ON A CERTAIN TYPE OF PRIMITIVE REPRESENTATIONS
OF RATIONAL INTEGERS AS SUM OF SQUARES
Angela Arenas

Introduction.

It is well known that a positive integer not of the form $4^a(8m+7)$ can be expressed as a sum of three integer squares. Dirichlet (cf. [1]) proved that a positive integer admits a primitive representation as a sum of three squares if and only if it is not of the form $8m+7$ or $4m$.

An interesting problem is to consider integers n which admit a representation as a sum of three squares with one summand prime to n. Of course, such a representation is primitive. This type of representations appears in the resolution of some Galois embedding problems (cf. [3]).

Obviously if n admits a primitive representation as a sum of two squares, (i.e. if $4 \nmid n$ and no $p \equiv 3 \pmod{4}$ divides n), then each summand is prime to n. Hence, the problem makes only sense for the integers which admit a primitive representation as a sum of three positive squares. These integers were characterized by A. Schinzel ([2]).

We have checked with a computer that for every Schinzel integer ≤ 10000, there exists at least one representation as a sum of
three positive squares with a summand prime to \(n \).

In the present paper, we show that for some Schinzel integers, each \textit{primitive} representation as a sum of three \textit{positive} squares has at least one summand prime to \(n \) (Th. 1).

Moreover, we show (Th. 2) that given a prime number \(p > 2 \), its powers always have a representation as a sum of \(p \) squares prime to \(p \). This statement for \(p=3 \) was first made by E. Catalan (cf. [1]).

We recall that a representation of a positive integer \(n \) as a sum of three squares \(n = x^2 + y^2 + z^2 \); \(x, y, z \in \mathbb{Z} \), is said to be \textit{primitive} if \((x, y, z) = 1 \).

\textbf{Definition.} We say that an integer \(n \) is a Schinzel integer if it admits a \textit{primitive} representation \(n = x^2 + y^2 + z^2 \) with \(xyz \neq 0 \).

As it is proved in [2], an integer \(n \) is a Schinzel integer if and only if it satisfies the following two conditions:

1) \(n \nmid 0, 4, 7 \pmod{8} \)

2) \(n \) has a prime factor \(p \equiv 3 \pmod{4} \) or \(n \) is not a "numerous idoneus" in the sense of Euler.

\textbf{Theorem 1.} If \(n \) is a Schinzel integer, and \(n \) has, at most, two distinct prime factors congruent to 1 or 2 (mod. 4), then every primitive representation of \(n \) as a sum of three positive squares has, at least, one summand prime to \(n \).
The proof of the above theorem follows immediately from the

Lemma 1. If \(n = x^2 + y^2 + z^2 \) is a primitive representation of \(n \) as a sum of three positive squares and \(p \) is a prime factor of \(n \) which divides one of the summands, then \(p \equiv 1 \) or \(2 \) (mod. \(4 \)).

Proof. Under these conditions \(-1 \) is a square (mod. \(p \)).

Another consequence of this lemma is the following:

Corollary 1. If \(n = x^2 + y^2 + z^2 \) is a primitive representation of \(n \) as a sum of three positive squares and every prime \(p \) which divides \(n \) is congruent to 3 (mod. 4), then \((x,n) = (y,n) = (z,n) = 1 \).

Remark.

Theorem 1 is not true for an arbitrary \(n \), for example, \(870 = 2 \cdot 3 \cdot 5 \cdot 29 \) is a Schinzel integer which admits the primitive representation: \(870 = 2^2 + 5^2 + 29^2 \).

Let us now consider the problem of representations of the powers of an odd prime \(p \) as a sum of \(p \) squares.

Theorem 2. Every power of a prime \(p \neq 2 \) can be represented as a sum of \(p \) squares prime to \(p \).

Proof. Let \(p \) be an odd prime and \(A = p - 1 \). Since the norm \(N \) in \(\mathbb{Q}(\sqrt{-A}) \) is multiplicative, we obtain in \(\mathbb{Z}[\sqrt{-A}] \) the identity:

\[
(x_1^2 + Ay_1^2)(x_2^2 + Ay_2^2) = (x_1x_2 \pm Ay_1y_2)^2 + A(x_1y_2 \mp x_2y_1)^2.
\]
So we have, \((x_1^2 + Ay_1^2)^n = X_n^2 + AY_n^2\). From this we get the following recursive formulae:

\[
X_n = X_{n-1}x_1 \pm AY_{n-1}y_1,
\]

\[
Y_n = X_{n-1}y_1 \mp Y_{n-1}x_1.
\]

Clearly, \(p = N(x_1 + \sqrt{-A} y_1)\) for \(x_1 = y_1 = 1\), hence \(p^n = X_n^2 + AY_n^2\), where \(X_n\) and \(Y_n\) are given by the above formulae.

Thus, every power of \(p > 2\) can be written as a sum of \(p\) squares, being \(p-1\) of them equal. One can easily see by induction that if \(X_{n-1}\) and \(Y_{n-1}\) are prime to \(p\), then \(X_n\) and \(Y_n\) can be chosen to be so.

The values of \(X_n\) and \(Y_n\) can be explicitly given, in fact:

\[
X_n = \frac{(x_1 + y_1 \sqrt{-A})^n + (x_1 - y_1 \sqrt{-A})^n}{2}, \quad Y_n = \frac{(x_1 + y_1 \sqrt{-A})^n - (x_1 - y_1 \sqrt{-A})^n}{2 \sqrt{-A}}.
\]

with \(X_n, Y_n \in \mathbb{Z}, \quad n \in \mathbb{Z}^+\).

We give now another proof of theorem 2. This new proof yields various representations of \(p^s\) as sum of squares prime to \(p\). In particular, we can get different representations from the one obtained in the first proof. Let us consider the bilinear form:

\[
\mathbb{Z}^k \times \mathbb{Z}^k \longrightarrow \mathbb{Z}, \quad (a, b) \longmapsto a \cdot b = \sum_{i=1}^{k} a_1 b_i,
\]
with \(a=(a_1, \ldots, a_k), \ b=(b_1, \ldots, b_k) \). Let \(q(a)=a \cdot a = \sum_{i=1}^{n} a_i^2 \), be the associated quadratic form; then the equation \(q(Xa+Yb) = q(a)^2 \cdot q(b) \) has at least two integer solutions given by \((x_1, y_1) = (0, q(a))\) and \((x_2, y_2) = (-2ab, q(a))\).

Proposition 1. If an integer is a sum of \(k \) squares, then so are its powers.

Proof. Let

\[
n = \sum_{i=1}^{k} a_i^2, \quad a_i \in \mathbb{Z}, \quad i=1, \ldots, k.
\]

We show by induction, that \(n^t \) is a sum of \(k \) squares, for every \(t \in \mathbb{Z}^+ \).

We now distinguish two cases:

i) Let \(t \) be even, \(t=2s \), \(s \in \mathbb{Z}^+ \). From the identity:

\[
\left(\sum_{i=1}^{k} a_i^2 \right)^2 = (-a_1^2 + a_2^2 + \ldots + a_k^2)^2 + (2a_1a_2)^2 + \ldots + (2a_1a_k)^2, \quad (1)
\]

we deduce that \(n^t \) is a sum of \(k \) squares, because \(n^t = (n^s)^2 \) and, by induction, \(n^s \) is of this type.

ii) Let \(t \) be odd, \(t=2s+1 \), \(s \in \mathbb{Z}^+ \). It follows that

\[
\left(\sum_{i=1}^{k} a_i^2 \right)^2 \left(\sum_{i=1}^{k} b_i^2 \right) = \sum_{i=1}^{k} c_i^2,
\]

with \(c_i = q(a)b_i - (2ab)a_i, \quad i=1,2,\ldots,k \). From this identity we get that \(n^t \) is sum of \(k \) squares, because \(n^t = (n^s)^2 n \).

79
Second proof of theorem 2. If \(p \) is an odd prime, then \(p \) admits the obvious representation as a sum of \(p \) squares \(p = b_1^2 + \ldots + b_p^2 \) given by \(b_1 = \ldots = b_p = 1 \). Then from proposition 1 we obtain that every power of \(p \) is a sum of \(p \) squares. Let us see that they can be chosen to be prime to \(p \). As before, we distinguish two cases:

i) Let \(t = 2s, s \in \mathbb{Z}^+ \). If by induction \(a_1, \ldots, a_p \) are nonzero in \(\mathbb{F}_p \), so are \(2a_j a_j \) for \(j = 2, \ldots, p \). Since \(p > 2 \), the rest follows immediately from (1).

ii) Let \(t = 2s + 1, s \in \mathbb{Z}^+ \). We have \(p^t = (p^s)^2 p \), where \(p^s = a_1^2 + \ldots + a_p^2 \), \((a_i, p) = 1, \ i = 1, 2, \ldots, p \) (by induction), and \(p = b_1^2 + \ldots + b_p^2 \), \(b_1 = \ldots = b_p = 1 \). By proposition 1 we have

\[
p^t = \sum_{i=1}^{p} c_i^2, \quad c_i = q(a) b_i - (2ab)a_i, \quad i = 1, \ldots, p.
\]

As \(-2ab = -(a_1 + \ldots + a_p)\), we can always suppose that \(-2ab \not\equiv 0 \pmod{p}\).

Since \(p^s \equiv 0 \pmod{p} \), we get \(c_i \equiv (-2ab)a_i \pmod{p} \), hence, the integers \(c_i \), \((i = 1, \ldots, p) \), are also prime to \(p \).

REFERENCES

Rebut el 19 de març del 1984

Departamento de Algebra y Fundamentos
Facultad de Matemáticas
Universidad de Barcelona.
C/ Gran Via, 585
Barcelona 7.
SPAIN

80