CORRESPONDENCIAS DIVISORIALES ENTRE ESQUEMAS RELATIVOS

Daniel Hernández Ruipérez

Dpto. de Algebra y Fundamentos
Universidad de Salamanca

ABSTRACT. Let X, Y be schemes over S. The divisorial correspondences between X, Y are define to be the linear equivalence classes of divisors on $X \times_S Y$ modulo the inverse images of the divisors on each factor. The main result is that the divisorial correspondences are a scheme over S whose geometric fibres are finitely generated abelian groups. A metric tensor on the divisorial correspondences is also given generalizing the trace metric for correspondences on curves, and it verifies a Castelnuovo inequality saying that it is positive definite modulo torsion.

Las correspondencias divisoriales entre dos esquemas X, Y son las correspondencias algebraicas entre los puntos de X y los divisores de Y modulo la correspondencia lineal, esto es, tomando la gráfica, las clases de equivalencia lineal de divisores del esquema producto $X \times Y$. Se consideran correspondencias triviales las que asignan a todos los puntos divisores equivalentes a un único divisor y las inversas a las de este tipo, esto es, los divisores del producto que son linealmente equivalentes a sumas de divisores que vienen de los factores. En el caso relativo, sea S un esquema noetheriano y $f:X \to S$, $g:Y \to S$ esquemas sobre S y $h:Z = X \times_S Y \to S$ el producto. Las proyecciones $p:Z = X \times_S Y \to X$, $q:Z = X \times_S Y \to Y$ inducen morfismos de functores en grupos $p^*:\text{Pic}(X/S)_{et} \to \text{Pic}(Z/S)_{et}$, $q^*:\text{Pic}(Y/S)_{et} \to \text{Pic}(Z/S)_{et}$ entre los functores de Picard localizados para la topología etale.

Definición: Se define el functor de correspondencias divisoriales entre X/S e Y/S, como el haz sobre la topología etale $\underline{\text{C}}(X,Y)$ definido por la sucesión exacta:
Se verifica:

Teorema 1: Los divisores algebraicamente equivalentes a cero de un producto son linealmente equivalentes a sumas de divisores algebraicamente equivalentes a cero que provienen de los factores. Con más precisión, si \(f: X \rightarrow S \), \(g: Y \rightarrow S \) son planos, proyectivos y de fibras geométricas íntegras (de modo que existen los esquemas de Picard relativos, \([1]\)) el morfismo natural de esquemas en grupos algebraicos:

\[
p^* \otimes q^*: \text{Pic}^0(X/S) \times_S \text{Pic}^0(Y/S) \rightarrow \text{Pic}^0(X \times_SY/S)
\]

inducido entre "las componentes conexas del origen" de los esquemas de Picard \(([1])\), es epiyectivo.

Demostración: Daremos solamente una idea de la demostración. Si \(L \) es un haz de línea en \(X \times Y \) algebraicamente equivalente a cero es deformable al haz de anillos locales \(O \) mediante una variedad conexa de parámetros \(T \), esto es, existe un haz de línea \(\mathcal{L} \) sobre \(X \times Y \times T \) plano sobre \(T \) y dos puntos \(t_0, t_1 \) de \(T \) de modo que \(\mathcal{L}_{t_0} = 0, \mathcal{L}_{t_1} = L \).

Si se piensa \(L \) como un haz de línea relativo a \(X \times Y \rightarrow Y \), define un morfismo \(Y \rightarrow \text{Pic}^0X \). Basta con demostrar que su imagen es un punto, pues siendo \(M \) el haz de línea en \(X \) que define dicho punto será \(L = p^*M \otimes q^*N \) para cierto haz invertible \(N \) en \(Y \). Ahora bien dicho morfismo se deforma mediante el morfismo \(Y \times T \rightarrow (\text{Pic}^0X) \times T \) definido por \(\mathcal{L} \) a un morfismo \(Y = Y \times t_0 \rightarrow \text{Pic}^0X \) cuya imagen es un punto, luego por platividad su imagen ya era un punto \(([3], \text{Prop. 6.1})\). En el caso general se argumenta análogamente.

Por lo tanto el grupo de las correspondencias divisoriales resulta ser el cociente del grupo de Néron-Severi del producto \(NS(X \times_SY/S) = \text{Pic}(X \times_SY/S) / \text{Pic}^0(X \times_SY/S) \) módulo el producto de los grupos de Néron-Severi de los factores \(NS(X/S), NS(Y/S) \). Es decir:

Corolario: En las hipótesis del teorema existe una sucesión exacta de haces para la topología etale
\[
0 \rightarrow \text{NS}_{X/S} \times_S \text{NS}_{Y/S} \rightarrow \text{NS}_{X \times S/Y/S} \rightarrow \mathcal{C}(X,Y) \rightarrow 0
\]

siendo \(\text{NS}_{X/S} \) el functor "grupo de Néron-Severi" ([2]) de \(X/S \) y análogamente para \(Y \), y \(X \times S/Y \).

Se sigue:

Teorema 2: En las hipótesis del teorema el functor de correspondencias divisoriales se representa por un \(S \)-esquema, el esquema de las correspondencias divisoriales \(\mathcal{C}(X,Y) \) que es un esquema en grupos cuyas fibras geométricas son grupos abelianos finito-generados de rango acotado.

Demostración: La existencia es por verificación directa de las condiciones de Artín ([4], 5.3). La finitud por el teorema de la base ([2], th. 5.1).

Sea ahora \(X \) un esquema proyectivo íntegro de dimensión \(m > 1 \) y grado \(n \) sobre un cuerpo algebraicamente cerrado \(k \), y \(D \) una correspondencia divisorial de \(X \) en sí mismo. Un punto de \(X \) se transforma en un divisor \(D_2 \) de \(X \) cuyo grado se llama grado por la izquierda \(a \). Análogamente, por la correspondencia inversa un punto se transforma en un divisor \(D_1 \) cuyo grado \(b \) es el grado por la derecha. También se consideran los grados por la izquierda y derecha de la intersección \(c = \text{gr} \ D_2 \cdot D_2 \),

\[d = \text{gr} \ D_1 \cdot D_1 \]. Con precisión, si \(p_1, p_2 : X \times X \rightarrow X \) son las proyecciones \(H \) es la sección hiperplana de \(X \) y \(H_1 = p_1^*H \), \(H_2 = p_2^*H \) se tiene:

\[D \cdot H_1^m \cdot H_2^{m-1} = na \], \(D \cdot H_2^m \cdot H_1^{m-1} = nb \), \(D \cdot D_1 \cdot H_1^m \cdot H_2^{m-2} = nc \), \(D \cdot D_2 \cdot H_2^m \cdot H_1^{m-2} = nd \)

Si \(D' \) es otra correspondencia divisorial, sean \(e \) y \(f \) las coincidencias de \(D \), \(D' \) y de sus inversos respectivamente, esto es

\[D \cdot D' \cdot H_1^m \cdot H_2^{m-2} = ne \], \(D \cdot D' \cdot H_2^m \cdot H_1^{m-2} = nf \). Se define una métrica sobre el grupo de las correspondencias divisoriales por:

\[
T_2(D,D') = n^3 \left(\frac{2m-1}{m-1} \right) \left(\frac{m}{m-1} \right) (cc'bb' + aa'd'd') + 2(cba'd' + c'b'ad) + \\
+ 2(aa' + bb')(cc' + dd') - \frac{nm}{m-1} (cc'f + dd'e) - 2(cc' + dd')T_r(\tilde{D}, \tilde{D}')
\]

siendo \(\tilde{D}, \tilde{D'} \) las correspondencias inducidas por \(D \), \(D' \) en la curva \(H_1^{m-1} \) de \(X \) y \(T_r(\tilde{D}, \tilde{D}') = aa' + bb' - D \cdot D' \cdot H_1^m \cdot H_2^{m-2} \) la métrica de la traza para las correspondencias en curvas ([5]). Como en curvas se verifica

251
Teorema 3 (Desigualdad de Castelnuovo): Para toda correspondencia divisorial \(D \), es \(T(D,D) > 0 \) y \(T(D,D) = 0 \) si y solo si \(n(c+d)D = 0 \) en el grupo de correspondencias divisoriales. Por tanto:

- La métrica inducida en el grupo \(C(X,X) / \text{Torsión} \) es definido positiva.
- El radical de la métrica \(T_2 \) es el subgrupo de torsión de \(C(X,Y) \).

Demostración: \(T_2(D,D) = -E^2 \cdot (H_1 + H_2)^{2m-2} \) siendo \(E = n(c+d)D - daH_2 - cbH_1 - ncp^*D_2 - ndp^*D_1 \). Como \(E \cdot (H_1 + H_2)^{2m-1} = 0 \) se sigue del teorema del índice de Hodge ([2], Cor. 7.4) que \(T_2(D,D) > 0 \) y \(T_2(D,D) = 0 \) si y solo si \(E \) es numéricamente equivalente a cero. Se concluye por el siguiente lema que se demuestra como el teorema 1.

Lema: Si \(X, Y \) son esquemas proyectivos íntegros sobre un cuerpo algebraicamente cerrado \(k \), el morfismo natural de esquemas en grupos:

\[
\text{Pic}^+(X) \times \text{Pic}^+(Y) \xrightarrow{\text{P}^* \otimes q^*} \text{Pic}^+(X \times Y)
\]

entre los grupos de divisores numéricamente equivalentes a cero, es un epimorfismo.

Sea ahora \(X, Y \) esquemas proyectivos lisos y conexos sobre un cuerpo \(k \). Las correspondencias divisoriales \(C(X,Y) \) se identifican formalmente con los morfismos de \(X \) en el esquema de Picard de \(Y \), \(\text{Pic}(Y) \), módulo traslaciones, por tanto se tendrá, dado que \(X \) es reducido

\[
C(X,Y) = \text{Hom}(X, \text{Pic}(Y)_{\text{red}}) / \text{Traslaciones} = \text{Hom}(X, \text{Pic}^0(Y)_{\text{red}}) / \text{Traslaciones}
\]

Como \(\text{Pic}^0(Y)_{\text{red}} \) es una variedad abeliana ([1], 3.2), si \(A(X) \) denota la variedad de Albanese de \(X \), ([1], 5.4) se tendrá:

\[
C(X,Y) = \text{Hom}_{\text{grupo}}(A(X), \text{Pic}^0(Y)_{\text{red}})
\]

De donde

Teorema: Si \(X, Y \) son proyectivas lisas y conexas sobre un cuerpo \(k \), el esquema de correspondencias divisoriales es un grupo abeliano finito generado libre.

Si \(X = Y \), la métrica \(T_2 \) antes definida es definido positiva.
REFERENCIAS: