ALGUNAS PROPIEDADES DE $C_c(X,E)$

José Mendoza Casas

Dpto. de Teoría de Funciones
Universidad Complutense de Madrid

ABSTRACT: Let $C_c(X,E)$ be the space of continuous functions from the completely regular Hausdorff space X into the locally convex Hausdorff space E, endowed with the compact-open topology. Our aim is to characterize when this space is barrelled, evaluative, bornological or ultrabornological. We obtain necessary conditions by proving that $C_c(X)=C_c(X,K)$ and E are (isomorphic to) complementary subspaces of $C_c(X,E)^c$. After we partially reduce this problem to the case X compact and so we obtain some sufficient conditions, which generalize previous results of Schmets.

Sea X un espacio completamente regular y Hausdorff $y E$ un espacio localmente convexo (e.l.c.) Hausdorff. Al espacio de las funciones continuas de X en E lo notaremos $C(X,E)$ (simplemente $C(X)$ si E es el cuerpo escalar). No notaremos $C_c(X,E)$ (resp. $C_c(X)$) a $C(X,E)$ (resp. $C(X)$) dotado de la topología compacta-abierta, es decir, de la topología de e.l.c. dada por la familia de seminormas $\{r_{K,P}: K \in \mathcal{K}, P \in \mathcal{P}\}$ donde \mathcal{K} es la familia de los subconjuntos compactos de X, \mathcal{P} la de las seminormas continuas en E y $r_{K,P}(\phi)=\sup\{p(\phi(x)): x \in K\}$ si $\phi \in C_c(X,E)$.

Siguiendo la línea de Schmets, buscamos condiciones en X y E para que $C_c(X,E)$ sea tonelado, infratonelado, bornológico o ultrabornológico. Daremos sistemáticamente estas propiedades en el e.l.c. $C_c(X)$ como propiedades de X. Esto no será problema ya que están perfectamente caracterizados los espacios X para los que $C_c(X)$ tiene cada una de estas propiedades $[1,2,6,7]$. La proposición 1 nos permitirá obtener condiciones necesarias; después daremos algunas suficientes.

Agradezco sinceramente a Fernando Bombal su dirección en este trabajo.
1. **Proposición:** \(C_*(X) \) y \(E \) son topológicamente isomorfos a subespacios de \(C_*(X,E) \) que admiten complementario topológico.

Demo.: Sea \(x \in X \), \(f \in C(X) \) tal que \(f(x) = 1 \), e\(\in E \) y e'una forma lineal y continua en E tal que \(<e,e'> = 1 \). Consideremos las siguientes aplicaciones:

\[
\begin{align*}
\delta_x : C_*(X,E) & \to E \\
\delta_f : C_*(X,E) & \to C_*(X,E) \\
\delta_e : C_*(X,E) & \to C_*(X,E)
\end{align*}
\]

\[
\delta_x(\phi) = \phi(x), \quad \delta_f(e) = f(\cdot)e, \quad <e', \phi> = \phi(\cdot)e', \quad \delta_e(g) = g(\cdot)e.
\]

Es fácil ver que estas aplicaciones son continuas y que verifican ademáes

\[
\begin{align*}
\delta_f \circ \delta_x &= \delta_{f \cdot x} \\
\delta_x \circ \delta_f &= \delta_{x \cdot f} \\
\delta_e \circ <e', \phi> &= \delta_e \circ \phi(\cdot)e
\end{align*}
\]

y \(<e'> \circ \delta_e = \delta_{C(X)} \), donde \(\delta_f, \delta_I \), etc. son las respectivas identidades. Pero de aquí se sigue inmediatamente el resultado enunciado.

2. **Observaciones:** Siguiendo la misma demostración, la proposición anterior se puede enunciar de forma más general en los espacios \(C_p(X,E) \) de Schmet [3].

Por la proposición 1 tanto \(E \) como \(C_*(X) \) heredan en general las propiedades usuales del e.l.c. \(C_*(X,E) \). Así, sin tener que estudiar separadamente cada caso, podemos afirmar inmediatamente que si \(C_*(X,E) \) es tonelado (resp. infratonelado etc.) \(C_*(X) \) y E también son tonelados (resp. infratonelados, etc.).

Al espacio de las funciones continuas de X en E con imagen relativamente compacta, dotado de la topología de la convergencia uniforme lo notaremos \(C_0(X,E) \). Es claro que la inyección canónica de \(C_0(X,E) \) en \(C_*(X,E) \) es continua y que si \(\beta X \) es la compactificación de Stone-Cech de X, \(C_*(\beta X,E) \) es topológicamente isomorfo a \(C_0(X,E) \).

3. **Teorema:** Si \(C_*(X) \) y \(C_*(\beta X,E) \) son espacios tonelados (resp. infratonelados) entonces \(C_*(X,E) \) es también un espacio tonelado (resp. infratonelado)

Demo.: Sea \(\forall x \in C_*(X,E) \) un tonel (resp. tonel bornívoro) en \(C_*(X,E) \). Si \(C_*(X) \) es tonelado (resp. infratonelado), de las caracterizaciones de [2,6] y [7] y de las proposiciones IV.3. y IV.4.a) de [4] se deduce que el soporte de la polar de V [4], sop(V°), es un relativamente compacto de X. Además, basándonos fundamentalmente en el teorema de la bipolar, se demuestra que el soporte de V [3], K(V), coincide con la adherencia de sop(V°), y por tanto que K(V) es un compacto de X. Por otra parte, por la observación anterior, \(V \cap C_0(X,E) \) es un tonel (resp. tonel bornívoro) y por la hipótesis un entorno de cero en \(C_0(X,E) \), es decir, existe una seminorma continua p en E talque

\[
(*) \quad V \ni V \cap C_0(X,E) \ni V_p = \{ \phi \in C_0(X,E) : p(\phi(x)) < 1 \ \forall x \in X \}
\]

196
Es claro que la adherencia de V en $C_c(X,E)$ está contenida en $U_p=\{ p \in C_c(X,E): p(x)\leq 1 \ \forall x \in X \}$; pero además se da la igualdad: si $\phi \in U_p$, $K \subset X$ es compacto y q es una seminorma continua en E existe un recubrimiento abierto finito de K, $\{U_i\}_{i=1}^n$, tal que si $x,y \in U_i$ ($1 \leq i \leq n$), $q(\phi(x) - \phi(y)) < 1$; y existe también una partición continua de la unidad en X, $\{f_i\}_{i=1}^n$, que está subordinada a $\{U_i\}_{i=1}^n$ en K; entonces, si $e_i \in \phi(U_i)$ ($1 \leq i \leq n$) se tiene

$$\sum_{i=1}^n f_i(\cdot)e_i \in \bigcup_{K} q(\phi - \sum_{i=1}^n f_i(\cdot)e_i) = \sup(q(\sum_{i=1}^n f_i(\cdot)e_i)) \leq \sup_{x \in K} q(\phi(x) - e_i) \leq 1.$$

Así, como V es cerrado en $C_c(X,E)$, de (*) se deduce $V \supset U_p=\{ p \in C_c(X,E): p(x)\leq 1 \ \forall x \in X \}$ pero de aquí, por ser $K(V)$ un compacto de X y por el teorema 5.1.b) de [3] concluimos que V es un entorno de cero en $C_c(X,E)$.

Observemos que el teorema anterior junto con la proposición 1 reduce en parte el problema de saber cuando $C_c(X,E)$ es tonelado o infratonelado al caso en que X es compacto. Nos dice en particular que si $C_c(X)$ es tonelado (resp. infratonelado) y E es tal que $C_c(K,E)$ es tonelado (resp. infratonelado) si K es compacto, entonces $C_c(X,E)$ es tonelado (resp. infratonelado).

Esto nos permite extender algunos resultados conocidos [4] y afirmar p.e.:

4. **Corolario:** Si E es límite inductivo compactamente regular (ver [4]) de una sucesión creciente de espacios de Fréchet (resp. metrizables) y $C_c(X)$ es tonelado (resp. infratonelado), entonces $C_c(X,E)$ es tonelado (resp. infratonelado).

Dem.: Basta tener en cuenta la observación anterior y que como se ve en [4], en la hipótesis, si K es compacto, $C_c(K,E)$ es límite inductivo de espacios de Fréchet (resp. metrizables) y por tanto tonelado (resp. infratonelado).

Observe que los límites inductivos estrictos son compactamente regulares.

5. **Corolario:** Sea $\{E_i\}_{i \in I}$ una familia de e.l.c. tal que para cada $i \in I$ E_i es un límite inductivo compactamente regular de una sucesión creciente de espacios de Fréchet (resp. metrizables), entonces si $C_c(X)$ es tonelado (resp. infratonelado) $C_c(X,\prod_{i \in I} E_i)$ es tonelado (resp. infratonelado).

Dem.: Es consecuencia del corolario anterior ya que es fácil comprobar que $C_c(X,\prod_{i \in I} E_i)$ es topológicamente isomorfo a $\prod_{i \in I} C_c(X,E_i)$.

6. **Teorema:** Sea X localmente compacto y repleto $[1,2,6]$, y E tal que $C_c(\beta X,E)$ es bornológico (resp. ultrabornológico), entonces $C_c(X,E)$ es bornológico (resp. ultrabornológico).

197
Dem.: Sea $V \in C(X,E)$ un disco bornívoror (resp. un disco que absorbe a los discos de Banach acotados), es fácil ver que $V \cap C_0(X,E)$ es también un disco bornívoror (resp. un disco que absorbe a los discos de Banach acotados) en $C_0(X,E)$ y así, por la hipótesis, es un entorno de cero en $C_0(X,E)$, es decir, existe una seminorma continua p en E tal que

$$(*) \quad V \ni V \cap C_0(X,E) \ni \{ \psi \in C_0(X,E) : p(\psi(x)) < 1 \ \forall x \in X \}$$

Por la proposición 5.6. de [3] $K(V)$ es un subconjunto compacto de X, veamos que $V \ni V \subseteq K(V)$, y habremos terminado: sea $\phi \in K(V)$, y consideremos $G = \{ x \in X : p(\phi(x)) < 1 \}$; por la compactidad local existe un abierto relativamente compacto G_0 tal que $K(V) \subseteq \overline{G}_0 \subseteq G$, y existe también $f \in C(X)$, f con soporte compacto contenido en G, idénticamente 1 en G_0 y tal que $f(x) \in [0,1]$; $f(.) \phi(.) \in C_0(X,E)$ y existe $r < 1$ tal que $p(f(x) \phi(x)) < r$, es decir, $\frac{1}{r} p(f(x) \phi(x)) < 1$ para todo $x \in X$, y entonces, por $(*)$, $\frac{1}{r} f(.) \phi(.) \in E$; por otra parte $f(.) \phi(.)$ coincide con ϕ en G_0 y así por el teorema 5.1.a) de [3] $\frac{1}{1-r} (\phi-f(.) \phi(.)) \in E$; como V es un disco

$$r[\frac{1}{r} f(.) \phi(.)] + (1-r)[\frac{1}{1-r} (\phi-f(.) \phi(.))] = \phi \in E.$$

Con la restricción de la compactidad local las observaciones que hicimos a continuación del teorema 3 se trasladan aquí fácilmente.

BIBLIOGRAFÍA

