambda_\mu} - \sum_{\tau \leq k} \alpha_{\tau_i} \leq \sum_{i=1}^{k} \alpha_i \leq \frac{k}{2n} \leq \frac{1}{2}
\]

y puesto que \(s + s' - k \) es entero, se tiene \(A < 0 \). Ello prueba la primera parte de la proposición. Supongamos ahora

\((\Lambda \in (\gamma) \Lambda \varphi, \varphi) = 0 \) en \(x_0 \). Hemos obtenido en (1.6) una expresión de la forma siguiente:

\[(1.6') \ (\Lambda \in (\gamma) - (\gamma) \Lambda \varphi, \varphi) = \sum \lambda_1 \ldots \lambda_p \tau_1 \ldots \tau_q \parallel \varphi_{\lambda_1} \ldots \varphi_{\lambda_p} \tau_1 \ldots \tau_q \parallel^2
\]

En dicha expresión todos los coeficientes numéricos
\(B_{\lambda_1 \ldots \lambda_p \tau_1 \ldots \tau_q} \) son negativos. Ello implica \(\varphi = 0 \) en \(x_0 \).

Teorema 1. Sea \(M \) una variedad kähleriana compacta. Sea \(E \to M \) un fibrado de línea holomorfo. Supongamos que existe
\(\frac{\gamma}{2\pi} \in c_1(E) \) tal que \(s(\gamma) \leq 0 \) con rango de \(s(\gamma) \) constante (=k) en todos los puntos de \(M \). Se tiene \(H^{p,q}(E) = 0 \) si \(p+q < k \).

Demostración. Tomemos \(\varphi \) como en la proposición precedente. Si \(\varphi \in H^{p,q}(E) \) se tiene: \(\langle (\Lambda e(\gamma) - e(\gamma))_\varphi, \varphi \rangle = \langle d_E, \varphi \rangle \geq 0 \). La proposición precedente implica entonces \(\langle (\Lambda e(\gamma) - e(\gamma))_\varphi, \varphi \rangle = 0 \) y \(\varphi = 0 \) en todo punto.

Conjetura 1. El teorema 1 sigue verificándose si se sustituye la hipótesis \(\text{rg } s(\gamma) \) constante (=k) por : en un punto \(x_0 \) de \(M \) \(\text{rg } s(\gamma) = k \).

La conjetura es cierta en el caso \(p = 0 \) (Ver [3] teorema B' y [2]).

2. **Isomorfismo de Le Potier** [5].- Sea \(E \xrightarrow{\pi} M \) un fibrado vectorial holomorfo sobre una variedad compleja \(M \). Sea \(E^* \) el fibrado dual y \(P(E^*) \xrightarrow{p} M \) la proyectivización de \(E \). Consideremos:

\[
\begin{array}{c}
p^*(E) \longrightarrow E \\
\downarrow \\
p(E^*) \longrightarrow M
\end{array}
\]

donde \(p^*(E) \) indica el fibrado imagen inversa de \(E \) por \(p \). Sea \(x \in M, \ u_x \in E_x = \pi^{-1}(x) \), \(z_x \in E_x^* \) y sea \(\tilde{z}_x \) la proyectivización de \(z_x \). \(\tilde{z}_x = P(E^*)_x \). \(p^*(E) \) estará formado por todos los pares \((\tilde{z}_x, u_x) \). Sea \(F \) el sub-fibrado de \(p^*(E) \) formado por los pares \((\tilde{z}_x, u_x) \) tales que \(z_x \langle u_x \rangle = 0 \). Sea \(Q(E) \) el fibrado cociente \(p^*(E)/F \). Le Potier ha probado el siguiente isomorfismo:

\[
H^{p,q}(M,E) \cong H^{p,q}(P(E^*), Q(E)).
\]

3. **Estudio de \(c_1(Q(E)) \)** [4].- Con las mismas notaciones que en el apartado precedente, supongamos \(E \xrightarrow{\pi} M \) dotado de una métrica hermitiana \(h \). Sea \(h \) la métrica hermitica induci-
da por h en \(E^* \). Si \((\tilde{z}_x, u_x) \in p^*(E)\), designaremos por
\((\tilde{z}_x, u_x)\) su clase en \(Q(E) = p^*(E)/F \).

Definimos una métrica hermítica \(H \) en \(Q(E) \) de la siguiente manera:

\[
(3,1) \quad H(\tilde{z}_x, \tilde{v}_x; \tilde{z}_x, \tilde{u}_x) = \frac{\tilde{z}_x^* \langle \tilde{v}_x, \tilde{z}_x \rangle \tilde{z}_x^* \langle \tilde{u}_x, \tilde{z}_x \rangle}{H(\tilde{z}_x, \tilde{z}_x)}
\]

La definición no depende ni del representante \(z_x \) de \(\tilde{z}_x \) elegido ni de los representantes \((\tilde{z}_x, \tilde{v}_x)\) y \((\tilde{z}_x, \tilde{u}_x)\) de \((\tilde{z}_x, \tilde{v}_x)\) y \((\tilde{z}_x, \tilde{u}_x)\) elegidos.

Vamos a hallar la expresión local de \(H \) en una carta local en que el fibrado trivialice. Sea \(U \) un abierto de \(M \) tal que \(E|U \) es trivial. Consideremos una trivialización de \(E|U \) dada por un sistema de \(r \) secciones \(\{s_A\} \) de \(E|U \). Sea \(\{A\} \) la base dual, que constituirá una trivialización de \(E^*|U \):

\[
E^*|U \rightarrow U \times \mathbb{C}^r
\]

\[
z_x \rightarrow (x, z_1 \ldots z_r)
\]

donde \(z_x = \sum_z z_A s_A^*(x) \). Considere la trivialización de \(P(E^*)|U \):

\[
P(E^*)|U \rightarrow U \times P_{r-1}(\mathbb{C})
\]

\[
z_x \rightarrow (x, (z_1 \ldots z_r))
\]

Sea \(V \) el abierto de \(P(E^*)|U \) dado por \(z_r \neq 0 \). Pongamos en \(V \):

\[
t_A(z) = \frac{z_A}{z_r}, \quad A = 1 \ldots r, \quad t_r(z) = 1. \quad t(z) \] indicará un elemento de \(P(E^*) \). \(Q(E)|V \) admite la siguiente trivialización:
La métrica H se expresará en esta trivialización:

\[
H((x, (t_1 \ldots t_{r-1},1), \lambda)), (x, (t_1 \ldots t_{r-1},1), \mu)) = \frac{\lambda \mu}{h(t,t)} = \frac{\lambda \mu}{h^{AB}(x)t_A t_B}.
\]

Los índices A y B varían de 1 a r conviniendo que $t_r = 1$. En notación matricial $h^{AB}(x)t_A t_B = th^*(x)t$, donde

\[
t = \begin{pmatrix}
 t_1 \\
 \vdots \\
 t_{r-1} \\
 1
\end{pmatrix}
\]

La métrica H vendrá determinada en V por la matriz de un solo elemento $\frac{1}{th^*(x)t}$. Designemos esta función por $H(x,z)$.

Calculemos en $V \, d' \, d'' \log H(x,t)$.

\[
d' \log H(x,t) = \frac{d'(\log t_{\alpha}^*(x)t)}{t_{\alpha}^* t} = \frac{t_{\alpha}(d' h^*)t + t_{\alpha}^*dh^*dt}{t_{\alpha}^* t}
\]

\[
d'' \log H(x,t) = \frac{d''(d' h^*)t + d'(dh^*)t + dt_{\alpha}h^*dt}{t_{\alpha}t}
\]

Sea $(x_1^* \ldots x_n^*)$ un sistema de coordenadas complejas en \mathbb{U}.

67
Tomemos en \(V \) las coordenadas \((x^1, \ldots, x^n, t_1, \ldots, t_{r-1})\). Conven\(\text{dremos en que los índices griegos } \alpha, \beta, \ldots \text{ varían de } 1 \text{ a } n, \) \(\text{los índices latinos } a, b, \ldots \text{ varían de } 1 \text{ a } r-1 \) y los índices \(A, B, \ldots \text{ varían de } 1 \text{ a } r. \) Abreviaremos \(\frac{\partial}{\partial x^\alpha}, \) \(\frac{\partial}{\partial t_a}, \) \(\frac{\partial}{\partial n_a} \) en lugar de \(\frac{\partial}{\partial x^\alpha}, \) \(\frac{\partial}{\partial t_a}, \) \(\frac{\partial}{\partial n_a} \) en lugar de \(\frac{\partial}{\partial n_a}. \) De (3.4) deducimos:

\[
\begin{align*}
\frac{\partial}{\partial t^\alpha} \log H &= -\frac{t^{-1}(\frac{\partial}{\partial t}(\frac{\partial}{\partial n_a} h^* t))}{t^{-1} h^* t} + \frac{(t^{-1}(\frac{\partial}{\partial t}(h^{-1} t^{*}))) (t^{-1}(\frac{\partial}{\partial n_a} h^* t))}{(t^{-1} h^* t)^2} \\
\frac{\partial}{\partial n_a} \frac{\partial}{\partial n_{b}} \log H &= -\frac{h^{*ab}}{t^{-1} h^* t} + \frac{(h^{*ab} t_A) (h^{*ab} t_B)}{(t^{-1} h^* t)^2} \\
\frac{\partial}{\partial n_a} \frac{\partial}{\partial t^b} \log H &= -\frac{\delta_{ab} h^*}{t^{-1} h^* t} + \frac{(h^{*ab} t_A) (t^{-1}(\frac{\partial}{\partial n_a} h^* t))}{(t^{-1} h^* t)^2}
\end{align*}
\]

(3,5)

4. Estudio de \(C_1(Q(E)) \) cuando \(E \geq 0 \). - Seguimos con las mismas notaciones que en los apartados 2 y 3. Supongamos \(E \cong M \) dotado de una métrica hermitiana \(h. \) A dicha métrica le asociamos el tensor de Nakano \(N \) definido por:

\[
N(s, X, s', Y) = h(n(X, \bar{Y}) s, s')
\]

donde \(X, Y \) son campos sobre \(M \) y \(s, s' \) secciones de \(E. \) \(n \) indica la curvatura de la única conexión de tipo \((1,0)\) en \(E \) determinada por \(h. \) Se verifica fácilmente la siguiente propiedad:

\[
N(s, X, s', Y) = N(s', Y, s, X).
\]

De aquí se desprende que \(N(s, X, s, X) \) es siempre real.

Definición.- Se dice \(E \geq 0 \) si existe una métrica hermitiana \(h \) en \(E \) cuyo tensor de Nakano \(N \) verifica \(N(s, X, s, X) \geq 0 \) para todo par \((s, X)\). Diremos entonces también que \(N \geq 0. \) Pijada \(s \) de \(\Gamma(E), \) designemos por \(N_s \) la forma hermitica definida por:

\[
N_s(X, Y) = N(s, X, s, Y).
\]

68
Proposición 2.- Supongamos $E \geq 0$. Existe $\frac{\gamma}{2\pi} \in C_1(Q(E))$ tal que $s(\gamma) \geq 0$. Sea h la métrica hermética en E cuyo tensor de Nakano $N \geq 0$. Si se supone que $rg N_\gamma$ es constante ($=k$) $\forall \gamma$ en todo punto de M, entonces puede tomarse $(\gamma/2\pi) \in C_1(Q(E))$ tal que $s(\gamma) \geq 0$ y $rg s(\gamma) = k + r - 1$.

Demostración.- Evaluemos $\partial_1, \partial_1, \log H$ en un punto cualquiera x_0 de $P(E^*)$. Para ello utilizaremos las fórmulas (3,5). Dado x_0 de U, elijamos la trivialización $\{s^A\} A = 1 \ldots r$ de E en U de modo que $(h^{*AB}(x_0)) = \text{id}$ y que $(d'h^{*AB}(x_0))$ sea la matriz nula. Pongamos $\gamma = \sqrt{-1} d'd'' \log H$. $\frac{\gamma}{2\pi} \in C_1(Q(E))$. $\gamma_1 = -\sqrt{-1} \partial_1 \log H$. $s(\gamma)_1 = -\sqrt{-1} \gamma_1 = -\partial_1 \log H$. Utilizando las fórmulas (3,5) se tendrá en el punto (x_0, t):

$$s(\gamma)^{a\bar{b}} = \frac{t \epsilon_{\alpha\gamma} \partial_\bar{b} h^*(x_0)^{\gamma} \gamma^{\alpha}}{\Sigma t \epsilon_{\alpha\gamma} \partial_\bar{b} h^*(x_0)^{\gamma} \gamma^{\alpha}}$$

$$(4,1)$$

$$s(\gamma)^{a\bar{b}} = 0$$

$$s(\gamma)^{n_0a, n_0b} = \frac{\delta^a_{\gamma}}{\Sigma t \epsilon_{\alpha\gamma} \partial_\bar{b} h^*(x_0)^{\gamma} \gamma^{\alpha}} - \frac{t a \bar{b}}{(\Sigma t \epsilon_{\alpha\gamma} \partial_\bar{b} h^*(x_0)^{\gamma} \gamma^{\alpha})^2}$$

$(s(\gamma)^{n_0a, n_0b})$ es siempre definida positiva por tratarse de la métrica de Fubini en $p_{r-1}(C)$.

Designemos por Ω la curvatura de h^* y por Ω la de h. Se tiene:

$$\Omega = -\Omega^*$$

$$\Omega = (d'' d'h^* h'^{-1}) + h'^{-1} (d'h^*) h'^{-1}.$$ En x_0 se tendrá: $\Omega = d'' d'h^*$.

$$\Omega = -t d'' d'h^*. \ (N_t)^{a\bar{b}} = N_t \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) = N(t, \frac{\partial}{\partial x^a}, t, \frac{\partial}{\partial x^b}) =$$

$$= h(\Omega (\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b}) t, t) = t \bar{h} C \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= -t \bar{h} C \Omega_A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) = -t \bar{h} C \Omega_A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:

$$\Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) =$$

$$= A \bar{B} B \Omega A \left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b} \right) \Omega h B.$$ En x_0 se tendrá:
Vemos pues que \((s(\gamma)_{\bar{a}\bar{b}}) \) es \(\geq 0 \) y que su rango es el de \(N_{k} \), es decir, \(k \). En \(x_{0} \) se tiene:

\[
\begin{pmatrix}
(s(\gamma)_{\bar{a}\bar{b}}) & 0 \\
0 & (s(\gamma)_{n+a,n+b})
\end{pmatrix}
\]

Por tanto \(s(\gamma) \geq 0 \) y el rango de \(s(\gamma) \) es \(k+r-1 \).

Proposición 3.- Sea \(E \overset{\pi}{\rightarrow} M \) un fibrado vectorial holomorfo sobre una variedad compleja compacta \(M \). Consideremos el fibrado \(P(E^{\ast}) \overset{p}{\rightarrow} M \). Si \(M \) es variedad kähleriana, \(P(E^{\ast}) \) también.

Demostración.- Sea \(\frac{\gamma}{2\pi} \in c_{1}(Q(E)) \). Podemos expresar \(s(\gamma) \) en cada punto \(x_{0} \) mediante (4,2), donde \((s(\gamma)_{n+a,n+b}) \) representa la métrica de Fubini sobre la fibra. Sea \(g \) una métrica kähleriana sobre \(M \) y \(k \) un número positivo. \(s(\gamma) + kp^{\ast}(g) \) se expresará en \(x_{0} \) por:

\[
\begin{pmatrix}
(s(\gamma)_{\bar{a}\bar{b}}) + kp^{\ast}(g) & 0 \\
0 & (s(\gamma)_{n+a,n+b})
\end{pmatrix}
\]

Por ser \(M \) compacta, podemos elegir \(k \) suficientemente grande para que \(s(\gamma) + kp^{\ast}(g) \) sea definida positiva en todo punto. La forma de Kähler de \(s(\gamma) + kp^{\ast}(g) \) será \(\gamma + p^{\ast}(F) \), donde \(F \) es la forma de Kähler de \(g \). Por tanto será cerrada. Así pues \(s(\gamma) + kp^{\ast}(g) \) es una métrica kähleriana en \(P(E^{\ast}) \).

Teorema 2.- Sea \(M \) una variedad kähleriana compacta, \(E \overset{\pi}{\rightarrow} M \) un fibrado vectorial holomorfo de rango \(r \). Se supone \(E \leq 0 \). Sea \(h \) la métrica hermitiana en \(E \) cuyo tensor de Nakano \(N_{k} \) es \(\leq 0 \). Se supone que \(\forall t, \text{rg } N_{k} = k \) en todo punto. Se verifica \(H^{p,q}(E) = 0 \) si \(p+q < k-r+1 \).
Demostración.- Por la fórmula de dualidad se tiene: $H^{p,q}(M,E) \cong H^{n-p,n-q}(M,E^*)$, donde n es la dimensión compleja de M. Por el isomorfismo de Le Potier, $H^{n-p,n-q}(M,E^*) \approx H^{n-p,n-q}(P(E),Q(E^*))$.

De nuevo por la fórmula de dualidad, $H^{n-p,n-q}(P(E),Q(E^*)) \cong H^{r+p-1,r+q-1}(P(E),Q(E^*)^*)$. Por tanto $H^{p,q}(M,E) \cong H^{r+p-1,r+q-1}(P(E),Q(E^*)^*)$. Por la proposición anterior $P(E)$ es una variedad kähleriana compacta. Si $E \leq 0$, $E^* \geq 0$, por la proposición 2, $c_1(Q(E^*)) \geq 0$ y por tanto $c_1(Q(E^*)^*) \leq 0$. Además puesto que $\text{rg } N_t = k$, la proposición 2 nos asegura la existencia de $\frac{\sqrt{c_1(Q(E^*)^*)}}{2\pi}$ tal que $s(\gamma) \leq 0$ y $\text{rg } s(\gamma)$ constante ($= k + r - 1$). Puesto que $Q(E^*)^*$ es un fibrado de línea, podremos aplicarle el teorema 1. Se tendrá $H^{r+p-1,r+q-1}(P(E),Q(E^*)^*) = 0$ si $p+q < k-r+1$ lo que concluye la demostración.

Si la conjetura 1 fuera cierta, de la demostración que hemos hecho del teorema 2, se desprendería la validez del siguiente resultado:

Teorema 2'.- Sea M una variedad kähleriana compacta, $E \cong M$ un fibrado vectorial holomorfo de rango r. Se supone $E \leq 0$. Sea h la métrica hermítica en E cuyo tensor de Nakano N es ≤ 0. Se supone que en un punto $x_0 \in M$ existe un t de la fibra E_{x_0} tal que $\text{rg } N_t = k$. Se verifica $H^{p,q}(E) = 0$ si $p+q < k-r+1$.

Le Potier [5] obtiene, como consecuencia de su teorema de anulación, un resultado concerniente a la dimensión de un proyectivo complejo en el que se puede sumergir analíticamente una variedad compleja, compacta, paralelizable, de dimensión dada. Por un procedimiento similar, del teorema 2', puede obtenerse:

Si M es una variedad compleja, paralelizable, de dimensión compleja n, M no puede sumergirse analíticamente en un producto de proyectivos $P^p(C) \times P^q(C)$ si $p+q < 2n$.

71
BIBLIOGRAFÍA

