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MAPS FROM Bm INTO X
2dzislaw Wojtkowiak

Let w be a finite group and lets Bn be its classifying
space. With every subgroup Yy ¢m there is associated a covering
i(y,x) : By » Bux . If g e n then multiplication by g on E=x indu-
ces a map cg: By — B(g—lyg) . Let E be an infinite loop space.
Then there is the following exact segquence
1g,3% -1
(* o~ ([Bm;E] -~ H[Bnp;E] — [B(npngnpg )E] ,

M sgeET
n
o P

where “p is a p-Sylow subgroup of = , products m ... and
T

I ... are over all p-Sylow subgroups for all P primes p ,
T ,Jgexn
p
. -1 s, =1
i, = N0 i(x B and j, = @nm 1 x n sn )oc_ . (see [2]).
* = (rngmyg ") T (g " gam sm)eey o ( (2n
p.g Kp,g

From the sequence (*) it follows that a map from Bwm to an
infinite loop space is homotopic to zero if and only if its restric-
tions to classifying spaces of all Sylow subgroups are homotopic to
zero. We want to see whether the same statement is true for an arbi-
trary simply connected space. For example if g = nnp then we have the

P
following proposition
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Proposition 1. If X 1is simply-connected then
[Br;X] = I’I[Brrp;X] .
P
Proof. The map V Bnp -+ Bn is a homological equivalence. Therefore
|3

using an obstruction theory we obtain a required isomorphism for any

simply connected space X .

In further considerations we restrict our attention to a very

i -Sylow subgroup of w .
small class of groups. Let "p be a maximal p-Sy g P

Let N{(=xn be a normalizor of in and let W = N(x)
( P) np n b np /up

Definition 1. We say that = satisfies Wp-condition if the map
H*(E;Z(p)) - H*(rrp;Z(p))wp is an isomorphism.

Examples

1. If "p is a normal divisor in 1 then wp—condition is satisfied.
2, If “p is abelian then wp—condition is satisfied.

3. Wp-condition is satisfied for the binary icosahedral group I*

and all primes p .

4. If xn = GL(n;Fq) then Wp—condition is satisfied for some

primes p .
Notation. "~" means "is homotopic to"

We have the following sequence of cofibrations (=« is a maximal

p-Sylow subgroup of = .)

i 3 " S (i)
(**) Bnp — Bx — Cone(i) = ¢ — S(Brrp)“"'_> S(Bx) = --- .
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Let ( )}p) denotes the p-completion functor and let ( )(p)

denotes the p-localization functor. After applying ( );p) to  (*¥)
we obtain the following sequence of cofibrations ’
* - p " jp S ’p -
() Br) gy = By = (BN () —=> €y =€) —=S(Bx) ()
= S(Bx_) —s—(:—)£> S(Bn)A = S(Bn) LR
p (p) (p) :

Further we shall deal only with a case of a fixed prime p ahd there-

fore we always drop the index p in ip'jp'bp

peee o

Theorem 1. (F. Cohen [ 1 ]) If = satisfies Wp-condition then

s(i) : S(Bnp) - S{Bn) has a left inverse k ,

(p)

k : v S(B - S{(B is a homoto equival e and
%% c(p) (Bn) ) 4 np) i otopy equivalenc n
j o= (Bn)p - C(p) is homotopic to zero.
Proof. Let k = |wp[ . Every element g ewp induces a map
h : Bn_ - B=x conjugation b ). Let N = zS(h): S(Br ) - S(B
g o o (conjug Y 9 i ) L np)

and let k-N = k-id-N : S(Br,) - S(Bx,) . One P easily checks
that the natural map r = r1+ Iy: S(Bnp) -+ Tel(N)v Tel(k~-N) 1is a
homotopy equivalence. Every element ge¢ Wp induces also a map
I:g: Bm - Bnx homotopic to the identity. Let N= % sth) =
gew
- p
=k : (SB -~ (sB . The maps

(5B (p) = (8B (p) P

f : Tel(N) - Tel(g) and r,: (SBx) (p) -~ Tel(N) are homotopy equiva-

1
lences. Let il: Tel(N) - Tel(N)vy Tel(k-N) be the natural inclusion.
One can check that k = (r,+ rl)—loilof—lo;1 is a left inverse to

S{i) . Therefore 6vk 1is a homotopy equivalence. It rests to show
that j~0 . & has a right inverse t . This implies that j~jo 6.0 t.

Hence we have that j~0 . ®m
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Corollary 1. If x satisfies Wp—condition and X 1is simply-connected
and p-local then the map f : Bw - X is homotopically trivial if and

only if its restriction to Bnp is homotopically trivial.

Proof. If foi~0 then there is f': ¢ » X such that f'ocj~f . This

implies that £~0 . QO

Let us suppose that we have a map f : SBJrp - X . We want to

understand its restrictions to Tel(N) and Tel (k-N) .
Lemma 1., Let us suppose that X = QY . Then there is an isomorphism

[Tel(N) (resp. Tel(k-N)) ;X] = lim [SBnp;X]
N{(resp. k-N) .

N(resp. k-N)

Proof. We have a direct system of spaces SBrx SBnp - s

There is the following exact sequence of Milnor

0~ lim' [SBx_, X] ~ [Tel(N (resp.k-M));X] = 1lim [SB ;X]= O
N{resp. k-N) p N(resp. k-N) p

Let us notice that NoN = kN (resp. (k-N).o(k-N) = k(k-N)) implies
that our inverse systems satisfy the Mitag-Leffler conditions. This

: . 1 ) X
implies that lim terms vanish. O

If fe¢ [SBnp;QY] and Y is p-local then for any n ez( we

p)
can define n.f in the following two ways.

i) Maps.(si;Y) = QY has the same homotopy type as Maps.(Stp);Y) .
1

1
there is a ma : S - S of de e d
(p) re is map n (p) (p) gre n an

For any ng¢ 2Z

we define n.f as a composition nof
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1 1 1 1 .
ii o A .. Th : S - S induces
ii) s°A Bnp S(p) Bnp ) e map n (p) )

~ 1
n : S A Bn -+ S
P

(p)

(p)A Bnp . We define n-+f as a composition f.n .

Let f : SBnm_ - X = QY . Let us set f, =

1
o 1 k'(foN) and
=1 * = (L ; .
f2 = k.(fo(k—N)) . Then f1 {kn fl}ne{l,Z...} elﬁm[SBnp,X] and
- 1 i . *
f§ = {kn f2}ne{1,2...}e iéﬁ[SBn sX] . Therefore by Lemma 1 f1 and

f§ define maps f;: Tel(N) - X and fE: Tel(k-N) - X . f;V f3
restricted to SBHp (i.e. (fIv f;)or where

r=r,tr,: SBTrp -+ Tel(N)v Tel(k\N) is a sum of inclus;ons onto the
first segments of the mappiné telescopes) 1is homotopic to

1 1 _
; f oN +i fo(k—N) = £ .

Proposition 1. The natural isomorphism

r*: lim[SBx_;X] ® 1im[$Bx_;X] ~ [SBx ;X]
N P x-N P

is given by ((fn);(gn)) -~ £,+g9, - The inverse map is given by

£f - (f:;f;) .

Proof. The map r : ssnp - Tel(N) v Tel(k-N) induces a map
[Tel (N) ;X] & [Tel(k-N) ;X] - [SBnp;X] which is given by the sum of
restrictions to the first segments of the telescopes. This shows
the first part of the proposition. By the previous discussions

f - (fI,f;) defines a map in the opposite direction which is the

inverse of «r*

-

Corollary 2. If feoN is homotopic to k-f then

. .
i) f2 o,

ii) fod ~0

’

iii) for any ge Wp we have that fo. S(hg) ~f .




Proof. i) follows from the definition of E; . We have that

-1 -1 ~ . .
) ~ * V *) oro ~ * o ] ~ *o ol o o ~ f* o ] o ~ -
£ob ~ (£F V £5) orod ~ fXoros ~ f¥.l Por, oo floﬂ F es(i)ea~0
ii) implies that there is £': SBx - X such that £'.S(i) ~f . This

implies that fos(hg)“f . @

2 . .
Corollary 3. If X = QY and X 1is simply connected then .

i Bnp -~ Bn induces an isomorphism

- W
[(Bn)p:X] = [Bnp:X] L

Proof. We have that -f&os(i)~f or, -

E& and ¢ are homotopy equiva-

lences. Therefore it is enough to show that
WP
r}: [Tel(N) ;xX] = lg'._m[SBn'p;QY] - [SB‘JTp;QY]
N : .

W,
is an isomorphism. Let us suppose that f s[SBnp;QY] P | Then

1 ) .
K = [amie ° 3 . * * = .
fl {kn £ N}ne{l,Z,...} € lﬁm[SBnp.QY] and rl(fl) f This

implies that r{ is an epimorphism. r; is also a monomorphism and

therefore it is an iscmorphism. @&

Theorem 2. If X is a nilpotent, p~local space and if =n satisfies
wp—condition then the natural map
w
[Br;X] —» [Bnp;X] P is a surjection.

If X 1is a loop space then

~ W
[Br;x]) ~ [BRP:X] P is a bijection.

Proof. We have already proved theorem when X 1is a double loop
space. Let us suppose that X is a loop and that X has only a finite
number of non~-trivial homotopy groups. Let us consider a part of the

Postnikoff tower of X ,

94



S K(x_.n) R x S x 4 K(x .n+1) .

- n n-1

n-1

Let us suppose that the theorem is true for X We have the follow-

n-1 ~

ing commutative diagram

[B'lr,QXn_l] A [B’l(;K(nn,n) ]—b* [Bu;Xn] S [B"’Xn-il —d' [Bn;K(xn,n+1) ]
i up 1}k ll‘? Wy m
w_a Wp

1P~ (Br iK(x in+1) ]

w, 2y W, b Woocy
p——-— 3 |3 1 H P—» H
[Br_,X ] [Bnp'K(nn.n)l »[Bnp,xn] [Bwrp,)(n_1

We must show that k is a bijection. If k(x) = k(y) then

c{x) = c(y) . Hence there exists ze [Bn;K(nn;n)] such that =z = x_l-y.
. . . -1 .
This implies that 3(z)} = k(x) *k({y) . Therefore there is
. 1
w e [Bnp.Q.Xn_1] such that al(w) = j(z) . Let =T g}e:w weh . Then
W P
= 4 . P i .
al(wl) j(z) and W, € [Bup,QXn_ll . There is v ¢ [Bn,an_l] such

that i(v) =W, o. We have Jj{a(v)) =a1(i(v)) =a1(w1) = j(z) . This

implies that a(v) = z and therefore x =y .

W -1
Let us suppose that xce [Bnp;xh] P and let yet (cl(x)) .

There exists =z such that c¢(z) =y because d(y) = 0 . We have

that c, (k(2)) = ¢, (x) . Therefore there is welBn_; K(nn;n)] 'such
that bl(‘”) = x-kl_l(z) . Let w, =g:;:w woh . Then bl(wl) = (x-k-l(z))k.
It follows from the standard properties of fibrations that

-1 W .
(x-k(z) )k lies in the center of [Bnp;xn] P | Therefore

1 - 1 .
bl(I Wl) = x-k{2) t . We have also that bl(-]l; wl) = k(b(i wi)) . This

implies that x €im k .
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It rest to show the theorem for an arbitrary nilpotent, p-local

space X

diagram as before. The map i 1is an isomorphism because an

. We use once more the Postnikoff tower of X

a loop space. We assume that [

and the same

-1 1s

is surjective. To show that k is

surjective we must use the following lemma.

Lemma 2. Let

M be a finitely generated

that the abelian group, M acts on a set X in such a way that iso-

tropy subgroups are Z(p)—submodules of M . We denote this action

by * . Let us suppose further that a finite group G

acts on M

and on X , the action of G on M is . Z(p)—linear, the order of
G 1is ke Z?p) and h%x9 = (h*x)g .
If X,%, € XG and wxx = Xy then ( EY mg)*x =% .
geG
Proof. wax = x4 and XXy eXG imply that wlax = Xy for each ge¢ G
wg*(w—wg)*x)) = olax implies that (w—wg)*x = x for each geG .
1 1 .
Therefore 1 T (w—wg))*x = x . We have that — g wg+ - z (w—mg)=
k k k
geG geG geG
. . . 1
This implies (f z wg)*x =Xy - s}
geG
The action of [Bnp;K(nn;n)] on [Bxp;xn] satisfies the

assumptions of Lemma 2. We prove that k 1is surjective in the same

Z(p)-module. Let us suppose

way as for a double loop space. We have that cl(k(z)) = Cl(z) . There-

fore there is w

1
( = =(woh ))xk(z) = x
geW x d
p
k(wl*z) = x ., The spaces

such that

(=
g ew

Brn

wrk (2) = x .
L(weh )) = 3(u.) implies that
Rlweh )) = () implies tha
P
and Bnp have only finite homology

groups therefore we have isomorphisms
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[Bm;X] ~ lém[Bn’Xn] and _[Bnp;x] - lim[Bnp'Xn] . (1If (Xn}neN ‘is
an inverse system of p-complete spaces then the functor lim[ ;Xn]
n
is representable by Sullivan i.e. lim( ;Xn] = [ 32] and 2Z = holim Xn'
n
In our case hol&m(xn); =X and
Bx (or Bx): X (or X)) = [Bx (or Bx);X. (or(x)"
[ np) o] { o) 3%, ( n)p)]

because Bx and Bnp have finite homotopy groups.)

We have the following commutative diagram
[Br;X] —BX, 1im[Br;X ]
3 Fl n

al . bl
\{/ pr W
[Bn_,X] P —> lim[Bx ;X 1 P .
P n p n
Pr is an isomorphism, b is an epimorphism (resp. isomorphism if
X is a loop space) and Pr, is a monomorphism. This implies that a
is an epimorphism (resp. isomorphism if X is a loop space). This

finishes the proof of Theorem 2. B

If we analize the proofs carefully then it appears that in fact

we have proved much more general result.

Let us suppose that a finite group G acts homotopically on
a space X ,i.e. there is a homomorphism G - no(e(x)) where € (X)
is the space of all homotopy equivalences of X . Let us suppose that
|Gl =%, X is p-local and k ‘ZYp) . By the result of Cooke there is

a space x1 with a free action of G and a homotopy eguivalence

i X~ Xy which is homotopy equivariant with respect to the

homotopy action of G .
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Theorem 3. Let 2 be a p-complete, nilpotent space. The natural
map

[Xl/G;Z]-—A>[X.Z]G is a surjection.
If 2 1is a loop space then

[X1/G:Z]—:+-[X;Z]G is a bijection.

Application to maps between classifying spaces. From Theorems 2 and
3 we deduce some corollaries concerning maps between classifying

spaces.

Corollary 4. Let X be a nilpotent space and let n satisfies
wp-condition for every prime p . Suppose that there are maps

fp: Bnp g X; homotopy equivariant with respect to an action of wp .
leT(

Then there is £ : BT = X such that Bnp _— P.x - X; is homo-

topic to £_.
oplic to o

Corollary 5. Let =n satisfies Wp—condition for every prime p . Let

W
~ . + P ~
X eKo(Bn) be such that xIBTr ¢ Im(R (np) AKo(B"p)) where

+ : . .
R (np) is the set of honest representations. Then there is

£ : Br - BU(n) such that Bx ——» BU(n) -~ BU is homotopic to x

Both these corollaries follows easily from Theorem 2 and the

arithmetic square of Sullivan.

Let G be a connected, compact Lie group, T maximal torus in

¢ and let W = N(T)/T . W acts homotopically on BT . Using the
. . 1
Cooke result we can construct a honest action of W on BT TWT
1 . —
such that the map BT - BT TWT is homotopy equivariant. The

1 ;
standard result about cohomology of BG implies that BT TEW/AV is
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1. . . 1
Z[lel—homologlcally equivalent to BG W] .

Corollary 6. If X 1is nilpotent, p-complete and (p;|W|) =1 then

X 1 1 w o, . .
i) the natural map [BG TWT;X]-—»[BT TWT;X] is surjective,

ii) 1if X 1is a loop space then we have an isomorphism
1 m 1 W
[BG T;;r:xl - [BT TWT:X] ,
iii) H*(BT:2/p) = H*(BG;Z/p)® M(p) as a Ap—module, Ap is the

Steenrod algebra.

The points i), ii) of Corollary 6 are consequence of Theorem 3. The

point iii) follows from the suitable generalization of Theorem 1.

Let us suppose that. p =2 and G = U(2) . Then one can check

that H*{(BU(2);2/2) is not a direct summand of H*(BT;Z/2) in the

category of Az—modules. This implies the following.

Corollary 7. Let i : BT - BU(2) be the natural map. The map

BU(2) — Cone(i) is stably non-trivial. This map is zero on cohomology.

What does this map induce on stable homotopy?

In a subsequent paper using quite different method we are able
to show much stronger results than Theorem 3. We decided to publish
this paper to show what one can get in this direction using the

most natural way i.e. an induction on the Postnikoff system.
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