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ON GENERALIZED SYMBOLS, ORDERS AND QUASI-ORDERS

Peter Hilton and Jean Pedersen

0. Introduction
In our earlier paper [5] we introduced the notion of a

symbol
b o ; (0.1)

where b, a; are odd positive integers with ai<< % , the

welghts ki are positive integers, and the a; satisfy the de

termining relations
i=1,2,...,r (ar+l =a1). (0.2)

The symbol (0.1) is said to be controlled by b; further, it
is neduced if there does not exist s such s|r, s # r, and,

for all j,

as+j = aj , (0.3)

and ks+j = kj ’ (0.4)

In fact, as shown in [5], (0.3) holds for all 3 if and only

if (0.4) holds for all j.
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The reduced symbol (0.1) may be regarded as encoding
instructions for folding a straight strip of paper to construct
arbitrarily good approximations to a regular star {éi} -gon,
in Coxeter's terminology [ 1] . Of course, for this purpose we re
quire that b, aj be coprime; it is easy to see from (0.2)
that gcd(b,ai) is independent of i. 1Indeed, under the copri
mality condition it follows that; if we fold down kr times at
AO at the top of the tape, the last fold line meeting the
‘times at A

bottom of the tape at A then fold up k

ll
then

1’ 1
the last fold line meeting the top of the tape at Ay

fold down k times at Az, the last fold line meeting the

2

bottom of the tape at A then the angle at the vertex

a,m
b
to infinity.* From this folded tape it is then easy to construct

37 e oy

Anr made by the line AnrAnr+l converges to

"as n tends

- bh. . .
our reqular t;;} -gon. The details of the construction -- and
1
further refinements to allow for the construction of the most

general regular star polygon -- are to be found in [2,3,4].

However, we derived in [5] a purely number-theoretical

significance for the #educed symbol (0.1); namely, if

r
d = gcd(b,al) then k = X k; is the quas.i-order of 2 modulo
’ i=k
g . Here, we understand by the quasi-order of t modulo c,

where t, ¢ are coprime positive integers, the smallest integer
m such that

t™ = £1 mod ¢ ; (0.5)

* This statement does not require the coprimality of b and a,.
However, the Coxeter notation does!
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we write the quasi-order as quot(c). Moreover, the reduced
symbol (0.1) also tells which sign to take in (0.5) if

m = quot(c) with t =2, ¢ = 3 the positive sign (negative
sign) if r is even (odd).. It is plain that the quasi-order,
furnished with this extra information based on the parity of r,

gives us more precise information than the order (of t modulo

c).

It is our aim in this paper to generalize the number-theo
retical results of [5] to obtain the corresponding relation-
ship between generalized symbols and quasi-orders. By a genernali-
zed symbol (or t-symbol), we understand a symbol (0.1) in which t
is a fixed positive integer =2, b, a; are positive integers

prime to t with ay <j% and the relation (0.2) is replaced by

b=a, + ¢t 1 i=1,2,..., r (ar

i aj41” = a;) (0.2¢)

+1
We will find that all our results on quasi-order do, in
fact, generalize, but there is one fundamental new phenomenon
when we consider generalized symbols. For whereas there is, for
given odd b, a; with ay < % always a symbol (0.1), there is

not always a t-symbol for a given b, a with b prime to

1
; mod t, and al‘< % . For example with b = 11 there
is no 3-symbol at all controlled by b, as the reader may
easily verify. This new phenomenon obliges us to find a new proof
of the main Quasi-Order Theorem; the preparation for this proof

is in Section 1 and the proof is given in Section 2. However,

it also compels us to acknowledge that, whereas in the case
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t = 2, the Quasi-Order Theorem actually yields an efficient

algorithm for computing the quasi-order, this is not apparently
the case for general t. However, an algorithm for computing
the ocader , by modifying the notion of a t-symbol, is given in

Section 3. Such modified t-symbols always exist.

Where a result in [5] is needed here in generalized‘form
and the proof generalizes in straightforward fashion, we have
simply quoted the generalized form. Where a result in [5} gene-
ralizes in straightfofward fashion but we do not need it here,
we have simply suppressed it. We should, however, mention that

Theorem 3.4(*) of [5] is in this latter category.

We have not discussed the geometrical significance of
our generalization; those who have overcome the prejudice
against dividingla given angle into t equal parts (where t
is not a power of 2) will be in a good position to formulate

it, at least insofar as the results of Section 2 are concerned.

However, we make - as yet - no claim that the modified
symbols described in Section 3 have any geometrical significance
whatsoever! The effects of this modification are two-fold. We
gain the advantage, as stated, that a modified t-symbol always
exists for a given base t, a given positive integer b prime
to t and a given positive integer a = a; <b (with t 4+ a);
but we have to be content with an algorithm producing the order
of t modulo b rather than the quasi-order. We are indebted

to a conversation with Don Zagier in which this modification was
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suggested.

1. The generalized symbols

Throughout this siction, t 2 2 is an integer and the

t-symbot , controlled by b,

r ' (1.1)

means that b is a positive integer prime to t, a; (i=1,2,...,x)

is a positive integer such that
a, =bmod t and 0 <a, <2 ; (1.2)
i i t

k, (1 =1,2,...,r) is a positive integer, and the equations

kj
b=a, + t

i a4’ ) (1.3)

i=1,2,...,r, (a = a

r+l 1

hold. Just as in [ 5} we observe the following elementary facts.
gcd(b,ai) is independent of 1i. (1.4)

If kl’k2"”kr is a repeating sequence,
with ki+s = ki’ for a fixed slr (s # r), (1.5)
then al,az,...,ar is a repeating sequence

with a, = a,.
its i
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The (unique) solutions of equations (1.3) are rational

numbers a, satisfying 0 < a; < %; if any a; is

i
(1.6)
an integer, than all a; are integers =b mod t.
Proposition 1.1 The equations (1.3) have the solutions
Bai = bAi’ (1.7)
_ .k r r
where B=¢t - (-1) ",k = Z ki (1.8)
i=1
and i & PN G P (1.9)
In particular,
A A eee A
e r | (1.10)
IR
is a symbol.
We write
i a, a ... a
b 1 2 r
kq k3 oo kr |
if the symbol is reduced, that is, if Kyskyr ooy ko (and

‘hence also ays 8yr eeey ar) is not a repeating sequence.

So far, our generalization has been virtually automatic.
However, at this point we encounter a difficulty in pursuing

the program in [5], namely that, for given b, ay satisfying
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(1.2), no symbol may exist. Indeed, for a given b (and, of
course, a given t), there may be no symbol whatsoever contro-
lled by b. Thus we now study this guestion. We first prove a

lemma.
Lemma 1.2 Any integer a may be expressed as
a=ctl+e t"ha lse (1.11)

where ©j £b an integer satisgying chl < %

Proof It plainly suffices to take a positive. Supose a < t",

and consider the integer

a + % 1 P2 4 £+ 1), t even

at+ == (t +t + ... +t+1), t odd.

It is easy to see that a < 2t", so that a may be written in

base t as

Then a = bnt + c t +...+cC where

n~1 0’

c. = j=0,1,...,n-1
J t_
by - =3, t odd

e

o et

; thus, since Ibnl < =, the lemma is

N et

Plainly, chl <
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proved.

Remarks (i) If t 1is odd, the expression (1.11) is unique;
if t 1is even, we lose uniqueness but we prefer to keep (1.11)
since it has for us the decisive advantage that then -a has the

admissible form

(ii) If a # 0 then, of course, we may assume Cn # 0.
In that case it is clear that n >0 if and only if a > 0.

We now prove the main theorem of this section.

m

Theorem 1.3 lex b=t -1, m > 2. Then a appears in a 2-symbol
contolled by b Aif and only Lf
n n n
a=td - ¢ Il a1, (1.12)

where q 48 odd and m>nq>...>nl>0.

Proof Let a have the indicated form and set kl =Ny,
k2 =Ny T Ngs ...y kq = nq - nq-l’ = m-—nq. Then

qtl

z k; =m and, according to (1.8) and (1.10), we have the
i=1

symbol

kq+l

: . A g+l
b atll s k. = m, (1.13)

k k . e . kq+l i=1

with (see (1.9))
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We now prove the converse. If t = 2, then, dividing
(1.12) by t-1, we see that (1.12) simply represents an arbi
2m—l

n
trary odd number <2 q, so that all odd number < take

the form (1.12); and we know such odd numbers are precisely the
integers ay appearing in a symbol controlled by 2™ - 1. Thus

we may assume t 2 3.

Let

be a symbol, with a = a,. Then 0 <a< tm_l by (1.2), so

that, by Lemma 1.2, and Remark (ii),

n n
—a. = q 1
a=a) cqt +...+clt *Cyr m>nq>...>nl>0, (1.14)
with chl < % and cq > 0. Since, for each i, 1 <i < r,
a; = ¢M - 1 =-1 mod t, we infer in particular that o = -1
mod t. But lcjl <-§ and t >3, so ¢, =-l. We may obvious

ly now assume that each °; # 0 in (1.14).

m kl ;
Now t =~ 1= a, + t as- Thus, from (1.14)
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n n k
m _ q _ _ 1 _ 1
t cqt o v . clt t a,.
kl n, n1+l
It follows that t a, is divisible by t but not by t
Since a, = -1 mod t, this implies that n, = kl’ so that
m-n n_-n
- 1_ q 1 _ -
a, =t cqt .. Cy-: (1.15)

Since (1.15) has the same form as (1.14) we now deduce that

c, = 1, n, - ny = k and

m~n,+n m-n m -n
a, =t 2 1 _4 2+cqtq 24, .+ c

Proceeding in this way we infer that
541
c, = (-1)37°
J
and, since cq >0, q 1is odd. This proves the theorem
We enunciate two corollaries, the first following from

the statement of the theorem, the second from its proof.

Corollary 1.4 Every symbol controlled by t™ - 1 arnises grom a symbol

controtled by t™ L 4 £™2 4 4t 4 by muttiplication by t-1.
Then a appaaﬁé in a symbol controlled by e
ifandonly if 0 <a <t %+. ..+t +1 and a, wiitten in base
t, consists exclusively of l's and 0,s and terminates in 1.

Corollary 1.5 Let a= ayr

given by (1.12), appear 4in the nedu
ced symbol
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n al 32 . . ar
FRLEN | (1.16)
kl k2 . . kr
r
then, 4§ k= Z k., we have
i=1l =
k| m, rl qt+l, (1.17)

to quotients in (1.17) being the same.
To establish Corollary 1.5 we have only to compare (1.16) with

m

(1.13), where b=t -1 and A to infer that (1.16)

1%
arises by reducing (1.13). Thus (1.17) follows, the common guo-
tient being the number of times (1.16) is repeated to produce
(1.13). Corollary 1.4, in turn has the following consequence

which gives us a recharacterization of the integers a discussed

in Theorem 1.3.

Corollary 1.€ let b=t -1, m =>2. Then a appeans ina

t-symbol controlled by b if and only if a < L and, when wiitten
in base t, a consists exclusively of T's and O's and terminates in
T, where T =+t-1.

There is a companion theorem to Theorem 1.3, whose proof
we need not give.
Theorem 1.7 let b=t" + 1, m>1. Then a appears in a t-sym-
bol controlled by b if and only 4§

n N1
a=t3 -9+ ety (1.18)
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where g 44 even and m>nq>'

There is also a

..>nl

> 0.

companion corollary to Corollary 1.5

Corollary 1.8 Llet a = ay., given by (1.18), appear in the redu-
ced sumbol
m a4 2 ar
t t1 (1.19)
k1 2 kr
r
zthen, 4§ k = 2 Ky we have
i=1
k I m, r ‘ q+l, (1.20)
the quotients 4in  (1.20) being the same.
2. The main theorem
We recall. the quasi-onder of t mod b is the smallest
positive integer n such that t" = £1 mod b. We write quot(b)
for the quasi-order of t mod b. Note that if k = quot(b) then
, k =
k if t7 =1 mod b
order of t mod b = Kk (2.1)
2k if t F-1 mod b
We now prove
Theorem 2.1 Let
81 %2 %
b (2.2)
* k1 k2 .. kr
r
be a neduced  t-symbol controlled by b with k = Z k;. Them
i=1

k| quot(b) . Moreoven,
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(a) 44 T 4s even and gcd(b’,ai) | (t—i) , we conclude that
quot(b) =%k and tk = 1 mod b;

(b) 4if r s odd and gcd(ki,ai) = 1, we conclude that
quot(b) =k and tk £ -1 mod b.

Proof Let quot(b) = m. Then there exists a g such that

bg = t" - €, where € = *1. Multiplying (2.2) by gq, we have

It now follows from (1.17) or (1.20) that k| m.

Now suppose r even. Then, using (1.7,8,9), we infer

from (2.2) that
(¢ - 1ya, = ba,,
i i

and (t-1) | A;. If 4= gcd(b,ai), and 41 (t-1), then

k a A a

£5-131 _p Mg b 21, _

t=1°d - at1 °nmd gedlz, 7)) =1
b| £5-1

Thus 3l T3 + s° that b tk - 1. We conclude that m < k,

so that k = m and assertion (a) is proved.
Finally, suppose r odd. Then, using (1.7,8), we infer

from (2.2) that

(tk + 1)a, = ba,.
1 1

Thus if ged(b,a;) = 1, bl t% + 1. we again conclude that k = m
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and assertion (b) is proved.

Theorem 2.1 has the following corollaries.

Corollary 2.2 Let

1 2 r
£™ -1 , m =2
kl k2 . . kr
r m
Then 4§ k = Z ki, we have k| m. If gecdlt —l,ai) =t -1, and
i=1

Lf m >3, then r 48 even and Xk =m.
Proof Since quot(tm—l) =m, unless t =2, m =2, when
qu02(3) = 1 (see Propositon 2.4 below), we know that klm ex-
cept in this special case. But it is also true in the special
case, since then 22—1 [i] si the only reduced symbol.

Now if r 1is even the conclusion follows from Theoreme
2.1(a). Thus it only remains to show that r cannot be odd.

Were r odd, we would have (see (1.7,8))
(t™ - 1a, = (X + Da (2.3)
i i )

We know that klm. If k = m, then we conclude easily from

(2.3) that

m tm-l

t" ~ 1 a, 1f t 1is even; a. if t 1is odd.
i 2 i

Either conclusion is incompatible with a; < tm_l, so that

k # m. Thus k < %. Sut since gcd(tm—l, ai) =t -1, we ob-
tain from (2.3) the relation
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tt o+ 1 (2.4)

But, since m = 3, we have the inequalities

()=

tm -1 m-1
e >t +1>t“+1 =2t +1, so that relation

t_
(2.4) is absurd and hence r cannot be odd.
The companion corollary reads as follows, but this time

the proof is almost trivial.

Corollary 2.3 Let

n 4 % &
t o+ 1 , m =1,
ST ke
r N m
Then 4§ k = % k;, we have klm. If§ gecd(t +1,ai) =1, then r
et

i
L8 odd and k = m.

Proof By Proposition 2.4 below, we know that quot(tm+l) = m,
so that k|m. But now Theorem 1. and (1.20) assure us that r

is odd so that Theorem 2.1 completes the proof.

We complete the argument, then, with the following propo-

sition.

Proposition 2.4

(a) Let m =2 2. Then mmtwml)=m unfess t = 2, m=2.
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(b) Llet m>1. Then quo, (t™+1) = m.

t
Proof (a) Certainly £ <m, where quot(tm-l) = L. 1If
tm-—llt£ -1 it immediatelly follows that £ = m. If

tm—l|t£+l, we obtain a contradiction as follows (unless we are
in the exceptional case). We have t£+ 1 <t™-1+2. Thus, sin
ce t"-13>3, the relation t™-1/tf+ 1 implies t™-1=t% 1.

Certainly, then £ # m. But if £ < m-1, we would have
™ L e-1) > 2,

unless t = 2, m = 2, and so o1 >t +1 2t +1, contra

dicting t"-1 = tf+ 1.

(b) Again £ < m, where quot(tm+ 1) = 1. If t lltzi-l,
it immediately follows that 1 = m; and it is impossible that

L I

Remark The case m = 2 is rightly excluded from the final sta-

tement of Corollary 2.2 since we have the reduced symbol

t-1
-1 [T
1

3. A modification of the generalized symbols; a new algorithm

In this section, we modify the definition of a symbol in
order to obtain an algorithm for computing the order of t mo-
dulo b, where t is an integer 2, and b is prime to t.

We need a preliminary lemma.
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Lemma 3.1 let b be puime o t, and Let a be an integer such that

t ¢ a. Then, amona the {ntegeis
gb + a, 1 gaggt-1,
therne exists exactly one, say qob + a, such that t| qob + a.

Proof The set {q, 0 < g < t-1} vis a complete, irredundant
set of residues modulo t. Since b 1is prime to t, the set
{ab, 0 € g < t-1} 1is also a complete, irredundant set; and so
too, therefore, is the set {gb + a, 0 < g < t-1}. Since tta,
exactly one of the residues gb + a, 1 <qgq < t-1, must be the
zero residue.

An ohden-symbol, rnel  t,
b T (3.1)

is now defined for all b prime to t and all a; such that

td a; by the condition

k.

q;b +ta; =t ta, 1<q, <t-1, k, =1, i=1,2,...,r, . (3.2

where ar+l = al.

in Lemma 3.1. Notice that, if t3 ajs then (3.2) provides a

2 such that t4{ ay. Moreover, if al< b,

Here a5 has precisely the meaning of q,

definition of a
then qlb +a; < (t-1)b +b = tb, so a, <b. Thus (3.2) defi
nes a function a, — a
{aJa <b and t ¢ al}l to itself. It is easy to see -- Lemma 3.2

2 from the set S of integers
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below -- that this function is a permutation of S, so that,
given b prime to t and a < b such that t f a, then an

order-symbol (3.1) always exists with = a and this order-

3
symbol is unique up to iteration. We will henceforth only con-

sider order-symbols (3.1) with a, < b (so that ay <b for

1
all* i).
Lemma 3.2  The function a — a' given by qyb + a = £ ar '
k=1, fnom the set S to .itself is a penmutation.
Proof Given a' <b, tta', choose k minimal so that
ta' >b. Then k >1, so tfa' >b. Let tfa' =gy + a,
0 < a<b and 94 >1. Then a # 0; for if a = 0, then
b | tka', b | a', contradicting a' <b. Also g, < t-1; for
. k k-1 _, - . o ai s
if dq > t, then t7a' 2 tb, s0 t ! a' 2 b, contradicting

the minimality of k. Moreover t { a; for if t 1 a, then

t | qpbs t 1 qq contradicting 1 < q, € t-1. Thus a — a’

0

is surjective and hence bijective as a function from S to S.
We now proceed exactly as for generalized symbols, ex-

cept that we have replaced the defining relation (1.3) by (3.2).
Actually, to set up the analogy, it is easier to permit

zero weights in our order-symbol. This means that our expanded

onden-symbol , rel 't, is

L. L, . . . 2 ' (3.3)

* Note that this condition replaces the condition al‘<% of (1.2).
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where t 1 Ej and the condition

Z.
+a, =t a = .4
b aj t aj+l’ fj 0 (3.4)
holds for each j, with as+l = 51. For example, with t = 6,
we have the order-symbol
3 4
7
1 1

and the expanded order-symbol

3 10 17 4 11

<1

0 0 1 0 1

It is obvious how to obtain the order-symbol from the expanded

order-symbol. In particular if a; = a, in (3.1), (3.3),
then Zki = th; indeed, the sequence of Kj's is just the

sequence of ki's interspersed with zeros.

Now the equations (3.4) have the solution (compare (1.7)

through (1.9))

a.B = bA., (3.5)
j j
where B = tz -1, £ = EZj (3.6)
I3 IS ¢
RS bt R S e T (3.7)

It should now be obvious that our order-symbol yields
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the following theorem.

Theorem 3.3 let (3.1) be reduced (i.e., without repetition],

Lot a; be prime fo b and Let k=Zk, . Then k 45 the onder of

modulo  b.

Proof We described and discussed in Lemma 3.2 the bijective

function ¥:S & S such that w(ai) i=1,2,..., r

= G+
'(ar+l = al). In the course of the proof we observed that the

inverse to V¥, say ¢:S = S is defined as follows: given

a' € S choose k minimal such that tka' > b and set

k..

tTa' = qob + a, 0<a<b; then ¢(a') = a.

We now rewrite (3.1l) 'in skew-reverse notation' as

| c c_ . ve. €. . |
b r r-1 i ‘ ;O Z ok =t (3.8)
zr—l Lr-2 zl zr i=1
so that w(ci) = Cipyr i= 1,2,...,r(cr+l = cl) and, for each
i, £, is minimal such that

1

2.
t lci >b, i=1,2,...,r (3.9)

Then, for some ay with 1 < q, < t-1,

t c; = qib *Ciapr i=1,2,...,r (cr+l =c (3.10)

1)

Consider the sequence of (£+1) positive integers s; <b,

£.-1 £,-1 £-1

2
{cl,tcl,...,t cl,cz,tcz,...,t CorCyreeniCps tcr,...,t_r cL cl}
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Then, for each 1i,

Si = tsi mod b,. s;, =t cy- (3.11)

so' that in particular,
¢, = tTc;, mod b (3.12)

We now make the key claim that for no i except i =1, £+ 1

do we have si = c1 mod b. For, since si < b, the congruence

s, = ¢ mod b would imply s; = ¢

i but if s, = tde_, § > 1,

1’ i m

then sy # ¢, since t 4 cl; and if si =c , m # 1, then

sy # ¢, since our order-symbol (3.8) has no repeats. This esta
blishes our claim, which implies that £ is the smallest posi-
tive integer n such that < = tncl mod b. But since ¢y is

prime to b,

¢ = tncl mod b e 1 = P mod b.

Thus £ is, as claimed, the order of t mod b.

Examples
From the reduced order-symbol, rel 6, 7 |, i ; ‘ R
we infer that the order of 6 modulo 7 is 2.
From the reduced order-symbol, rel 11, 6 ll i i II ’
.we infer that the order of 11 modulo 6 is 2.
From the reduced order-symbol, rel 11, Sol'zé 141 3% ’

we infer that the order of 11 modulo 50 is.5.
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