ON KÜNNETH RELATIONS

Marek Golasiński

Abstract. The aim of this note is to subsume a number of apparently quite distinct results in one general theorem. For a left exact functor $T : R-\text{Mod} \rightarrow \text{Ab}$ and a cochain complex C^* we give a long exact sequence including the canonical map $H^n_T \rightarrow \text{TH}^n$, where H^n is the n-th cohomology functor. Under the appropriate hypothesis the usual form of the Küneth relation (see [1], chap. VI) is a special case of our long exact sequence (Remark 1.2). Also the latest results of Coelho-Pezennc (see [2]) are contained in this long sequence (Proposition 2.3).

In particular, we obtain a simple proof of the following results of Osofsky on upper bounds of cohomological dimensions (see [7], [8]). If I is a directed set and the cardinal number of it is no greater than κ_m, then:

1. $1.pd_{\colim I} R_i \colim M_i \leq \sup_I 1.pd_{R_i} M_i + m + 1$
 in the category of modules,

2. $cd_{\colim I} G_i \leq \sup_I cd_{R_i} G_i + m + 1$ in the category of
groups.

1. Main results. Let R be a ring and let $R\text{-Mod}$ and Ab denote the category of left R-modules and the category of abelian groups, respectively. For a left exact functor $T: R\text{-Mod} \to \text{Ab}$ denote by T^n the right n-th derived functor of T and for a cochain complex $C^* = (C^n,d^n)$ of R-modules we put $Z^n = \text{Ker } d^n$, $B^n = \text{Im } d^{n-1}$ and $H^n = Z^n/B^n$, where n runs over the integers.

Theorem 1.1. (General theorem). If $T^kC^n = 0$ for $k \geq 1$ and all integers n, then there exists a long exact sequence of abelian groups

$$0 \to T^1Z^{n-1} \to H^n_T \to TH^n \to T^2Z^{n-1} \to \cdots$$

$$\cdots \to T^1Z^{n} \to T^1H^n \to T^2Z^{n-1} \to \cdots$$

$$\cdots \to T^1Z^{n} \to T^1H^n \to T^2Z^{n-1} \to \cdots .$$

Proof. The canonical short exact sequence of R-modules

$0 \to Z^n \overset{i^n}{\to} C^n \overset{d^n}{\to} B^{n+1} \to 0$ yields a long exact sequence of abelian groups

$$0 \to T^1Z^n \to T^1C^n \to T^1B^{n+1} \overset{a^n}{\to} T^1Z^n \to T^1C^n \overset{T^1d^n}{\to} \cdots$$

$$\cdots \to T^1B^{n+1} \overset{a^n}{\to} \cdots \to T^1Z^n \to T^1C^n \overset{T^1d^n}{\to} \cdots , \cdots$$

where $a^n_k : T^kB^{n+1} \to T^{k+1}Z^n$ is the connecting map.
By assumption $T^kC^n = 0$ for $k \geq 1$ and all integers n. So we get a short exact sequence

$$a) \quad 0 \rightarrow T^n Z \rightarrow T^n C \rightarrow \cdots \rightarrow T^n B \rightarrow 0$$

and a family of isomorphisms

$$b) \quad T^k B^{n+1} \rightarrow T^{k+1} Z^n \quad \text{for} \quad k \geq 1 \quad \text{and all integers} \quad n.$$

The sequence $a)$ yields an isomorphism

$$a') \quad \frac{T^n B^{n+1}}{\text{Im } T^n d} \rightarrow T^{1} Z^n.$$

Moreover, the canonical short exact sequence of R-modules

$$0 \rightarrow B^n \rightarrow Z^n \rightarrow H^n \rightarrow 0$$

yields a long exact sequence of abelian groups

$$c) \quad 0 \rightarrow T^n B \rightarrow T^n Z \rightarrow T^n H \rightarrow \cdots \rightarrow T^{1} B \rightarrow T^{1} Z \rightarrow T^{1} H \rightarrow \cdots,$$

where $\gamma^k_n : T^{k} H^n \rightarrow T^{k+1} B^n$ is the usual connecting map. Hence, by $b)$ we obtain the following long exact sequence of abelian groups

$$0 \rightarrow T^n Z \rightarrow T^n B \rightarrow T^n H \rightarrow \cdots \rightarrow T^{1} B \rightarrow T^{1} Z \rightarrow T^{1} H \rightarrow \cdots.$$
The functor \(T : R-\text{Mod} \rightarrow \text{Ab} \) is left exact, hence \(\text{Ker } Td^n = Tz^n \) and the commutative diagram

\[
\begin{array}{ccccccc}
0 & \rightarrow & \text{Im } Td^{n-1} & \xrightarrow{j'} & \text{Ker } Td^n & \xrightarrow{\beta'} & H^nT & \rightarrow & 0 \\
& & \downarrow{\varphi} & & \downarrow & & \downarrow{\psi} & \\
0 & \rightarrow & TB^n & \xrightarrow{Tj^n} & Tz^n & \xrightarrow{\delta} & Tz^n/\text{TB}^n & \rightarrow & 0 \\
\end{array}
\]

yields \(\text{Ker } \psi = \text{coker } \varphi = TB^n/\text{Im } Td^{n-1} \), by the Snake Lemma. Let \(\eta : \text{Ker } \psi \rightarrow H^nT \) be the canonical inclusion. Then, finally, we obtain the long exact sequence

\[
0 \rightarrow T_{Z^n-1}^{1} \eta \cdot (\alpha_{0}^{n-1})^{-1} \rightarrow H^nT \xrightarrow{T_{\beta}^{n,\psi}} TH^n \xrightarrow{\alpha_1^{n-1} \circ \gamma_0^n} T_{Z^n-1}^{2}j_0(\alpha_{0}^{n-1})^{-1} \\
\rightarrow T_{Z^n}^{1} \beta^n \rightarrow T_{H^n}^{1} \alpha_{2}^{n-1} \gamma_1^n \rightarrow T_{Z^n-1}^{2}j_0(\alpha_{0}^{n-1})^{-1} \\
\rightarrow T_{Z^n}^{k}j_0(\alpha_{k}^{n-1})^{-1} \rightarrow T_{Z^n}^{k} \beta^n \rightarrow T_{H^n}^{k} \alpha_{k+1}^{n} \gamma_k^n \rightarrow T_{Z^n-1}^{k+1}j_0(\alpha_{k+1}^{n-1})^{-1} \rightarrow \ldots \\
\]

As a corollary we get the usual form of the Künneth relation (see [1], chap. VI).

Remark 1.2. If \(T_{k} = 0 \) for \(k \geq 2 \), then \(T_{Z^n}^{1} \beta^n \approx T_{H^n}^{1} \) and the short sequence

\[
0 \rightarrow \eta \cdot (\alpha_{0}^{n-1})^{-1} \circ (T_{\beta}^{n-1})^{-1} \rightarrow H^nT \xrightarrow{T_{\beta}^{n,\psi}} TH^n \rightarrow 0
\]
is exact.

Moreover, the above Theorem yields the following result.

Corollary 1.3. If the maps \(T^k z^n \overset{T^k \beta^n}{\longrightarrow} T^k h^n \) induced by the canonical map \(z^n \overset{\beta^n}{\longrightarrow} h^n \) are left split (i.e. there exists a map \(\rho^n : T^k h^n \longrightarrow T^k z^n \) such that \(\rho^n \circ T^k \beta^n = \text{id}_{T^k z^n} \)), then there exists a long exact sequence of abelian groups

\[
\begin{align*}
\cdots & \longrightarrow T^{2k+1} h^{n-k-1} \longrightarrow T^3 h^{n-2} \longrightarrow T^1 h^{n-1} \longrightarrow h^n_{T} \longrightarrow T^n_{h} \longrightarrow \\
& \longrightarrow T^{2} h^{n-1} \longrightarrow T^{4} h^{n-2} \longrightarrow \cdots \longrightarrow T^{2k} h^{n-k} \longrightarrow \cdots.
\end{align*}
\]

Proof. In virtue of assumption the sequence c) from the proof of Theorem 1.1 determines the short exact sequence

\[
0 \longrightarrow T^*_z^n \longrightarrow \overline{T^*_\beta^n} \quad T^n_{h} \quad \gamma^n_0 \longrightarrow T^1_{T^n_{h}} \longrightarrow 0
\]

and the split short exact sequences

\[
0 \longrightarrow T^k z^n \overset{T^k \beta^n}{\longrightarrow} T^k h^n \quad \gamma^n \overset{\delta^n}{\longrightarrow} T^{k+1} h^n \longrightarrow 0
\]

for \(k \geq 1 \) and all integers \(n \).

Hence, using the isomorphisms b) from Theorem 1.1 we obtain the following diagram
\[
\begin{align*}
\ldots & \longrightarrow T^{2k+3} \Rightarrow T^{2k+1} \Rightarrow T^{2k+2} \Rightarrow T^{2k+3} \Rightarrow 0 \\
0 & \longrightarrow T^2 \Rightarrow T^3 \Rightarrow T^4 \Rightarrow 0 \\
0 & \longrightarrow T^1 \Rightarrow T^2 \Rightarrow T^3 \Rightarrow 0 \\
0 & \longrightarrow T^0 \Rightarrow 0
\end{align*}
\]

Composing the above short exact sequences we obtain the announced long exact sequence of abelian groups.\[\]

2. Applications. Let \(I \) be a directed set. It is well known that the functor \(\text{colim}_I \) is exact. Moreover, if the cardinal number of \(I \) is no greater than \(k \), then \(\text{lim}^m_I = 0 \) for \(k \geq 2 \) (see [4]).

Let \(\{ R_i, \varphi_{ij} \}_{i,j \in I} \) and \(\{ M_i, \psi_{ij} \}_{i,j \in I} \) be directed systems of rings and abelian groups respectively, such that
each M_i is a left R_i-module and $\psi_{ij}(r_i m_j) = \varphi_{ij}(r_i) \psi_{ij}(m_j)$ for $r_i \in R_i$, $m_j \in M_j$ and $i < j$.

(Such systems will be called consistent).

Then, $M = \text{colim}_i M_i$ is a left $R = \text{colim}_i R_i$-module and $M \cong \text{colim}_i R \otimes_{R_i} M_i$ in the category of R-Mod.

For further purposes the following lemmas will be useful.

Lemma 2.1. If each M_i is a (pure) projective R_i-module for all $i \in I$, then

$$\text{lim}_i^n \text{Hom}_{R_i}(M_i N) \cong \text{Ext}_R^n(\text{colim}_i M_i, N) \cong \text{Pext}_R^n(\text{colim}_i M_i, N)$$

for any R-module N.

Proof. A directed system $\{M_i, \psi_{ij}\}_{i, j \in I}$ yields an exact sequence of R-modules (see [3], Appendix I)

$$\ldots \rightarrow i_0 \otimes_{R_{i_0}} R_{i_0} \otimes_{R_{i_0}} M_{i_0} \rightarrow \ldots \rightarrow i_0 \otimes_{R_{i_0}} R_{i_0} M_{i_0} \rightarrow i_0 \otimes_{R_{i_0}} R_{i_0} M_{i_0} \rightarrow \text{colim}_i R \otimes_{R_i} M_i \cong \text{colim}_i M_i.$$

If each M_i is a (pure) projective R_i-module for all $i \in I$ then the above sequence is an R-(pure) projective resolution of $\text{colim}_i M_i$.

Applying the functor $\text{Hom}_R(-, N)$ we obtain the following chain complexes:
\[0 \longrightarrow \text{Hom}_R(\bigoplus_{i \in I} R_{R_i} \otimes M_i, N) \longrightarrow \text{Hom}_R(\bigoplus_{i \leq 1} R_{R_i} \otimes M, N) \longrightarrow \ldots \]
\[\longrightarrow \bigoplus_{i \in I} \text{Hom}_R(M_i, N) \longrightarrow \bigoplus_{i \leq 1} \text{Hom}_R(M_i, N) \longrightarrow \ldots \]

Consequently, \(\lim^N_i \text{Hom}_R(M_i, N) \approx \text{Ext}_R^N(\text{colim}_I M_i, N) \)
\[(\approx \text{Pext}_R^N(\text{colim}_I M_i, N)). \]

Let \(F_{M_i} \) denotes the free \(R_i \)-module generated by the elements of \(M_i \), then \(F_{\text{colim}_I M_i} \approx \text{colim}_I F_{M_i} \). Hence, we obtain the following generalization of Lemma 9.5 from [1].

Lemma 2.2. There exist \(R_i \)-(pure) projective resolutions \(\mathcal{P}_i \) of \(M_i \) forming a consistent directed system \(\{ \mathcal{P}_i, \mathcal{P}_{ij} \}_{i,j \in I} \) such that \(\mathcal{P} = \text{colim}_I \mathcal{P}_i \) is an \(R \)-(pure) projective resolution of \(\text{colim}_I M_i \).

The two lemmas stated above will be used in the sequel.

Let \(\{ C^n, \psi_{ij} \}_{i,j \in I} \) be a consistent directed system of chain complexes such that \(C^n_i \) are \(R_i \)-modules for all \(i \in I \). Put \(C^* = \text{colim}_I C^*_i \) and \(z'^n_i = \text{coKer} \, d^n_i \).

Then the following generalization of the Coelho-Pezennec result is a simple consequence of Theorem 1.1 and Lemma 2.1.

Proposition 2.3. (see [2]). If \(C^n_i \) are (pure) projective \(R_i \)-modules for all integers \(n \), then the following long
sequence

\[0 \rightarrow \lim_1 \text{Hom}_{R_i} (\mathbb{Z}_n^{-1}, N) \rightarrow H^n (C_*, N) \rightarrow \lim_1 H^n (C_*, N) \rightarrow \lim_2 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \lim_1 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \lim_1 H^n (C_i, N) \rightarrow \lim_3 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \ldots \rightarrow \lim_k \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \lim_1 H^n (C_i, N) \rightarrow \lim_2 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \lim_1 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \lim_2 \text{Hom}_{R_i} (\mathbb{Z}_n^{i-1}, N) \rightarrow \ldots \text{ is exact}. \]

Moreover, as direct consequences of this Proposition we obtain the results of Osofsky (see [7] and [8]) and Kielpiński-Simson (see [6]).

Let \(1.pd_R M (1.p.pd_R M) \) denote the left (pure) projective dimension of an \(R \)-module \(M \) and let \(1.gl \dim_R (1.p.gl \dim_R) \) denote the left (pure) global dimension of a ring \(R \).

Corollary 2.4. i) \(1.pd_{\text{colim}_I R_i} \text{colim}_I M_i \leq \)

\[\leq \sup_I 1.pd_{R_i} M_i + m + 1 \]

\((1.p.pd_{\text{colim}_I R_i} \text{colim}_I M_i \leq \sup_I 1.p.pd_{R_i} M_i + m + 1) \)

and

ii) \(1.gl \dim \text{colim}_I R_i \leq \sup_I 1.gl \dim_{R_i} + m + 1 \)
\[(1.\text{P.gl dim } \text{colim}_I R_i \leq \sup_I \text{l.gl dim} R_i + m + 1)\].

Proof. Applying Proposition 2.3 to the directed system \(\{P_i, \psi_{ij}\}_{i, j \in I}\) of projective resolutions of \(\{M_i, \psi_{ij}\}_{i, j \in I}\) given by Lemma 2.2 we obtain the exact sequence

\[
0 \to \lim_1^1 \text{Hom}_{R_i} (Z_{i, n-1}, N) \to \text{Ext}_R ^1 (\text{colim}_I M_i, N) \to \lim_1^1 \text{Ext}_R ^2 (M_i, N) \to
\]

\[
\lim_1^2 \text{Hom}_{R_i} (Z_{i, n-1}, N) \to \lim_1^1 \text{Hom}_{R_i} (Z_{i, n}, N) \to \lim_1^1 \text{Ext}_R ^2 (M_i, N) \to
\]

\[
\lim_1^3 \text{Hom}_{R_i} (Z_{i, n-1}, N) \to \cdots \to
\]

\[
\lim_1^k \text{Hom}_{R_i} (Z_{i, n}, N) \to \lim_1^k \text{Ext}_R ^2 (M_i, N) \to \lim_1^k \text{Ext}_R ^2 (M_i, N) \to
\]

\[
\lim_1 \text{Hom}_{R_i} (Z_{i, n-1}, N) \to \cdots , \text{ where } R = \text{colim}_I R_i.
\]

Hence, for \(n > \sup_I 1.\text{pd}_{R_i} M_i\) we have the following isomorphisms

\[
\lim_1^2 \text{Hom}_{R_i} (Z_{i, n-1}, N) \cong \lim_1^1 \text{Hom}_{R_i} (Z_{i, n}, N)
\]

\[
\cdots \cdots \cdots \cdots
\]

\[
\lim_1^k \text{Hom}_{R_i} (Z_{i, n-1}, N) \cong \lim_1^{k-1} \text{Hom}_{R_i} (Z_{i, n}, N).
\]

Therefore, for \(n-k > \sup_I 1.\text{pd}_{R_i} M_i\)

\[
\lim_1^1 \text{Hom}_{R_i} (Z_{i, n-1}, N) \cong \cdots \cong \lim_1^k \text{Hom}_{R_i} (Z_{i, n-k}, N).
\]
But $\lim_{I}^{k} = 0$ for $k > m + 1$. Consequently,

$$\lim_{I}^{1} \text{Hom}_{R_{i}}(Z_{i}^{n-1}, N) = 0 \text{ and } \text{Ext}_{R}^{n}(\text{colim}_{i} M_{i}, N) = 0 \text{ for }$$

$$n > \sup_{I} 1 \cdot \text{pd}_{R_{i}} M_{i} + m + 1.$$ Hence,

$$1 \cdot \text{pd}_{\text{colim}_{i}R_{i}} \text{colim}_{i} M_{i} \leq \sup_{I} 1 \cdot \text{pd}_{R_{i}} M_{i} + m + 1.$$ ii) For any R-module M we have $M = \text{colim}_{i} M_{i}$, where $M_{i} = M$ are R_{i}-modules for all $i \in I$. Therefore, by i)

$$1 \cdot \text{pd}_{\text{colim}_{i}R_{i}} M \leq \sup_{I} 1 \cdot \text{pd}_{R_{i}} M + m + 1 \leq \sup_{I} 1 \cdot \text{gl \ dim}_{R_{i}} M + m + 1$$

and hence $1 \cdot \text{gl \ dim}_{\text{colim}_{i}R_{i}} M \leq \sup_{I} 1 \cdot \text{gl \ dim}_{R_{i}} M + m + 1$.

The analogous results for the left (pure) projective and global dimension are obtained by the same methods.

In particular, if $\{G_{i}, \varphi_{ij}\}_{i,j} \in I$ is a directed system of groups, then for group-rings over a ring R we have $R[\text{colim}_{i} G_{i}] \approx \text{colim}_{i} R[G_{i}]$.

So, by the above Corollary $\text{pd}_{\text{colim}_{i}R[G_{i}]^{\Delta R}} \leq \sup_{I} \text{pd}_{R[G_{i}]^{\Delta R}} M + m + 1$, where ΔR denotes the trivial module over the appropriate group-ring.

Therefore, we get another result due to Osofsky (see [8])
cd_R \text{colim}_i C_i \leq \sup_I cd_R C_i + m + 1, \text{ where}

cd_R \text{ denotes the R-cohomological dimension.}

More generally, if \{C_i, \varphi_{ij}\}_{i,j \in I} \text{ is a directed system of small categories, then using methods similar to those above, we obtain}

cd_R \text{colim}_i C_i \leq \sup_I cd_R C_i + m + 1.

Remark 2.5. By results from [5] and [9] we can replace the directed set \(I\) by any small category such that the functor \(\text{colim}_i\) is exact.

Now let \(R\) be a hereditary ring and let \{C^i_*, \psi_{ij}\}_{i,j \in I}\) be a directed system of chain complexes over the category \(R\)-mod.

Proposition 2.6. If \(C^i_*\) and \(C_* = \text{colim}_i C^i_*\) are chain complexes of projective \(R\)-modules for all \(i \in I\), then the following long sequence

\[
\ldots \longrightarrow \lim_I^{2k+1} H^{n-k-1}(C^i_*, N) \longrightarrow \ldots \longrightarrow \lim_I^3 H^{n-2}(C^i_*, N) \longrightarrow \\
\longrightarrow \lim_I^1 H^{n-1}(C^i_*, N) \longrightarrow H^n(C_*, N) \longrightarrow \lim_I H^n(C^i_*, N) \longrightarrow \\
\longrightarrow \lim_I^2 H^{n-1}(C^i_*, N) \longrightarrow \lim_I^4 H^{n-2}(C^i_*, N) \rightarrow \ldots \rightarrow \lim_I^k H^{n-k}(C^i_*, N) \longrightarrow \\
\longrightarrow \ldots \text{ is exact for all integers } n \text{ and any } R\text{-module } M.
\]
Proof. Because \(\{Z^n \text{Hom}_R(C_i^*, N)\}_{i \in I} = \{\text{Hom}_R(C^n_{i/B_i}, N)\}_{i \in I} \) and the sequence

\[
0 \rightarrow H_n C_i^* \rightarrow C_i^{n/B_i} \rightarrow C_i^{n/Z_i} \rightarrow 0 \quad \text{splits,}
\]

therefore

\[
\{\text{Hom}_R(C^n_{i/B_i}, N)\}_{i \in I} = \{\text{Hom}_R(H_n C_i^*, N)\}_{i \in I} \oplus \{\text{Hom}_R(C^n_{i/Z_i}, N)\}_{i \in I}
\]

and

\[
\lim_k Z^n \text{Hom}_R(C_i^*, N) = \lim_k \text{Hom}_R(H_n C_i^*, N) \oplus \lim_k \text{Hom}_R(C^n_{i/Z_i}, N).
\]

But \(C_i^{n/Z_i} \) are projective \(R \)-modules and \(\text{colim}_I C_i^{n/Z_i} = C_i^{n/Z_n} \) is a projective \(R \)-module, so by Lemma 2.1

\[
\lim_k \text{Hom}_R(C^n_{i/Z_i}, N) = \text{Ext}_R^n(C^n_{n/Z_n}, N) = 0 \quad \text{for} \quad k \geq 1.
\]

Moreover, by Universal Coefficient Theorem (see [1] chap. VI) we have natural epimorphisms \(H^n(C_i^*, N) \rightarrow \text{Hom}_R(H_n C_i^*, N) \) for all \(i \in I \). Consequently, the map

\[
\lim_k Z^n \text{Hom}_R(C_i^*, N) = \lim_k \text{Hom}_R(H_n C_i^*, N) \rightarrow \lim_k H^n(C_i^*, N)
\]

splits and an appropriate long exact sequence is determined by Corollary 1.2.

Corollary 2.7. If \(\{X_i, \phi_{ij}\}_{i, j \in I} \) is a directed system of compact topological spaces, then the cochain functor commutes...
with limits. Thus, the following sequence of singular cohomology groups

\[0 \rightarrow \lim_{I}^{2n-1} H_{0}(X_{i}, A) \rightarrow \ldots \rightarrow \lim_{I}^{n-2} H_{n-2}(X_{i}, A) \rightarrow \]

\[\rightarrow \lim_{I}^{n-1} H_{n-1}(X_{i}, A) \rightarrow H^{n}(X, A) \rightarrow \lim_{I} H^{n}(X_{i}, A) \rightarrow \]

\[\rightarrow \lim_{I}^{2} H^{n-1}(X_{i}, A) \rightarrow \lim_{I}^{4} H^{n-2}(X_{i}, A) \rightarrow \ldots \rightarrow \lim_{I}^{2n-0} H^{0}(X_{i}, A) \rightarrow 0 \]

is exact for any abelian group \(A \), where \(X = \text{colim}_{I} X_{i} \).

Similarly, if \(\{ G_{i}, \phi_{ij} \}_{i,j \in I} \) and \(\{ C_{i}, \phi_{ij} \}_{i,j \in I} \) are directed systems of groups and small categories respectively, then we obtain the appropriate long exact sequence as above.

REFERENCES

tive de complexes. Applications aux fantômes de finitude en
p. 101-104.

ves, applications aux modules", Bull. Sci.Math. (2)

