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WEIGHTED NORM INEQUALITIES FOR
GENERAL MAXIMAL OPERATORS

C . PÉREZ

1 . Introduction

In [13] Muckenhoupt proved the fundamental result characterizing all the
weights for which the Hardy-Littlewood maximal operator is bounded ; the sur-
prisingly simple necessary and sufficient condition is the so called AP-condition
(see below) . A different approach to this characterization was found by Jaw-
erth (cf . [9]) . An advantage with this approach is that it generalizes to more
general situations ; for instante, to Hardy-Littlewood type maximal operators,
obtained by replacing the cubes by any collection of sets in R"°, and to spaces
of homogeneous type . For a general introduction, and historical comments we
refer to [7] .
The main purpose of this paper is to use some of the results and techniques

in [9] to further investigate weighted norm inequalities for Hardy-Littlewood
type maximal operators . We start by introducing some notation . By a basis
!3 in Rn we mean a collection of open sets in R" . We say that w is a weight
associated to the basis 13 if w is a non-negative measurable function in Rn such
that w(B) = fB w(y) dy < oo for each B in 13 . Mr3,w is the corresponding
maximal operator defined by

Mrt,wf(x) = suá w(B)
Ájf(y)jw(y)dy

if x E UBEt3 and MB �,f(x) = 0 otherwise . If w - 1, we just write MBf(x) .
We say that the weight w belongs to the class A, ,j3, 1 < p < oo, if there is a

constant c such that

IBI ~B
w(y) dy)

	

~BI JB
w(J) 1-P' dy)P-1 <_ c

for all B E 3 . p' will always denote the dual of p, that is
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In the limit case p = 1 we have that w belongs to the class A1,13 if

for all B E 13 ; this is equivalent to saying

almost everywhere x E Rn . For the other limit case, p = oo, we set

It follows from these definitions and H&lder's inequality that

if1<p<q<00.
In section (5) we shall use also the following notation . The weight w belongs

to the class Ap u (dp), 1 < p < oo, if these is a constant c such that

and only if

11
1B

w(y) dy) ess.SUPB(w-1 ) < e

Maw(x) < cw(x)

A,,~,a = Up>jA,,i3.

Ap,a C A9,13

(p(B) 1B
w(y) dp(y) /

(p(B) 1B
w(y)'-p' dp(y»p-'

<
c

for all B E B . We also denote by MB �,d, the maximal operator defined by

MB,wdpf(x) = sup (wp)(B)

	

B
Jf(y)j w(y)dp(y)

if x E UBEa and Ma �,d p f(x) = 0 otherwise, with (wdF,)(B) = fB w(y) dp(y) .
One of the main results in [9] is the following Theorem .

Theorem 1 .1 (Jawerth). Le¡ 1 < p < oo . Suppose that Ci is a basis and
that w is a weight, and set a = wl- p' . Then

Ma : LP(w) -> LP(w)

Ma : LP
,
(o) -~ LP'(u)

wEAp a
M8, ,,, : LP'(w) -~ LP'(io)
Ma,o : LP(o) --~ LP(o).

Theoreln 1 .1 includes Muckenhoupt's result, mentioned above, that for a
fixed 1 < p < o0

M2 : LP(dp) -> Lp'(dp)
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if and only if dlc = w(y)dy, with w E AP 2 . Here Q is the basis of all open
cubes in R" .
A key fact concerning Theorem 1.1 is that the proof completely avoids the

(difficult) "Reverse H6lder inequality."
Acknowledgements . The content of this paper is part of my Washington

University Ph . D . Thesis . I would like to express my deepest gratitude to my
teacher Bjórn Jawerth for his guidance and all his teaching . I also would like
to thank R. Howard and A . R. Schep from the University of South Carolina,
for several conversations concerning their work in [8] . The referee has made
several useful observations for which I am grateful . Finally, it is a great honour
for me to dedicate this work to the memory of José Luis Rubio de Francia .
He introduced me to the field of Harmonic Analysis, and, later, always kindly
supported and encouraged me .

2 . One-weight theory

It is a fundamental fact that M2,. is bounded in LP(w) for each 1 < p < oo,
if the weight w is doubling (cf . [7] p.144 ) . In particular MQ,. is bounded if w
is a A,,,2 weight . R . Feferman in [3] and B . Jawerth and A . Torchinsky in [11]
(also cf . [7] p .463) proved that the weighted strong maximal operator M-R,,,,
that is the weighted maximal operator associated with the basis 13 = R of all
rectangles in R'° with sides parallel to the coordinate axes, is also bounded in
LP(w) whenever the weight w belongs to the class A,,.- . The proof of this
result is based on a geometric covering lemma which goes back to the work
of Córdoba (cf. [1]) . In this section Nve show that these results are particular
phenomena of a general fact .

Theorem 2.1 . Let Ci be a basis . The following statemenis are equivalent.
i) For each 1 < p < oo, arad whenever w E AP ,5

(1)

	

Mi3 : LP(w) --, LP(w) ;

ü) for each 1 < p < oc, and whenever w E A.,13

(2)

	

Mj3, . : LP (w) -+ LP(w) .

Proof: Assume that the basis 8 satisfies ii) . Fix 1 < p < oo, and let w E A,j3 .
By denoting o = w1-P', we have that o E AP , L3 C A,,.j3, and thus

M8, �, : LP' (w) -> LP'(w)
Mj3 o : LP(o) -> LP(u) .

Applying now Theorem 1 .1 we get

Ms : LP(w) -i LP(w)

Mt3 : L P' (o) -r LP' (u),
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which in particular gives us i) .
Assuming now i), we fix 1 < p < oo, and we take w E A... Suppose that

w E Aq , 1 < q < oo . There are two cases .
a)q<p';
b) q > p' .

In the first case we have that w E AP , , which means that w'-P E Ap . Hence,
by hypothesis,

Me : LP1(w) -> LP'(w)
M13 : LP(w 1-P) - LP(wl-P) .

And applying again Theorem 1.1 we obtain

MB,w : LP(w) -> LP(w).

In the second case we have that

MB : Lq(w) -+ Lq(w)

Mt3 : Lq ' (w l-q' ) -+ Lq'(wl-q') .

since wl-9 ' E Aq, Now by using Theorem 1.1 we get

Since we always have that

we can interpolate to get

Mr3,w : Lq'(w) -> Lq'(w) .

M3,.: L'(w) -> L'(w),

Mr3,,, : LP(w) -+ LP(w),

for every q' < p < oo, and hence p' < q . This concludes the proof .

Example 2 .2 . Let MR be the Córdóba-Zygmund maximal operator . The
basis R defining this maximal operator is formed by these rectangles in R3 with
sides parallel to the coordinate axes whose sidelengths are of the form {s, t, st}.
It has been shown by R. Fefferman (see for instante [4] ) that MR is bounded
in LP(w), for each 1 < p < oo, if and only if w E AP,R . Hence, by Theorem 2.1

MR,�,: LP (w) -+ LP(w) .

for each 1 < p < oo, whenever w E A.,R

In view of all these important examples we make the following definition.
Definition 2 .3 . We say that the basis 13 is a Muckenhoupt basis if for each

1<p<oo,andeverywEA,a

M,3 : LP(w) -> LP(w).



With this definition, Theorem 2.1 can be stated as follows
Ci is a Muckenhoupt basis

if and only if
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Ms, w : LP(w) --> LP(w),

for each 1 < p < oo, and whenever w E A,,,s
Next result is an extension of Lin's result (cf . [12]) for the strong maximal

operator to any maximal operator whose basis is a Muckenhoupt basis .

Corollary 2 .4 . Suppose ¡ha¡ 8 is a Muckenhoupt basis . Let 1 <p < oo, and
suppose that w E A,,,s, then the following Fefferman-Stein inequality holds

(4)

	

n Msf(y)P w(y)dy C c

	

n
f(y)PMs w(y)dy .

IR

	

R

Proof.. Suppose that w E A,,s, for some 1 < r < oo. The following point-
wise inequality then follows easily from Hólder's inequality and from the A,., s-
condition

(5)

	

MB(XE)(x) <_ c(Ms,w(XE)(X))l1r .

Since l3 is a Muckenhoupt basis, Theorem 2.1 yields

( 6 )

	

Ms,w : LP(w) --> LP(w),

and together with (5) we easily conclude that for each measurable E and each
0 < A < oo the following inequality holds :

w (Ms(XE) > A) < c(A)w(E) .

Since also Ms : LP(R") -> LP(R'), we are now in a position where we can
proceed as in the proof of Lemma 7.1 in [9], to conclude the proof of the
Corollary.
Remark 2.5 . We point out that for (4) to hold, we do not need to assume

that w E A,, .,s ; (7) for some 0 < A < 1 would be sufficient .
For the sake of completness we observe that Muckenhoupt bases satisfy Jones'

factorization theorem . We just state the result and refer the reader to [9],
Corollary 6 .1, for the proof under a weaker condition on the basis .

Proposition 2.6 . Suppose that Ci is a Muckenhoupt basis, and let 1 < p <
oo . Suppose that w E AP ,s . Then there are weight.s w1,w2 E Al,s such that
w = WJw2-P .



3 . Vector-valued inequalities

It is well known by now that there is an intimate connection between vector
valued inequalities and weigthed norm inequalities (cf. [7] Chapter 5) . In this
section we shall use the results from the previous one to obtain an extension of
the classical Fefferman-Stein vector-valued inequality (cf. [2])

lIq

	

lIq

IMQfilq~

	

< CP,q
P

	

~~ Ifi q
q-O

	

4 O

	

[,P

where 1 < p < oo and 1 < q <_ oo, to any maximal operator ML3 whose basis
is a Muckenhoupt basis (cf . the definition above) . We would like to point out
that (8) has played a fundamental role in the analysis made in the recent works
[5] and [10] . We shall assume throughout the section that X3 is a Muckenhoupt
basis .

For a fix 1 < p < oc, and motivated by the method introduced by J . L . Rubio
de Francia (cf. section 5 .5 in [7] and section 6 in [9] ), we denote by R13 the
operator

Rp : LP(R') -> LP(R")

°°

	

,. f
f -~ 1: MB

(2K)' ,

where MI = Id and M,'3 is the ith iterate of the operator M,3 . K is the norm
of M13, as an operator on LP(R") . Although RL3 is pointwise larger than ML3,
it preserves most of its properties, namely

i)
u<RL3u

IIRi3 UJILP(R^) :~ 2IIuJILP(R^)'

Furthermore, RB has the property that
iii)

Ri3 f E Al ,t3

for each f E LP(R") . The last statement is not true for MBf as the following
argument shows . Consider the Hardy-Littlewood maximal operator 117 = MQ,
and take any positive function cp E Ll (R") . We shall show that DrlW is not
even an A,,,, weight . Indeed, suppose that Mcp E A,, for some 1 < p < oo .
Then (Mco) 1- P ' E Ap , and, by Muckenhoupt's theorem,

Mf(y)" M~p(y)1-P' dy C
c~

	

f(y)" MW(y)dy.
R^

	

R^



and

for each t > n _1 .
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By taking f = cp we see by Lebesgue's differentiation theorem, that the right
hand side of the inequality is finite, while the left hand side is infinite l .

Lemma 3.1 . Leí 1 < p, t < oo, and leí B be a Muckenhoupt basis. Then for
each nonnegative function u E Us>1L9(Rn) we have

I

	

M[3f(y)P u(y)dy ~ c

	

n f(y) P Reu(y)dy,
R

	

fR

Rn
MI3f(y)P

(Ri3(u t)) (y)1/'
dy < c %Rn f(y)P u(J)dy,

Proof.. The first inequality follows from above remarks and (4) . For the
second we observe that (RL3 U)-11t = [(R5 u )1/t(P -1 )

J
1-P E AP,t1, and this, in

turn, follows from the fact that if w E A1,8 then wó E A1,r3, if 0 _< 6 < 1,
and from the easy part of (2.6) . Finally, (9) follows from the definition of
Muckenhoupt basis and from above remarks about RB .

Remark 3.2 . We point out that for the case B = Q the following inequality
holds :

(10)

	

IR-
Mf(y)P

M(u)(y)1/t
<
cJR-

f(y)Puy ,

for 1 < p < oo and t >11 . The result is false if t = P11 , (cf . [14]) .P_-
We may think of Rt; as being the right substitute in the general case .
Once we have this lemma then the vector-valued inequality for Mt; follows

from Theorem 5 .2 Chapter 5 in [7] .

Theorem 3.3 . Leí 1 < p < oo, and 1 < q _< oo . If B is a Muckenhoupt
basis, then

1/q

	

1/q

~~ I MCifi I
ql

	

<CP,q

	

~~ I fi q
q-o

	

La i-o Ly

Remark 3.4 . Although we have mentioned that the theorem follows from
Lemma 3.1, it is to be mentioned that we just need the first half of it . Indeed,
this and a standar procedure would give the case q < p. Now, since the theorem
is obvious for q = p, and also for q = oo, the case 1 < p < q < oo is obtained
by interpolation .

In the same spirit we make the following observation about the class A1 ,1;.

1Following the method in [16] it is possible to prove that Mcp may not be even doubling . We
are indebted to F . Soria for showing this to us .
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Lemma 3.5 . Assume that B is a Muckenhoupi oasis. Le¡ 0 < q <_ 1, and
let w E UP>1LP(Rn) . Then

if and only if there is a positive function g E Up>1LP(Rn), such that for some
large enough constant A

(12)

Since obviously

w .IZZ~

w<

w E Al,B

000 (
Mb9 )9

1/y

E
Ai

Proof: By iteration Mgw <_ c'w, for some constant c . Then putting A
c2 1 / 9 and g = w we get

< 2w.

(12) follows .
To prove the converse, let G denote the right hand side of (12) . Since w ',Z~ G,

it is enough to deal with G. We first show that G is in UP>1LP(Rn) . Indeed,
suppose that g E LP(Rn ), 1 < p < oo . Then

IpliiD = I

	

(Mgg)9I

	

=
~0

	

Ai

	

~

Lp/4

=
E

	

n (
mÁi(Y) )v

u(y)dy,
R

for some u E L(Pl9)'(Rn) with unit norm . Therefore, by the above remarks and
by iterating (4), the last expression is dominated by

00

CM~(y) )
v
Reu(y)dy< g(y)9

RBu(y)dy .
R.n

i
i=0

	

i=0

Here F denotes the smallest constant for which (4) holds . Finally, by taking
A = 2 1/ 9F, using Hdlder's inequality, and ii) above obtain that JIGIlL,

	

<

21/9 11911LI,
We shall prove now that G E A1 ,13 . For each B E Ci we shall see that

1

	

G(y)

	

<AGx
IBI e

	

(y) y _

	

( ),
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a . e . x E B. Indeed, by Minkowski's integral inequality with r = 9 > 1

_

	

l1/r =
[ 1

	

¡

	

-

	

Msg(y)
q

( 1

	

B
G(y)

dyl

	

¡B¡ JB

	

1

	

A

	

)~

1

	

7
Még(y)

	

` 1/r

	

oo

(M~

+1

	

x

l

9
=<

	

B

	

As

	

dy

	

< A9

	

As
g()	AvG(x)9.

$=o

	

;=o

4. An alternative formulation of Muckenhoupt's theorem

In this section we give a different criterion to decide whether the operator
M13 is bounded on LP(w), assuming that the basis is a Muckenhoupt basis . In
particular this result applies to the case X3 = Q, providing a different charac-
terization of Muckenhoupt's theorem. This approach is inspired by the results
in [8] .

Theorem 4.1 . Le¡ 1 < p < oo, and suppose that 13 is a Muckenhoupt basis.
Let w be a weight for 13 .

	

Then

(13)

	

Mí3 : LP(w) --> LP(w)

if and only if

(14) Me (w (M6go)P-1) < c wgo 1,-1,

for some nonnegative measurable function go , with fB go (y) dy < co for each B
in 13, and for some positive constant c.

Proof.. Assuming (13) it is standard to see that w E AP L3, and hence o =
W1-P' E AP, ,r3 . Since Li is a Muckenhoupt basis Mg : LP(w) -> LP(w), and
M,3 : LP

,
(o) ---> LP'(o) . Hence

and

which implies

Si : LP(Rn) -> LP(Rn)

f --> w1/P M13 (W-11P f)

S2 : LP'(Rn) , LP'(Rn)

f ~, w-1/P A4-L; (w
1 IP f),

T : LP'(R') -> LP'(Rn)



Hence, by using the iteration technique of Rubio de Francia (cf.[7] p. 434, [9]
p.392, or the previous work of Gagliardo in [6] ), there exists a nonnegative
measurable function h E LP'(Rn) for which

or, equivalently,

f -" S2
(S1 fp'lp)p-1) .

S2 ((S1 hp'lp)p -1) < c h,

p lP))
p-1

Mg (w (Mg(w -1/P h

IBI 1~
w(y) dy ( 131 L go(y) dy

< cwllph .

Taking go = w -1/php'lp we obtain (14) . Note that fB go(y) dy < oo for each B
in 13 since

1/p'

	

1/p

I
B
go(y) dy 5 (L w(y)-p dy)

	

(Is h(y)p dy :5)

	

< oo,

by Hdlder's inequality, and because w 1-p' E AP,,p and h E LP'(Rn).

To prove the converse, we note that it is enough to show that w satisfies the
Ap,g-condition since 8 is a Muckenhoupt basis. For each B E 13 we define the
constant A by

A

	

IBI
Áw(y) dy ( IBI JB

w(y)_

	

_

	

-p,
dy)p-1

p-1

IBI
~Bw(y) dy (¡Di ~Bgolpl go

	

w(y)'-p' dy)

Applying H¿ilder's inequality and the hypothesis about go we estimate A by

1t w(y) dy (

	

Lgo(y)dy)(P_1)/P'(
I BI

Lg,(y)l-Pw(y)-P'dy)(P_1)/p
IBI II

)

p-1

1

	

1 /r~'

	

1

	

j

	

/p'

( I

	

I

	

q(j(y) dy)

	

( I

	

I JB
go(y)1-''w(y)-P dy)

1

	

<
B ir

	

B

1

	

1/p'

I BI Jlr
9u(y) dy)

	

(IBI Jri
Yo(Y)1-pw (y)-p, dy)

	

<1

1/p'

(IBI ~1
go(J) dy)

	

( IBI J~f

	

°(y)_

	

dy)

	

_ ~,

concluding the proof of the Thcorern .

c lllf u~ gil
ir



5 . A characterization of the reverse H51der inequality classes
for general bases

We denote by RHq B, 1 < q < oc, the class of weights satisfying a reverse
H51der inequality of order q uniformly on each B E 13 . That is

(15)

	

RHq,a = {w : (
PBI

	

B
w(y)q dy)1/q <

PBI Á
w(y) dy, B E r3}

for some positive constant c, independent of B E 13 .
To illustrate the interest of the reverse H51der classes, consider the simpler

operator

if and only if

ü)
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mw,Bf(x) =

	

f
w(B)

	

f(y) w(y)dy XB(x),

where B is an arbitrary fixed set in 13 . It readily follows from the next (easy)
lemma that for 1 < p < oo

mw,B : LP(R") -+ LP(R")

w E RHP ,,a .

Lemma 5 .1 . Let 1 < p < oo . The following statements are equivalenL
i) There is a positive constant c, independent of B E 13, such ¡ha¡ for every

nonnegative locally integrable function f

1/p

w(B) Á f(y) w(y)dy < c (B~ Á f(y)P dy)

	

;

w E RHP,,B .

Proof.. ii) follows from i) by taking f = wP'/P, and i) follows from ii) by
H51der's inequality :

w(B) B f(y) w(y)dy <

< w(B) (Á f (y)P_

	

dy)"'
(1B

w(y)P' dy)1/P, _

1/P

	

1/n~

<I(B) (IBI ]B
f(y)P

dyl

	

(7B JB
w(y)P'dy)l

11/P

< c
(~BI

JB
f(y)P dy l
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To obtain a result for M6,u� we peed a way of measuring how the different
mw,B's interfere . This is intimately connected with the geometry of the partic-
ular basis 13, and hence to covering properties of families of sets belonging to
B . This, in turn, is essentially equivalent to mapping properties of the maximal
operators .
Our characterization is the following

Theorem 5.2 . Let 1 < p < oo. Suppose thai 13 is a basis and that w is a
weighí . Then

if and only if

if and only if

that is

M[3,w : LP(Rn) -~ LP(Rn)

Mr,,w :
LP'

(wP) -f LP' (.P' )

w E RHP',13

Mí3 : LP1(Rn)
---,

LP'(Rn)

M6,w,, :LP(wP') -> LP(wP').

Proof.. Let dw denote the measure dw = wdx . Noticing that w E RHP, ,a is

equivalent to w-1 E AP,g(dw), and writing dx = w-ldw, and wP' = o,-Idw,

where o, = w1-P', the following equivalente follows

w E RHP,,g

M,, : LP'(R-) -> LP'(R')

MB,.,' : LP(wP' )

	

LP(wP )

w-1 E A,g(dw)

MB,,,-Id,, : LP'(w-1dw) --, LP'(w-1dw)

MB,o-Id,v : LP(o, -ldw) -~ LP(o-1dw)

If we now apply Theorem refA with the Lebesgue measure replaced by the
measure dw, this is equivalent to

Al,3,dw : LP(w-ldw) -> LP(w-1dw)

M6,dw : LP' (a-1dw) -~ LP'(u-1dw)

MB,w : LP (R") -~ LP(R')

Mrt,~ : LP' (wP' ) -~ Lf (wP' )

And this concludes the proof of the Theorem .

In particular we have the following corollary,



if and only if

if and only if
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Corollary 5.3 . Let 1 < p < oo . Suppose that 13 is a oasis such that
MB : LP/ (Rn) -> LP'(R'), and that w E RHP ,,,3 implies Mp �,n, : LP(wP ' ) ->
LP(wP' ). Then

(16)

	

Ma,w : LP(Rn) -> LP(R")

(17)

	

w E RHp ,, j3 .

Proof. (17) follows from (16) by taking f = WP'/PXB, and using the definition
of MS, � , . The converse is immediate from Theorem 5.2 .

Corollary 5.4 . Let 1 < p < oo. Then

( 18)

	

M2 ,�, : LP(Rn) -> LP(Rn)

(19)

	

w E RHP,,2 .

Proof.. MQ : LP(R') --> LP(R') is the Hardy-Littlewood maximal Theorem .
For MQ �, : LP(wP) -~ LP(wP), it would be enough to prove that wP,

is
doubling, but in fact something better holds (cf. [17])

(20)

	

w E RHP , , Q q wp,
E A<,,Q .

Remark 5 .5 . There is an LP - Lq version of this characterization . Let
0 < 0 < n, and assume that 1 < p < q < oo, satisfy the "Sobolev relation",

Then, the following statements are equivalent .
i)

Mp w : LP(Rn) -+ LQ(Rn) ;

w E RHP ,,o .

Here Mp,w is the following weighted fractional maximal operator

IQl p~n
MO,wf(X) =

s p w(Q)
fQ f(y) w(y)dy,
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where the supremum is taken over all cubes .
Remark 5.6 . There is another proof of the nontrivial part of Corollary

5.4, closer in spirit to the classical proof of Muckenhoupt's theorem . Suppose
w E RHp,,2 . It was discovered by Gehring that w E RH(p_E),,2 for some tiny
e > 0 . Then by Lemma 5.1 we have

w(Q) £
f(y) w(y)dy

	

(1QI 19
f(y)P_

	

-e dy~

	

,

and by picking e > 0 smaller if necessary, we have

MQ,wf(y)P dy C 1

	

(M2(fP-%y))PAp-E) dy < c

	

f(y)Pdy,
R^

	

R^

	

IR.

by the Hardy-Littlewood maximal Theorem .

Corollary 5.7 . Let 1 < p < oo . Then

(21)

	

MR,,, : LP(Rn) --> LP(Rn)

if and only if

(22)

	

w E RHp,,R .

Proof. As in the proof of Corollary 5.4 we just need to check both MR
LP(Rn) -+ LP(Rn ) and MR �,,, : LP(wP') -> LP(wP') .

	

The first one is the
classical Theorem of Jessen, Marcinkiewicz and Zygmund . Now, since R is a
Muckenhoupt basis, (3) yields the boundedness of MR,w,, if we show that

wp'EA.7z<!=> wERHp,R.

To prove this, we use Theorem (6 .7) p . 458 in [7], and the proof of the case
Li = Q in [17] applies mutatis mutandis to the case fi = 9Z .

6 . Two weight theory

In this section we discuss two weighted norm inequalities for MS. We shall
extend the two weights results in [9] to the Lorentz spaces .
We recall that a function f belongs to the Lorentz space L(r, s) if

IIfIIL(r,,)(j.) _ [100
(tlu{x E R'1 : I&)I > t}'/r)' dtl 1/s

< 00



Theorem 6.1 . Le¡ 1 < p, q < oo, and le¡ (v, u) be a couple of weights .

	

Call
v = u' - P' . Assume that the basis 13 satisfaes the condition that for every set G
which is a union of sets in Ci the following holds

Then for each smooth f

(23)

	

IIMBfilL9(v) < CIIMBo(fl1)IILn ,v(o)

for come constant c independent of f, v, and o .

Proof. For each integer k consider the set

Ek={yERn :2k <MBf(y)<2k+1 } .

From the definition of MB, Ek C UjBk j, where Bk j E Ci satisfies

Define

and for j > 1
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rlq

[I
MB (aXG) (y)'v(y)dyj

	

<_ co,(G)11P .
c

2k <

	

1

	

f

	

f(y)dy .
IBkj 1

	

Bk,i

= Bk,i n Ek,

Ek,j = (Bk,j\ U.,<j Bk,., ) n Ek .

Each of the sets Ek is the disjoint union of the sets Ek j .

We now can write

f n MB f(y)'v(y)dy = ~ f MB f(y)'v(y)dy =
R

	

k E,;

M13f(y)'v(y)dy < 2q 1: 2kg v(Ek,j) :5
k, j

4

C11 v(Ek,j)

	

IBkj I 1%,i
f(y)

dyl

	

=

¡
= cE v(Ek,j)

	

IBk,j I

	

Bti,i
o, (y)

dy

	

"Y'
l

	

~(
a(Bk,j) JB" i a (y)

~(y)dy )PJ9IP =

= c

	

qlp
hk,jgkj

kj
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where

and

We view the sum Ek j Pk jgk ,j, as an integral on a measure space (X, tt) built
over the set X = {k, j}, assigning to each (k, j) the measure [¿k,j . For A > 0,
set

Then

We can estimate p(F(,\)) as follows

9

Mk,j -v(Ek,j) (IBkj ~ ~gk,i
~(y)dy)

l

1 '

	

f

	

f(Y)

	

d

	

p

9k,j =
(a(Bk j)

	

Bk ,i -(Y)

	

(y) y
l

P(A) = {(k, .7) : gk,j > A},

G(,\) = U(k,j)Er(a)Bk,j-

gk /.i Ftk j =

	

Aglp

	

dA

k,j

Pk,j
(k,j)EF(a)

f

	

MI; (o-XB,k,i )(J) 9 v(J)dy <_
(k,j)Er(A) Ekj

< cu(G(A))q/p < cv({J E R' : DIB,v(fla)(J) p > ,\})9/p

Here we have used the hypothesis on AIB Q in the third inequality. Finally by
making a change of variables we obtain

J

	

AIBf(J)g v(J)dy <

< e

	

Ao, ({J E Rn : 11IB o(fw)(J) > A})1/pl9

	

_

=

lo (

CIIMB,o(flU)II L(p,9)'

concluding the proof.

As a consequence of this theorem we can deduce the following characteriza-
tion .



(24)

	

Mí3 : LP(u) -> Lq(v)

if and only if

(25)

WEIGHTED NORM INEQUALITIES

	

185

Corollary 6.2 . Let 1 < p < q < oo, and let (v, u) be a couple of weights.
Suppose that MB o : LP(o) -> LP(o), where o = u1-r' . Then

1/qU MH
(oXG(a))(y)q v(y)dy)

	

< cu(G(ñ)1/P

for every set G which is a union of sets in 8.

Proof.. By setting f = UXG(a) in (24) we readily get (25) . To prove the
converse we use Theorem 6.1, that p < q, and our hypothesis on Mí3 ,,

IIMS fIIL, ( ,, ) :5 VII MI3,o (fl~)II Lv,a(o) <

< CIIMI3,o(fIQ)IILP(o) <_ CIIflUIILp(o) -CIIflILP(u)

As a consequence of this result we can obtain Sawyer's characterization of
those couple of weights (v, u) for which the Hardy-Littlewood is bounded from
LP(u) to Lq(v) . We just state the result since the proof is like the given for the
case p = q in [7] p.432, with some obvious modifications .

Corollary 6.3 .

	

La 1 < p < q < oo, and let (v, u) be a couple of weights,
ando,= u' -P' . Then

(26)

	

M: LP(u) -> Lq(v)

if and only if

\ 1/q

(27)

	

(IQ
M(-XQ)(y)q v(y)dy)

	

< co(Q)1/P

for every cabe Q .
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