GROUP RINGS IN WHICH EVERY
LEFT IDEAL IS A RIGHT IDEAL

P. Menal

ABSTRACT. Let $K[G]$ denote the group ring of G over the field K. In this note we characterize those group rings in which all left ideals are right ideals.

Let R be a ring. We say that R is l.i.r.i. if every left ideal is a right ideal. A ring is l.a.r.i. if every left annihilator is a right ideal. Our notation follows that of [2].

The main results are

THEOREM 1. Let K be a field and let G be a nonabelian locally finite group. Then if $K[G]$ is l.a.r.i., one of the following occurs

(i) $\text{Char } K = 0$ and G is a Hamilton group such that for each odd exponent, n, of G the quaternion algebra over the field $K(\z_n)$, where \z_n is a primitive n-root of the unity, is a division ring.

(ii) $\text{Char } K = 2$ and K does not contain any primitive 3-root of the unity. Moreover $G \cong Q\times A$, where Q is the quaternion group of order 8 and A is abelian in which each element has odd order and if n is an exponent for A, then the least integer $m \geq 1$ satisfying $2^m \equiv 1 \pmod{n}$ is odd.
Conversely if $K[G]$ satisfies (i) or (ii), then $K[G]$ is l.i.r.i. and, in particular, it is l.a.r.i.

--- Observe that if char $K > 2$ and G is locally finite, then $K[G]$ is l.a.r.i. if and only if G is abelian.

THEOREM II. Let $K[G]$ denote the group ring over a nonabelian group. Then the following are equivalent

(i) $K[G]$ is l.i.r.i.

(ii) G is locally finite and if $\alpha/\beta \in K[G]$ with $\alpha/\beta = 0$, then $\beta \alpha = 0$.

(iii) G is locally finite and $K[G]$ is l.a.r.i.

If we combine the above theorems we get necessary and sufficient conditions for $K[G]$ to be l.i.r.i.

By using the antiautomorphism of $K[G]$ given by

$$\sum_{x \in G} a_x x \mapsto \sum_{x \in G} a_x x^{-1}$$

we see that $K[G]$ is l.i.r.i. (l.a.r.i) if and only if $K[G]$ is r.i.l.i. (r.a.l.i.).

LEMMA 1. (i) $K[G]$ is l.i.r.i. if and only if for every finitely generated subgroup $H \leq G$, $K[H]$ is l.i.r.i.

(ii) If $K[G]$ is l.i.r.i., then all subgroups of G are normal.

(iii) Suppose that G is locally finite. If $K[G]$ is l.a.r.i., then all subgroups of G are normal.

PROOF. (i) First we suppose that for every finitely generated subgroup $H \leq G$, $K[H]$ is l.i.r.i. Let $I \leq K[G]$ a left ideal. Let $\alpha \in I$, $g \in G$. We set $H = \langle g, s \alpha \omega \rangle$. Then
I \cap K[H] is a left ideal of K[H] and hence I \cap K[H] is an ideal of K[H], since H is finitely generated. Now g \in H and
\alpha \in I \cap K[H] so \omega g \in I \cap K[H] \subseteq I. Therefore we have shown that I g \subseteq I for any g \in G and so I is a right ideal. Conversely
let H be a subgroup of G and suppose that I \subseteq K[H] is a left
ideal of K[H]. Let \{x_i\} be a set of left coset representatives
for H in G. Then K[G] is a free right K[H] - module with
basis \{x_i\}. Thus we have K[G] = \sum x_i K[H]. Denote \sum x_i I
by J. Clearly J is a left ideal of K[G]. If we suppose that
K[G] is l.i.r.i., then we have that J is a right ideal of
K[G]. Let h \in H. Then

In \subseteq Jh \cap K[H] \subseteq J \cap K[H] = I

and so I is a right ideal.

(ii) In order to prove that all subgroups of G are normal it
suffices to see that all cyclic subgroups are normal. Let
a, g \in G. Consider the left ideal I = K[G](1 - a). Then I is
an ideal, since K[G] is l.i.r.i.. Thus \alpha^{-1}(1 - a)g \subseteq I and
1 - g^{-1}ag = \alpha (1 - a) for a suitable element \alpha \in K[G]. Now
we use the K[\langle a \rangle] - homomorphism \Theta : K[G] \rightarrow K[\langle a \rangle] in which
\sum a_x x \mapsto \sum a_x x \quad \text{and we obtain} \quad 1 - \Theta(g^{-1}ag) = \Theta(\langle a \rangle)(1 - a).

Since 1 - a is not invertible we have that \Theta(g^{-1}ag) \neq 0. Hence
g^{-1}ag \in \langle a \rangle.

(iii) Suppose that G is locally finite and K[G] is l.a.r.i. Let
H be a finite subgroup of G. Then Lemma 1.2 [2, Chap. 3] yields
that \(\mathcal{L}(\hat{H}) = K[G] \omega(K[H]) \). In other hand we have that
\[
H = \{ x \in G : x - 1 \in K[G] \omega(K[H]) \}.
\]
By hypothesis \(\mathcal{L}(\hat{H}) \) is an ideal, then it is easy to see that \(H \) is normal in \(G \).

We recall that a nonabelian group \(G \) such that all subgroups are normal is a Hamilton group, that is [see 1, Th. 12.5.4]
\[
G \cong Q \times A \times B
\]
where \(Q \) is the quaternion group of 3 elements, \(A \) is an abelian group such that every element has odd order, and \(B \) is an abelian group of exponent 2. For the rest of this paper we fix this notation.

Lemma 2. Suppose that \(G \) is locally finite and \(K[G] \) is l.a.r.i. Let \(\alpha, \beta \in K[G] \) such that \(\alpha \beta = 0 \). Then \(\beta \alpha = 0 \).

Proof. If \(G \) is abelian the result is trivial. If \(G \) is not abelian, Lemma 1 (iii) yields that \(G \) is a Hamilton group. Put \(G = Q \times A \times B \). If \(Q \) is generated by \(a, b \) with the relations \(a^4 = 1, aba = b, a^2 = b^2 \), put \(H = \langle a^2 \rangle x A x B \). \(H \) is the center of \(G \). By using the map \(\theta : K[G] \rightarrow K[H] \) in which
\[
\sum a_x x \mapsto \sum a_x x
\]
we can write any element \(\alpha \in K[G] \) as
\[
(\ast) \quad \alpha = \theta(\alpha) + \theta(a^{-1} \alpha)a + \theta(b^{-1} \alpha)b + \theta(b^{-1}a^{-1} \alpha)ab.
\]
Suppose now that \(\alpha \beta = 0 \). A computation proves that \(\theta(\alpha \beta) = \theta(\beta \alpha) \)
Therefore \(\theta(\beta \alpha) = 0 \). Since \(\alpha \in \mathcal{L}(\beta) \) and, by hypothesis, \(\mathcal{L}(\beta) \) is an ideal we have \(\alpha x \beta = 0 \) for any \(x \in G \). Thus
$\Theta(x^\beta \alpha) = 0$. By considering (α) for $\beta \alpha$ we conclude that $\beta \alpha = 0$.

In characteristic 2 we need the following

Lemma 4. Let K be a field of characteristic 2. Suppose that K does not contain any primitive 3-root of the unity. Put $Q = \langle a, b \rangle$. Then if $\alpha = \sum a_x x \in K[\langle a \rangle]$ such that $|\alpha| = 1$ (where $|\alpha| = \sum a_x$) we have

$$1 + (\alpha b)^2 = (1 + a^2)u$$

where $u \in K[\langle a \rangle]$ is a unit.

Proof. Let $\alpha = a_1 + a_2 a_3 + a_4 a_5 a_6 a_7 a_8 a_9 a_{10} \in K[\langle a \rangle]$ with $\sum a_i = 1$.

Then a calculation proves that

$$1 + (\alpha b)^2 = (1 + a^2)(1 + (a_1 + a_3)(a_2 + a_4)a).$$

Since Q is a 2-group and $\text{char} \ K = 2$ we know that $K[Q]$ is a local ring whose maximal ideal is $\{\alpha \in K[Q] : |\alpha| = 0\}$. Suppose by way of contradiction that $1 + (a_1 + a_3)(a_2 + a_4)a$ is not a unit. Then $(a_1 + a_3)(a_2 + a_4) = 1$, and since $\sum a_i = 1$ we see that $a_1 + a_3$ is a primitive 3-root of the unity. Since X does not contain any primitive 3-root of the unity we have a contradiction.

The Proof of Theorem I. Suppose that G is a nonabelian locally finite group and $K[Q]$ is l.a.r.i. Then Lemma 1(iii) yields that $G = Q \times A \times B$. First we observe that the case $\text{char} \ K > 2$ is not possible. Since $K[G]$ is l.a.r.i. clearly $K[Q]$ so. But in char > 2 we have

$$K[Q] \cong K \times K \times K \times K \times M(2, K)$$
and this is a contradiction, since \(M(2, K) \) is not l.a.r.i.

Suppose \(\text{char} K = 0 \). Let \(n \) be an exponent for \(A \) and let \(x \in A \)
such that \(o(x) = n \). Then \(K[<x>] \) is a product of fields

\[
K[<x>] \cong K(\xi_n) \times L_1 \times \cdots \times L_m
\]

where \(o(\xi_n) = n \). In other hand we have

\[
K[Q] \cong K \times K \times K \times K \times \left(\frac{-1,-1}{K} \right)
\]

where the last factor is the quaternion algebra over \(K \). Since

\[
K[Q \times <x>] = K[Q] \otimes_K K[<x>]
\]

we get that \(\left(\frac{-1,-1}{K} \right) \otimes_K K(\xi_n) = \left(\frac{-1,-1}{K(\xi_n)} \right) \)

is a direct factor of \(K[Q \times <x>] \) and so \(\left(\frac{-1,-1}{K(\xi_n)} \right) \) is l.a.r.i.

Therefore the quaternion algebra over \(K(\xi_n) \) is a division ring.

Conversely suppose that \(K[G] \) satisfies (i). Then we will prove

that \(K[G] \) is l.i.r.i. It follows from Lemma 1(i) that it

suffices to consider \(G \) finite. Then

\[
G \cong \mathbb{Q} \times A \times (\mathbb{Z}/2\mathbb{Z}) \times \cdots \times (\mathbb{Z}/2\mathbb{Z})^{2m}
\]

and we get

\[
K[G] = K[Q \times A] \times \cdots \times K[Q \times A]
\]

Clearly we can suppose that \(G = Q \times A \). Then it is easy to see

that

\[
K[G] = K[A] \times K[A] \times K[A] \times K[A] \times \prod_{i} \left(\frac{-1,-1}{K(\xi_i)} \right)
\]

where \(o(\xi_i) \) are exponents for \(A \). Hence we see that \(K[G] \) is
a product of l.i.r.i. rings. Therefore $K[G]$ is l.i.r.i.

Char $K = 2$. First we observe that if K contains a primitive 3-root of the unity, then $K[G]$ is not l.a.r.i. From Lemma 2 it suffices to exhibit elements $\alpha, \beta \in K[G]$ such that $\alpha \beta = 0$ but $\beta \alpha \not= 0$. If $\bar{3}$ is a primitive 3-root of the unity we set

\[\alpha = (1 + \bar{3})(1 + \bar{3}a)b \]
\[\beta = (1 + \bar{3}(1 + \bar{3}a)b)(1 + a)b. \]

A calculation proves that $\alpha \beta = 0$ but $\beta \alpha \not= 0$. We now prove that $G = Q \times A$. If this is not the case there exists an element $x \in G - Q$ of order 2 which centralizes G. Again there exist elements

\[\alpha = 1 + (a + b + ab)x \]
\[\beta = (a + b + ab)(1 + a) + (1 + a)x \]

such that $\alpha \beta = 0$ but $\beta \alpha \not= 0$ and so $K[G]$ is not l.a.r.i.

Let n be an exponent for A and $x \in A$ such that $o(x) = n$. Since char $K = 2$ we have that $K[<x>]$ is semisimple, and so

\[K[<x>] = K(\xi) \times \ldots \times L_m \] where $o(\xi) = n$.

Then $K[Q] \otimes K(\xi) \cong K(\xi)[Q]$ is a direct factor of $K[Q \times <x>].$ By hypothesis $K(\xi)[Q]$ is l.a.r.i. By above $K(\xi)$ does not contain any primitive 3-root of the unity. Therefore $2 \not| m$, where m is the degree of the extension $(\mathbb{Z}/2\mathbb{Z}(\xi))/\mathbb{Z}/2\mathbb{Z}$). But m is precisely the least integer satisfying $2^m \equiv 1 \pmod{n}$.

Conversely suppose that $K[G]$ satisfies (ii). We will prove that
$K[Q]$ is l.i.r.i.. Again from Lemma 1(i) we can consider that G is finite. Then

$$K[A] \cong K(\xi_1) \times \cdots \times K(\xi_n)$$

and so

$$K[Q \times A] \cong K(\xi_1)[Q] \times \cdots \times K(\xi_n)[Q].$$

By hypothesis the field $K(\xi_i)$ does not contain any primitive 3-root of the unity. Since a product of l.i.r.i. rings is a l.i.r.i., we have only to prove that if a field K does not contain any primitive 3-root of the unity, then $K[Q]$ is l.i.r.i.

Let $I \subseteq K[Q]$ a left ideal. Suppose that $\alpha \in I$. We can write α in the form $\alpha = \alpha_1 + \alpha_2 b$, where $\alpha_1, \alpha_2 \in K[<a>]$. The first task is to show that $\alpha_1(1+a^2) \in I$. Note that if $\alpha_1(1+a^2) \in I$, then, since $1+a^2$ is central, $\alpha_2 b(1+a^2) \in I$. Again $\alpha_2(1+a^2)$ is central and therefore $b \alpha_2(1+a^2) \in I$. Since I is a left ideal $\alpha_2(1+a^2) \in I$. Thus we need only to prove that $\alpha_1(1+a^2) \in I$. If α is a unit, then $I = K[Q]$. Thus we may suppose that α is not a unit. Then we have $|\alpha_1| + |\alpha_2| = 0$. Suppose that α_1 is a unit. Then $1+\alpha_1^{-1} \alpha_2 b \in I$. Clearly $1+(\alpha_1^{-1} \alpha_2 b) \in I$, so Lemma 4 yields that $1+a^2 \in I$. Hence $\alpha_1(1+a^2) \in I$. If α_1 is not a unit, then we have $|\alpha_1| = 0$ and hence $|\alpha_2| = 0$. Therefore $\alpha_1 = \beta_1(1+a)$ and $\alpha_2 = \beta_2(1+a)$ for suitable elements $\beta_1 \in K[<a>]$. Thus $\alpha = (\beta_1 + \beta_2 ab)(1+a)$. If $\beta_1 + \beta_2 ab$ is a unit we obtain that $1+a \in I$ and so $\alpha_1(1+a^2) = \alpha_1(1+a)^2 \in I$. Hence we may consider that $|\beta_1| + |\beta_2| = 0$. If β_1 is a unit, then $(1+\beta_1^{-1} \beta_2 ab)(1+a) \in I$. Again we use Lemma 4 and we get that $(1+a^2)(1+a) \in I$. Thus
\[\alpha_1(1+a^2) = \beta_1(1+a)(1+a^2) \in I. \] Finally if \(\beta_1 \) is not a unit we have \(\beta_1 = \gamma_1(1+a) \) for certain \(\gamma_1 \in K[<a>] \). Therefore

\[\alpha_1(1+a^2) = \gamma_1(1+a^2)(1+a^2) = 0 \quad \text{and, certainly, } \alpha_1(1+a^2) \in I. \]

Now we will prove that \(\alpha x \in I \) for any \(x \in Q \). Since \(Q = \langle a, b \rangle \) it suffices to see that \(\alpha a, \alpha b \in I \). By using the automorphism of \(Q \) given by \(a \mapsto b, b \mapsto a \) we see that we have only to prove that \(\alpha a \in I \). But

\[\alpha a = \alpha_1 a + \alpha_2 ba = a \alpha + ab \alpha_2(1+a^2). \]

Since \(a \in I \) and by above \(\alpha_2(1+a^2) \in I \), the result follows.

THE PROOF OF THEOREM II. (i) \(\implies \) (ii). It follows from Lemma 1 (ii) that all subgroups of \(G \) are normal. Since \(G \) is not abelian, it is a Hamilton group and, clearly, locally finite. If a ring is l.i.r.i., then it is l.a.r.i. Lemma 2 completes the proof. Trivially (ii) implies (iii). It follows from Th. I that (iii) implies (i). The result follows.

REFERENCES

ADDENDUM

In the paper entitled "Group rings in which every left ideal is a right ideal" by P. Menal, which appeared in Pub. Mat. U.A.B. 6 (1977) 97-105, the following has been omitted on p. 97: "Preprint. To appear in Proc. AMS".