CONSTRUCCIÓN RESPECTO DE HOMOMORFOS

Amparo Cortés Monleón

Dpto. de Algebra
Universidad de Valencia

"Para un homomorfo H, cerrado para subgrupos normales y para productos directos, saturado con la Z-propiedad se tienen los resultados siguientes: G / H-constricto, implica G (H-separable) -constricto, y si $G_H' = 1$, se verifica la equivalencia. En las condiciones dadas para el homomorfo H, la clase de los grupos H-constrictos, es de Fitting, extensible, no es homomorfo y verifica la condición segunda de formación."

1. Introducción y notación.

La notación utilizada será la standard en teoría de grupos vease [2]. Diremos que un subgrupo M de G es H-maximal, cuando sea maximal como H-subgrupo normal. Designaremos por $L(G)$ el radical semisimple de G. Los conceptos relativos a grupos semisimples pueden verse en [3].

En lo que sigue H será un homomorfo en las condiciones anteriores. Los resultados para H saturado, son válidos en general para H con la Z-propiedad, sin más que sustituir H' por 1.

(1.1) Proposición

Si H saturado, todo grupo nilpotente es producto directo de un H-grupo y de un H'-grupo. Si H verifica la Z-propiedad, todo grupo nilpotente es H-grupo.
(1.2) Teorema

Sea G un grupo con $G_{H'} = 1$. Sea $L(G)$ su radical semisimple, y designemos por $L_{H}(G)$ a $L(G)^{H}$, sea $K = L_{H}(G)M$, donde M es un subgrupo de G, H-maximal; entonces:

1) $L_{H}(G)$ es semisimple; 2) $[L_{H}(G), M] = 1$; 3) $L_{H}(G) \cap M = Z(L_{H}(G))$; 4) $(L_{H}(G))^{H'} = L_{H}(G)$; 5) $C_{G}(K) \leq M \leq K$

2. Constricción

(2.1) Definición

Un grupo G es H-consticto si $C_{G}(\bar{M}) \neq \bar{M}$, donde $\bar{G} = G/G_{H'}$, y \bar{M} es un subgrupo de \bar{G}, H-maximal.

(2.2) Teorema

Si $G_{H'} = 1$, y M es un H-maximal de G; son equivalentes:

1) G H-consticto; 2) $L(C_{G}(M)) = 1$; 3) $L(G)$ es H-grupo.

(2.3) Lema

Sea N, H'-subgrupo normal de G, entonces G es H-consticto si y solo si G/N lo es.

(2.4) Teorema bis

Para un grupo G, son equivalentes:

1) G H-consticto; 2) $L(C_{G}(\bar{M})) = 1$, siendo \bar{M} H-maximal de \bar{G}; 3) $L(\bar{G})$ H-grupo.

Observaciones: 1) Como consecuencia del teorema (1.2) y del teorema anterior, la definición de grupo H-consticto es independiente del maximal elegido.

2) Designaremos por C la clase de los grupos H-constictos. C no es homomorfo, ver [3].

Daremos a continuación algunas propiedades de la clase C.

(2.5) Proposición

Si G es H-consticto y $N \triangleleft G$, entonces N es H-consticto.
(2.6) Proposición
La clase C es extensible.

Nota: C verifica la Z - propiedad y es fuertemente saturada.

(2.7) Proposición
La clase C verifica la condición segunda de formación.

Demostración: Sean \(G/N_1 \) y \(G/N_2 \), H-constrictos, y \(N_1 \cap N_2 = 1 \). \(N_1N_2/N_1 \), es normal en \(G/N_1 \), luego \(N_1N_2/N_1 \) es H-constricto, y por tanto \(N_2 \) lo es. Por (2.6) \(G \) es H-constricto.

En este apartado se da un teorema de equivalencia entre \(G \) H-constricto y \(G \) (H-separable) - constricto y como consecuencia probaremos que la clase C es cerrada para producto de subgrupos normales.

(3.1) Definición
\(G \) es H-separable si posee una serie normal

\[
1 = G_0 \trianglelefteq G_1 \trianglelefteq \ldots \trianglelefteq G_n = G
\]

tal que los factores \(G_{i+1}/G_i \), son H-grupos \(\delta H' \)-grupos.

(3.2) Proposición
La clase de los grupos H-separables es formación de Fitting extensible y contiene a los grupos resolubles.

(3.3) Teorema
Si \(G \) H-separable, entonces \(G \) H-constricto.

Demostración: Sea \(\tilde{G} = G/G_H \), \(\tilde{G} \) es H-separable por tanto \(L_H(\tilde{G}) \) es H-separable. Sabemos que \(L_H(\tilde{G}) \) es semisimple y es producto de las componentes no H-grupos de \(L(\tilde{G}) \), por tanto \((L_H(\tilde{G}))^H = L_H(\tilde{G}) \). Por otra parte \((L_H(\tilde{G}))^H = L_H(\tilde{G}) \) por iv) del teorema (1.2).
Por ser $L_H(\bar{G})$ H-separable su H-serie descendente acaba en 1. Luego $L_H(\bar{G}) = 1$, de donde se seguiría $L(\bar{G})$ es H-grupo. Por tanto se tiene que \bar{G} es H-constricto y por Lema (2.3) G es H-constricto.

(3.4) Teorema

Si G es H-constricto, entonces G es (H-separable) -constricto. Si además $G_{H'}^H = 1$, se verifica la equivalencia.

Demostración: Si G H-constricto, $L(G/G_{H'})$ H-grupo, luego $L(G/G_{H'})$ H-separable y $G/G_{H'}$ (H-separable) - constricto, y por (3.2) G (H-separable) - constricto.

Si $G_{H'}^H = 1$ y G (H-separable) - constricto, $L(G)$ es H-separable, por (3.3) será H-constricto, luego $L(L(G)) = L(G)$ es H-grupo y por tanto G H-constricto.

Observación: Al ser la clase de los H-separables formación de Fitting saturada el producto de dos normales (H-separables) - constrictos es (H-separable) - constricto.

(3.5) Lema

Sean $M, N \not\leq G$, ambos H-constrictos y $(MN)_{H'} = 1$, entonces MN es H-constricto.

(3.6) Teorema

Sean $M, N \not\leq G$, ambos H-constrictos, entonces MN lo es.

Demostración: Sean \bar{M} y \bar{N}, definidos por $\bar{M} = M(MN)_{H'}^H/(MN)_{H'}$, $\bar{N} = N(MN)_{H'}^H/(MN)_{H'}$; Por ser $\bar{M} = M/M_\bar{M}$, $(MN)_{H'} = M/M_{H', \bar{N}}$, será H-constricto, lo mismo \bar{N}. Además $(\bar{M}\bar{N})_{H'} = 1$; luego por (3.5) $\bar{M}\bar{N}$, es H-constricto y por (2.3) MN es H-constricto.

BIBLIOGRAFÍA.

