Realizability of localized groups and spaces

J. Aguadé

The theory of localization of nilpotent groups and spaces (see [4] for a reference) associates to each nilpotent group (space) G, a family $\{G_p\}$ of nilpotent groups (spaces), G_p p-local. In this paper we study the problem of deciding if given a family $\{G(p)\}$ of groups (spaces) there is a group (space) G such that $\{G(p)\}$ coincides with the family of localizations of G. We obtain necessary and sufficient conditions for an affirmative answer (see § 3 for a precise definition).

In the last section of this paper we apply the preceding results to the problem of fibering a space by a subspace. We show that under certain conditions it is a "local" problem in the sense that a space E can be fibered by a subspace F if and only if the localizations E_p can be fibered by F_p for all p.

All spaces are assumed to be of the homotopy type of CW complexes.

1. Realizability of localized groups

In this section we consider the following problem: Let $\{G(p)\}$ be a family of nilpotent groups of class $\leq c$, $G(p)$ p-local, and let $G(p) \rightarrow G(o)$ be ω-localization (i.e. all groups $G(p)$ have isomorphic rationalizations).

We want to obtain necessary and sufficient conditions in order to insure the existence of a group G with p-localizations isomorphic to $G(p)$. More precisely, we say that a nilpotent group G of class $\leq c$ solves the problem if:

a) There are isomorphisms $G_p \cong G(p)$ and $G_o \cong G(o)$;
b) the following diagram is commutative:

\[
\begin{array}{ccc}
G_p & \xrightarrow{\cong} & G(p) \\
\downarrow & & \downarrow \\
G_o & \xrightarrow{\cong} & G(o)
\end{array}
\]

Notice that the homomorphisms \(G(p) \longrightarrow G(o) \) are data of the problem. This is important because it is known that there are non-isomorphic groups with isomorphic localizations (see [4], p.33), whereas, at least if the group \(G \) is finitely generated, \(G \) is completely determined by the homomorphism \(G_p \longrightarrow G_o \). Note also that the problem does not always have a solution. A counterexample can be constructed by taking \(G(p) = \mathbb{Z}(p) \), \(G(o) = \mathbb{Q} \) and \(G(p) \longrightarrow G(o) \) multiplication by \(p \). We will see later that there is no group \(G \) solving the problem in this case. Clearly, if we omit the condition b), we can take \(G = \mathbb{Z} \).

Theorem 1.1 With the above notations let us consider the following conditions:

i) the problem has a solution;

ii) there exists \(\rho: G(o) \longrightarrow (\prod G(p))_o \) such that if \(h_p \) is the rationalization of the canonical projection \(\prod G(p) \longrightarrow G(p) \), then the following diagram is commutative:

\[
\begin{array}{ccc}
G(o) & \longrightarrow & G(p) \\
\downarrow & & \downarrow h_p^{-1}
\end{array}
\]

iii) let us denote \(H_p = \text{Im}(G(p) \longrightarrow G(o)) \), \(H = \cap H_p \). Given \(x \in G(o) \) there exists \(n \) such that \(x^n \in H \).
Then we have: $i \Rightarrow ii \Rightarrow iii$ and if the groups $G(p)$ are torsion free abelian groups then all three conditions are equivalent.

Proof: $i \Rightarrow ii$. Let G be a group solving the problem. We can define ρ as the composition $G(o) \xrightarrow{\cong} G_o \rightarrow (\Pi G(p))_o$ where the second map is the rationalization of the composition $G \rightarrow \Pi G \xrightarrow{\cong} \Pi G(p)$.

$i \Rightarrow iii$. It suffices to prove iii for G_p and G_o instead of $G(p)$ and $G(o)$. Given $x \in G_o$, there exist n such that $x^n = ry$, $y \in G$, $r: G \rightarrow G_o$ the rationalization. Let us consider the p-localizations of y, $x_p \in G_p$. Then x_p rationalizes to x and $x^n \in H$.

$ii \Rightarrow i$. If there exists ρ, we define G as the pullback

\[
\begin{array}{ccc}
G & \rightarrow & \Pi G(p) \\
\downarrow & & \downarrow r \\
G(o) & \xrightarrow{\rho} & (\Pi G(p))_o
\end{array}
\]

G is a nilpotent group of class $\leq c$. Composing the top homomorphism with the canonical projections $\Pi G(p) \rightarrow G(p)$ we obtain homomorphisms $g_p: G \rightarrow G(p)$. We will show that g_p is a p-localization i.e. g_p is a p-isomorphism. From the hypothesis on ρ we obtain the commutativity of the diagram:

\[
\begin{array}{ccc}
G & \xrightarrow{g_p} & G(p) \\
\downarrow & & \downarrow \\
G(o) & &
\end{array}
\] (1)

We have

\[G = \{((x_q), y)| x_q \in G(q), y \in G(o) \text{ and } r((x_q)) = \rho y \}. \]
Let us assume \(g_p((x_q), y) = 1 \), i.e. \(x_p = 1 \). Then the above diagram yields \(y = 1 \) and so \(r((x_q)) = \rho y = 1 \). Since \(r \) is a 0-isomorphism, there exists \(n \) such that \((x_q^n) = 1 \). But \(x_q \) belongs to the q-local group \(G(q) \), hence we can assume \((n, p) = 1\) and so we have proved that \(g_p \) is a p-monomorphism.

Let \(x_p \in G(p) \). We have to see that there exists \(m \) such that \((m, p) = 1\) and \(x_p^m = g_p a \) for some \(a \in G \). Let \(y = rx_p \in G(o) \), \(z = \rho y \in (\pi G(p))_0 \). Then, \(h_p z = y \). Since \(r: \pi G(p) \to (\pi G(p))_0 \) is a 0-isomorphism, there exists \(n \) such that \(z^n = r((x_q)) \). Since \(x_q \in G(q) \) and this group is q-local, if \(q \neq p \) we can take \(x_q = x_q^{p^k} \) with \(h = p^k m \) and \((p, m) = 1\). On the other hand \(x_q^{p^k} \) goes to \(y^n = rx_p^n \). Since \(G(p) \to G(o) \) is a q-isomorphism, we have \(x_p^{p^k m} = x_p^{p^k + t m} \) and we take \(x_p^{p^k} = x_p^m \). Let us consider \((x_q') \in \pi G(p) \). We have:

\[
(z_p^{p^k + t m} = r((x_q')^{p^k + t m}) = r((x_q')^{p^k + t}) = r((x_q'))^p \in (\pi G(p))_0
\]

Since \((\pi G(p))_0 \) is o-local, we obtain \(r((x_q')) = z^m \) and \(g_p((x_q'), y^m) = x_p^{p^k} = x_p^m \) with \((m, p) = 1\). This proves that \(g_p \) is a p-epimorphism.

Let us see now that the group \(G \) solves the problem. Since we have proven that \(g_p: G \to G(p) \) is a p-localization, we have an isomorphism \(G_p \cong G(p) \). Moreover, since the diagram \((1)\) is commutative, the homomorphism \(G \to G(o) \) is a 0-isomorphism and we have an isomorphism \(G_o \cong G(o) \). We only have to see that the diagram

\[
\begin{array}{ccc}
G_p & \cong & G(p) \\
\downarrow & & \downarrow \\
G_o & \cong & G(o)
\end{array}
\]

is commutative, but this follows from the fact that it is obtained from

72
by localization. This ends the proof of \(ii \Rightarrow i \). Let us assume now that the groups \(G(p) \) are torsion free abelian groups and let us show that \(iii \Rightarrow ii \).

Given \(x \in G(o) \), let \(n \) be such that \(nx \in H \). Then for each \(p \) there is a uniquely determined \(x_p \in G(p) \) such that \(nx = rx_p \). We take \(z = (x_p) \in \Pi G(p) \) and we define \(px = z' \in (\Pi G(p))_0 \) where \(z' \) is such that \(nz' = rz \). It is then clear that \(z' \) does not depend on the \(n \) we have chosen. In this way we obtain an homomorphism \(\rho : G(o) \rightarrow (\Pi G(p))_0 \).

This ends the proof of the theorem. \(\Box \)

Now we can see that if we take \(G(p) = \mathbb{Z}(p), G(o) = \mathbb{Q} \) and \(G(p) \rightarrow G(o) \) multiplication by \(p \), then there is no group \(G \) solving the problem because condition \(iii \) in the above theorem is not satisfied.

Theorem 3.1 in [3] proves that for a given \(\rho \) the solution is uniquely determined.

We will study now under what conditions a family \(\{ G \rightarrow H_p \}_p \) of homomorphisms, where \(G \) and \(H \) are nilpotent groups, comes from a homomorphism \(G \rightarrow H \). A necessary condition is that the family \(\{ G \rightarrow H_p \}_p \) should be rationally coherent i.e. for all primes \(p, q \) the diagram

\[
\begin{array}{ccc}
G & \longrightarrow & H_p \\
\downarrow & & \downarrow \\
H_q & \longrightarrow & H_o
\end{array}
\]

should be commutative. If \(H \) is finitely generated this condition is also sufficient ([4], p.26). In general we have:
Proposition 1.2 A rationally coherent family of homomorphism \(\{ G \to H_p \}_p \) comes from a homomorphism \(G \to H \) if and only if the induced diagram

\[
\begin{array}{ccc}
H_0 & \xrightarrow{p} & (\pi H_p)_0 \\
\uparrow & & \uparrow \\
G_0 & \xrightarrow{p} & (\pi G_p)_0
\end{array}
\]

is commutative.

Proof: The "only if" part is trivial. If the above diagram commutes we have:

\[
\begin{array}{ccc}
G & \xrightarrow{\Phi} & \pi H_p \\
\downarrow \phi & & \downarrow \\
H & \to & (\pi H_p)_p
\end{array}
\]

and we get \(\phi \) because the square is a pullback \((\mathbb{I}3)\).

2. Realizability of localized spaces

Let \(\{ B(p) \} \) be a family of nilpotent connected spaces, \(B(p) \) \(p \)-local, and let \(B(p) \to B(o) \) be rationalizations (i.e. all spaces \(B(p) \) have homotopy equivalent rationalizations). We ask for the existence of a nilpotent space \(B \) and homotopy equivalences \(B_p \sim B(p) \), \(B_o \sim B(o) \) such that the following diagram is homotopy commutative:

\[
\begin{array}{ccc}
B_p & \xrightarrow{\sim} & B(p) \\
\downarrow & & \downarrow \\
B_o & \xrightarrow{\sim} & B(o)
\end{array}
\]
If such a space B exists we say that B solves the problem. First of all, a necessary condition for the existence of a solution is that $\pi B(p)$ must be a nilpotent space. It is not difficult to see that this is equivalent to say that there exist integers c_n, $n \geq 1$ such that $\pi_1 B(p)$ is a nilpotent group of class $\leq c_1$ and $\pi_1 B(p)$ is a nilpotent $\pi_1 B(p)$-module of class $\leq c_n$, for all p. From now on we assume $\pi B(p)$ nilpotent.

We have seen in the last section that the realizability problem for groups does not always have a solution. The same holds for spaces because if $G(p) \rightarrow G(o)$ is a counterexample for groups, we can consider $K(G(p),1) \rightarrow K(G(o),1)$.

Theorem 2.1 There exists a nilpotent space B solving the problem if and only if there is a map $\rho : B(o) \rightarrow (\pi B(p))_o$ such that if h_p is the rationalization of the map $\pi B(p) \rightarrow B(p)$, then the following diagram commutes up to homotopy:

$$
\begin{array}{ccc}
B(o) & \rightarrow & B(p) \\
\downarrow_{h_p} & & \downarrow \\
B(p)_o & & \\
\end{array}
$$

Proof: If B is given we take ρ to be the rationalization of the composition $B \rightarrow \pi B_0 \rightarrow \pi B(p)$. Conversely, let us assume that there exists a map ρ satisfying the hypothesis of the theorem. For each $i \geq 1$, we define the group G_i as the pullback

$$
\begin{array}{ccc}
G_i & \rightarrow & \pi_i B(p) \\
\downarrow & & \downarrow_{r_*} \\
\pi_i B(o) & \rightarrow & (\pi_i B(p))_o
\end{array}
$$
Then G^i is a nilpotent group (abelian if $i > 1$) whose localized groups coincide with the $\pi_1 B(p)$. By [3], the diagram is bicartesian and we have exact sequences:

\[
G^i \longrightarrow \pi_1 B(o) \oplus \pi_1 B(p) \xrightarrow{<\rho^*, -r^*>} (\pi_1 B(p))_0
\]

(2)

\[
G^1 \longrightarrow \pi_1 B(o) \times \pi_1 B(p) \longrightarrow (\pi_1 B(p))_0
\]

We define the space B as the (weak) pullback

\[
\begin{array}{ccc}
B & \longrightarrow & \pi B(p) \\
\downarrow & & \downarrow r \\
B(o) & \longrightarrow & (\pi B(p))_0
\end{array}
\]

(3)

If we apply ([3], 3.4) to the diagram (1) we see that every $z \in (\pi_1 B(p))_0$ can be expressed as $z = r^* x \cdot \rho^* y$ and this implies, by [4], II. 7.11, that B is connected. Since $\pi B(p)$ is nilpotent, [4], II.7.6 implies that B is also nilpotent.

The homotopy Mayer-Vietoris exact sequence of the (weak) pullback (3) yields ([2]):

\[
\ldots \longrightarrow \pi_1 B \longrightarrow \pi_1 B(o) \oplus \pi_1 B(p) \xrightarrow{<\rho^*, -r^*>} (\pi_1 B(p))_0 \longrightarrow \ldots
\]

(4)

Since (1) is a pullback we have a canonical homomorphism $\pi_1 B \longrightarrow G^i$ and it follows from (2) and (4) that it is an isomorphism. Then $B \longrightarrow B(p)$ is a p-localization because $\pi_1 B \longrightarrow \pi_1 B(p)$ is also a p-localization. The rest of the proof is formally analogous to that of 1.1. □

Theorem 3.3 in [3] proves that for a given map ρ the solution is uniquely determined up to homotopy.

76
There is also an analogous of proposition 1.2.:

Proposition 2.2 A rational cohomology of maps \((X \to \to Y)_p \) comes from a map \(X \to \to Y \) if and only if the induced diagram

\[
\begin{array}{ccc}
Y_0 & \to & (\prod Y)_0 \\
\uparrow & & \uparrow \\
X_0 & \to & (\prod X)_0
\end{array}
\]

commutes up to homotopy. \(\square \)

3. **The problem of fibering a space by a subspace**

Let \((E,F)\) be a couple of nilpotent spaces, i.e. \(F\) is a subspace of \(E\). We say that \((E,F)\) is a fiber couple if there exists a nilpotent space \(B\) and a map \(E \to \to B\) such that \(F \to \to E \to \to B\) is homotopically equivalent to a fibration. In other words, there is a homotopy commutative diagram

\[
\begin{array}{ccc}
F & \to & E & \to & B \\
\downarrow & & \downarrow & & \nearrow \\
F & \to & \tilde{E} & \to & B
\end{array}
\]

where \(F \to \to \tilde{E} \to \to B\) is a fibration and the vertical arrows are homotopy equivalences. By [1] p.60, the fibration \(F \to \to \tilde{E} \to \to B\) turns out to be nilpotent.

To characterize fiber couples is one of the problems listed in [5].

It is not difficult to prove the following result:

Lemma 3.1 \((E,F)\) is a fiber couple if and only if there exists a nilpotent space \(B\) and a map \(p : E \to B\) such that i) \(p_F \sim \ast\); ii) \(p_\ast : \pi_i(E,F) \to \pi_iB\) is an isomorphism for all \(i\). \(\square \)

Our goal is to relate the fact that \((E,F)\) is a fiber couple to the fact that \((E_p,F_p)\) are fiber couples for all primes \(p\). The equivalence of
bouth assertions will be obtained only under certain hypothesis.

We say that \((E, F)\) is a nice couple if \(F_0 = \ast\) or \(F \longrightarrow E\) is a rational homotopy equivalence. Recall that a space \(X\) is called quasifinite if the homotopy groups \(\pi_n X\) are finitely generated for all \(n \geq 1\) and \(H_n X = 0\) for \(n\) sufficiently large.

Theorem 3.2 Let \(F\) be a quasifinite space and let \((E, F)\) be a nice couple. \((E, F)\) is a fiber couple if and only if \((E_p, F_p)\) is a fiber couple for all primes \(p\).

Proof: Since localization preserves fibrations, only the part "if" of the theorem needs a proof. Let us assume we have nilpotent fibrations \(F_p \longrightarrow E_p \longrightarrow B(p)\) for all \(p\). The exact homotopy sequence of these fibrations yields that \(B(p)\) is a \(p\)-local space. Since \((E, F)\) is a nice couple we have homotopy equivalences \(B(p)_0 \sim B(q)_0\). In order to construct a space \(B\) whose localizations coincide with the \(B(p)\), we have to see that \(\pi B(p)\) is nilpotent but since we have fibrations \(F_p \longrightarrow E_p \longrightarrow B(p)\), the nilpotency class of the homotopy groups of \(B(p)\) is bounded because the same holds for \(E_p\) and \(F_p\). Let us consider the diagram:

\[
\begin{array}{ccc}
F_0 & \longrightarrow & E_0 \\
\rho & \downarrow & \rho \\
(\pi F)_0 & \longrightarrow & (\pi E)_0 \\
& \rho & \longrightarrow \pi B(p)_0
\end{array}
\]

and the existence of the dotted map \(\rho\) follows from the fact that the couple \((E, F)\) is a nice one. Moreover the hypothesis of theorem 2.1 are fulfilled and we obtain a space \(B\) such that \(B_p \sim B(p)\).

We have to construct a map \(E \longrightarrow B\). Since we have compatible maps \(E_p \longrightarrow B_p\) we can apply proposition 2.2 and we get a map \(E \longrightarrow B\). It remains only to show that \(E \longrightarrow B\) is homotopy equivalent to a fibration.
Since F is quasifinite, the composition $F \rightarrow E \rightarrow B$ is homotopically trivial ([4], p. 89) and since $\pi_i(E_p, F_p) \rightarrow \pi_i(B_p)$ is an isomorphism for all p, all i, then $\pi_i(E,F) \rightarrow \pi_i B$ is also an isomorphism. Hence (E,F) is a fiber couple. □

References

Universitat Autònoma de Barcelona

and

Forschungsinstitut für Mathematik, ETH-Zürich.