CENTRAL EXTENSION AND COVERINGS
Zdzislaw Wojtkowiak*

The theory of central extensions has a lot of analogy with the theory of covering spaces. It is mentioned for example in [1]. In this paper we show that the category of central extensions of a perfect group and a certain category of covering spaces of a certain space are equivalent (see Theorem 1). Then the facts about central extensions will follow from the corresponding facts about coverings (see Corollaries 1-3).

We start with some definitions to make this work self-contained.

Definition 1. (see [2] § 5) A pair \((X;\psi)\) is called a central extension of a group \(G\) if \(\psi : X \to G\) is an epimorphism and \(\ker(\psi) \subseteq \text{center} X\).

Definition 2. (see [2] § 5) The central extension \((X;\psi)\) of a group \(G\) is called universal if for every central extension \((Y;\psi)\) of \(G\) there is one and only one homomorphism \(h : X \to Y\) such that \(\psi h = \psi\).

It follows from [2] Theorem 5.3 that if a group \(G\) has universal central extension \((X;\psi)\) then \(G\) and \(X\) are perfect.

We shall denote by \(E(G)\) the category of central extensions of \(G\). Morphisms in this category are homomorphisms over \(G\).

Now we describe a category \(\text{Cov}^{ab}(X)\) of pointed abelian coverings over a connected space \(X\) with a base point. Objects of \(\text{Cov}^{ab}(X)\) are principal \(G\)-fibrations over \(X\) with a base point in the fibre over the base point of \(X\). \(G\) is a discrete abelian group. Such principal \(G\)-fibrations are regular coverings and they are induced from the universal covering of \(BG\) by a map \(f : X \to BG\). If \(E_1\) and \(E_2\) are

* Supported by Forschungsinstitut für Mathematik, ETH-Zentrum, CH-8092 Zürich
two coverings induced respectively by \(f_1 : X \to BG_1 \) and \(f_2 : X \to BG_2 \) then morphisms of \(E_1 \) in \(E_2 \) in the category. \(\text{Cov}^{ab}(X) \) are those pointed maps from \(E_1 \) in \(E_2 \) over \(X \) which are induced by maps \(h : BG_1 \to BG_2 \) such that \(h \circ f_1 \) is homotopic to \(f_2 \). The category \(\text{Cov}^{ab}(X) \) has an initial object. It is the universal, pointed covering.

Let us suppose now that \(G \) is a perfect group. Then the fundamental group of \(BG \) is perfect and we can apply the "+" construction to get \(BG^+ \). \(BG^+ \) is simply-connected and therefore \(\Omega(BG^+) \) is connected.

Theorem 1. Let \(G \) be a perfect group. Then the categories \(\text{Cov}^{ab}(\Omega(BG^+)) \) and \(E(G) \) are equivalent. The full subcategory of \(\text{Cov}^{ab}(\Omega(BG^+)) \) which objects are connected coverings and the category of central extensions \((X,\varphi)\) of \(G \) such that \(X \)'s are perfect, are also equivalent.

Proof. We shall define two functors \(F : E(G) \to \text{Cov}^{ab}(\Omega BG^+) \) and \(J : \text{Cov}^{ab}(\Omega BG^+) \to E(G) \) such that the compositions \(F \circ J \) and \(J \circ F \) are natural isomorphic to the identity functors.

Let \(1 \to H \to X \xrightarrow{\varphi} G \to 1 \) be a central extension. Then \(BH \to BX \to BG \) is a fibration. Let \(\text{tr} : H_2(BG) \to H_1(BH) \) be a transgression homomorphism in the Serre spectral sequence of this fibration. The homomorphism \(\text{tr} \) we can consider as an element \(t \in H^2(BG,H) = H^2(BG^+,H) \). We have the following long sequence of fibrations

\[
(*_X) \to \Omega g(X) \to \Omega BG^+ \xrightarrow{\delta = \Omega t} K(H,1) \to g(X) \to BG^+ \xrightarrow{t} K(H,2),
\]

where \(g(X) \) is a homotopy fibre of \(t \).

We set \(F(X;\varphi) = (\delta!(EH) \to \Omega(BG^+)) \) where \(\delta!(EH) \to \Omega(BG^+) \) is a
covering induced by δ from the universal covering over BH. The
base point of $\delta!EH$ we choose in the fibre over the base point of
$\Omega(BG^+)$. The homomorphism $f : (X_1, \varphi_1) \to (X_2, \varphi_2)$ of central extensions
induces a map between sequences of fibrations (π_{X_1}) and (π_{X_2}). As
a part of this map we get a commutative diagram

\[\begin{array}{ccc}
\Omega(BG^+) & \xrightarrow{\delta_1} & BH_1 \\
& \downarrow{f_*} & \\
& \delta_2 & BH_2
\end{array} \]

This diagram induces a morphism between coverings $\delta_1!(EH_1) \to \Omega(BG^+)$
and $\delta_2!(EH_2) \to \Omega(BG^+)$ in the category $\text{Cov}_{\ab}^\ab(\Omega(BG^+))$.

Now we shall define a functor $J : \text{Cov}_{\ab}^\ab(\Omega(BG^+)) \to E(G)$. Let
$(E \to \Omega BG^+) \in \text{Cov}_{\ab}^\ab(\Omega BG^+)$ and let us suppose that $p : E \to \Omega BG^+$ is
a principal K fibration. $(p : E \to \Omega BG^+)$ is induced from the uni-
versal covering over BK by a map $x : \Omega(BG^+) \to BK$. We have the follow-
ing isomorphisms

$$H^1(\Omega(BG^+); K) \cong \text{Hom}(\pi_1(\Omega(BG^+); K) \cong \text{Hom}(\pi_2(BG^+); K) \cong H^2(BG^+; K).$$

Therefore there is $y \in H^2(BG^+; K)$ which corresponds to x by these
isomorphisms. Let us form the following sequence of fibrations

\[(***) \quad \Omega BG^+ \xrightarrow{\Omega y = x} K(H; 1) \to Y = \text{Fibre}(y) \to BG^+ \xrightarrow{y} K(H; 2). \]

Let $i : BG \to BG^+$ be a natural map in the "+" construction. Let

\[(***) \quad K(H; 1) \to S = i!Y \to BG \to BG^+ \]

be a fibration induced by i from the fibration

$$K(H; 1) \to Y \to BG^+. \]
After applying functor π_1 to the fibration (***), we get an exact sequence

\[(***) \quad 1 \to H \to \pi_1(S) = T \to G \to 1.\]

The action of $\pi_1(BG)$ on the fibre in the fibration (***), is trivial because this fibration is induced from the fibration over the simply-connected space BG^+. Therefore, the extension (***) is central.

A map in the category $\text{Cov.}^{ab}(\Omega BG^+)$ induces a homotopy commutative diagram

\[
\begin{array}{ccc}
\Omega BG^+ & \longrightarrow & BH_1 \\
\downarrow & & \downarrow \\
\Omega BG^+ & \longrightarrow & BH_2.
\end{array}
\]

Hence we get a homotopy commutative diagram

\[
\begin{array}{ccc}
K(H_1,1) & \longrightarrow & Y_1 \longrightarrow BG^+ \\
\downarrow & & \downarrow \quad \quad \downarrow \\
K(H_2,1) & \longrightarrow & Y_2 \longrightarrow BG^+.
\end{array}
\]

and consequently a map between central extensions

\[
\begin{array}{ccc}
H_1 & \longrightarrow & T_1 \longrightarrow G \\
\downarrow & & \downarrow \quad \quad \downarrow \\
H_2 & \longrightarrow & T_2 \longrightarrow G.
\end{array}
\]

The proof that the compositions $F \circ J$ and $J \circ F$ are natural isomorphic to the identities follows immediately from definitions of F and J, and I omit it.

If a principal H-fibration $E \to \Omega BG^+$ is connected then $\pi_1(\Omega BG^+) \to \pi_1(BH)$ is an epimorphism. This implies that $\pi_1(Y) = 0$ and
therefore \(H_1(T) = 0 \). Consequently \(J(E \to \Omega BG^+) = (1 + H \to T \to G + 1) \)
is an extension of \(G \) such that \(T \) is perfect.

If \(1 \to H \to X \to G \to 1 \) is a central extension with \(X \) perfect
then \(\pi_1(\Omega BG^+) \to \pi_1(BH) \) is an epimorphism and consequently the induced
covering over \(\Omega BG^+ \) is connected.

The following corollaries, usually proved in an algebraic way,
follow immediately from Theorem 1.

Corollary 1. There exists a universal central extension of a perfect
group \(G \).

Proof. The universal central extension is an initial object in the
category \(\text{E}(G) \). The category \(\text{Cov.}^\text{ab}(\Omega BG^+) \) has an initial object. It
is a universal covering. Therefore there is an initial object in \(\text{E}(G) \).

Corollary 2. \((X;\varphi)\) is a universal extension iff \(H_1(X) = 0 \) and
\(H_2(X) = 0 \). Then we have \(\ker \varphi = H_2(G) \).

Proof. The principal fibration corresponding to \((X;\varphi)\) is
\(\Omega BX^+ \to \Omega BG^+ \). This covering is universal if and only if \(\pi_0(\Omega BX^+) = 0 \)
and \(\pi_1(\Omega BX^+) = 0 \). Hence we have that \((X;\varphi)\) is universal if and
only if \(H_1(BX^+) = H_1(X) = 0 \) and \(H_2(BX^+) = H_2(X) = 0 \). The fibration
\(\Omega BX^+ \to \Omega BG^+ \) is induced from the universal covering over \(B(\ker \varphi) \) by
a map \(\Omega BG^+ \to B(\ker \varphi) \). If it is universal then
\(\ker \varphi = \pi_1(\Omega BG^+) = \pi_2(BG^+) = H_2(BG^+) = H_2(G) \).

Corollary 3. The isomorphism classes of central extensions \((X,\varphi)\) of
\(G \) such that \(X \)'s are perfect, are in one to one correspondence with
subgroups of \(H_2(G) \).

Proof. The isomorphism classes of connected coverings over \(\Omega BG^+ \) are
in one to one correspondence with subgroups of \(\pi_1(\Omega BG^+) = H_2(G) \).
Some steps in the proofs given below can be shown using the following proposition which itself seems to be interesting.

Proposition 1. Let us suppose that \(0 \to H \to X \to G \to 1 \) is a central extension of a perfect group \(G \) by a group \(H \). Then \(BH \to BX^+ \to BG^+ \) is a fibration. (The "+" construction is done with respect to a maximal perfect subgroup of \(X \).)

Proof. Let us assume first that \(X \) is perfect. Let \(F \) be a fibre of \(BX^+ \to BG^+ \). There is a map of a fibration \(BH \to BX \to BG \) into a fibration \(F \to BX^+ \to BG^+ \). This map induces a map of Serre spectral sequences. This map is an isomorphism on \(E^2_{*,0} \) and on \(E^\infty_{*,*} \)-terms. Therefore it is isomorphism on \(E^2_{0,*} \)-terms. This means that a map \(H_*(BH;Z) \to H_*(F;Z) \) is an isomorphism. \(F \) is a fibre of a map between nilpotent spaces therefore it is nilpotent. It implies that \(BH \to F \) is a homotopy equivalence.

Let now \(X \) be arbitrary and let \(X' \) be a maximal, perfect subgroup of \(X \). The extension \(0 \to H' = \text{Ker}(i) \to X' \xrightarrow{i} G \to 1 \) is also central. Moreover \(BX'^+ \) is a universal cover of \(BX^+ \). If \(F \) is a fibre of \(BX^+ \to BG^+ \) then only \(\pi_1(F) \) is non-zero and it appears in the following exact sequence

\[
0 \to \pi_2(BG^+) \to \pi_1(F) \to \pi_1(BX^+) \to 1
\]

\(\pi_1(BX^+) \) is abelian. This implies that \(\pi_1(F) \) is nilpotent. Repeating once more arguments with the Serre spectral sequence we get that \(F \) is homotopically equivalent to \(K(H,1) \).

In [3] we have introduced "+" construction in the case if \(H_1(X;\mathbb{Z}_p) = 0 \). (\(\mathbb{Z}_p \) is a ring of integers localized outside \(p \).)
Definition 3. We say that G is P-perfect if $H_1(G;\mathbb{Z}_p) = 0$.

We shall study central extensions of a P-perfect group G by finitely generated \mathbb{Z}_p-modules. We shall denote this category by $E_p(G)$. We have the following proposition.

Proposition 2. Let $0 \to H \to X \to G \to 1$ be a central extension of a P-perfect group G by a finitely generated \mathbb{Z}_p-module H. Then $BH \to BX^+P \to BG^+P$ is a fibration. (The ^+_p-construction is done with respect to a maximal P-perfect subgroup of X).

The proof of Proposition 2 is exactly the same as the proof of Proposition 1.

Let X be a P-local space. We define a category $\text{Cov}_{ab}^p(X)$. Objects of $\text{Cov}_{ab}^p(X)$ are principal M-fibrations over X with a fixed base point in the fibre over the base point of X. M is a \mathbb{Z}_p-module.

Theorem 2. Let G be a P-perfect group. Then the categories $\text{Cov}_{ab}^p(\Omega G^+P)$ and $E_p(G)$ are equivalent. The full subcategory of $\text{Cov}_{ab}^p(\Omega G^+P)$ which objects are connected coverings and the category of central extensions (X,ϕ) of G such that X's are P-perfect, are also equivalent.

Corollary 4. i) There exists a universal central extension of a P-perfect group G in the category $E_p(G)$.

ii) (X,ϕ) is a universal central extension of a P-perfect group G in the category $E_p(G)$ if and only if $H_1(X;\mathbb{Z}_p) = 0$ and $H_2(X;\mathbb{Z}_p) = 0$. Then we have that $\ker \phi = H_2(G;\mathbb{Z}_p)$.

iii) The isomorphism classes of central extensions of G by P-perfect groups in the category $E_p(G)$ are in one to one correspondence with
\mathbb{Z}_p-submodules of $H_2(G, \mathbb{Z}_p)$.

The proofs are the same as before.

Proposition 3. Let $\mathbb{H} \to X \to G$ be a central extension of G. Then there is a central extension of G by $H \otimes \mathbb{Z}_p$ together with a natural map

$$O \to H \to X \to G \to 1$$

$$i\downarrow \quad \downarrow \quad \quad \quad \quad \downarrow$$

$$O \to H \otimes \mathbb{Z}_p \to X_p \to G \to 1$$

where i is \mathbb{Z}_p-localization ($i(a) = a \otimes 1$).

Proof. We have a fibration

$$(*): \quad BH \to BX \to BG.$$

Bousfield and Kan have introduced the fibrewise localization functor. After applying it to a fibration $(*$) we obtain a fibration

$$(**): \quad (BH)_p \to (BX)_p^+ \to BG$$

and a fibre map of $(*$) into $(**$).

From the fibration $(**$) we get the following exact sequence

$$O \to H \otimes \mathbb{Z}_p \to \pi_1(BX^f_p) := X_p \to G \to 1.$$

The action of $\pi_1(BG) = G$ on fibres of $(*$) and $(**$) are compatible therefore $(**$)is a central extension. □

Proposition 3 is of course a special case of a more general result proved by algebraic method in [0]. Proposition 1 is of course well known. The related results about $"+"$ construction are also in A.J. Berrick "An Approach to Algebraic K-theory", Pitman research notes in Math. 56 (London, 1982).

References

