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WEIGHTED NORM INEQUALITIES FOR
GENERAL MAXIMAL OPERATORS

C. PEREZ

1. Introduction

In [13] Muckenhoupt proved the fundamental result characterizing all the
weights for which the Hardy-Littlewood maximal operator is bounded; the sur-
prisingly simple necessary and sufficient condition is the so called A,—condition
(see below). A different approach to this characterization was found by Jaw-
erth {cf. [9]). An advantage with this approach is that it generalizes to more
general situations; for instance, to Hardy-Littlewood type maximal operators,
obtained by replacing the cubes by any collection of sets in R", and to spaces
of homogeneous type. For a general introduction, and historical comments we
refer o [7].

The main purpose of this paper is to use some of the results and techniques
in [9] to further investigate weighted norm inequalities for Hardy-Littlewood
type maximal operators. We start by introducing some notation. By » basis
B in R™ we mean a collection of open sets in R™. We say that w is 2 weight
associated to the basis B if w Is a non-negative measurable function in R™ such
that w{B) = fpw(y)dy < oo for each B in B. Mg, is the corresponding
maximal operator defined by

1
5 [ e

Mg, f(z) = sup
8w

if # € Ugep and Mp o f{z) = 0 otherwise. If w = 1, we just write Mg f{z}.

We say that the weight w belongs {o the class Ap g, 1 < p < oo, if there is a
constant ¢ such that

(o ) i o7 4)

for all B € B. p' will always denote the dual of p, that is

+ =1.

1
P

G|
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In the limit case p = 1 we have that w belongs to the class A g if

(ﬁ /Bw(y) dy) ess.supy{w ') < e

for all B € B; this is eguivalent to saying
Mpw{z) < cw(z)
almost everywhere z € R”. For the other limit case, p = oo, we set
Agoz = Ups14, 8.
It follows from these definitions and Holder's inequality that
Ap g C Ay

if1<p<g<oo
In section (5) we shall use also the following notation. The weight w belongs
to the class A, 5(dpr), 1 < p < oo, if there is a constant ¢ such that

(i [, et} (5 [ wir™ du(y))p_l <

for all B € B. We also dencte by Mg wq, the maximal operator defined by

1

Mg w ) = sup ———— f w{yld

suwdf(2) = sup s | W (lw(yldu(y)

if 2 € Ugep and Mg wap f{z) = 0 otherwise, with (wdu)(B) = Sy wly) dp(y).
One of the main results in [9] is the following Theorern.

Theorem 1.1 (Jawerth}. Let 1 < p < oo. Suppose that B is a basis and
that w is « weight, and set 0 = w ™7 . Then

{ Mg« LP{w) — LP(w)
Mg : L (a) — LP'(0)

if and only of
w e Ap,g
Mg w: L""(w] — Lpl(w)
Mg, LP(e}) — LP(o).

Theorem 1.1 includes Muckenhoupt's result, mentioned above, that for a
fixed 1 < p < 0o
Mg : IP(du) — L(dy)
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if and only if dp = w(y)dy, with w € 4, q. Here @ is the basis of all open
cubes in R™.

A key fact concerning Theorem 1.1 is that the proof completely avoids the
(difficult) “Reverse Holder inequality.”

Acknowledgements. The content of this paper is part of my Washington
University Ph., D. Thesis. I would like to express my deepest gratitude to my
teacher Bjorn Jawerth for his guidance and all his teaching. I also would like
to thank R. Howard and A. R. Schep from the University of South Carolina,
for several comversations concerning their work in [B}. The referee has made
several useful observations for which [ am grateful. Finally, it is a great honour
for me to dedicate this work to the memory of José Luis Rubic de Francia.
He introduced me to the field of Harmonic Analysis, and, later, always kindly
supported and encouraged me.

2. One-weight theory

It is a fundamental fact that Mg ., is bounded in LP{w) for each 1 < p < oo,
if the weight w is doubling {cf. [7] p.144 ). In particular Mg ,, is bounded if w
1s a Ay g weight. R. Fefferman in (3] and B. Jawerth and A, Torchinsky in [11)
(also ef. [7] p.463) proved that the weighied strong maximal operator Mg .,
that is the weighted maximal operator associated with the basis B = R of all
rectangles in R™ with sides parallel to the coordinate axes, is also bounded in
LP{w} whenever the weight w belongs to the class A, r. The proof of this
result is based on a geometric covering lemma which goes back to the work
of Cérdoba (cf. [L]). In this section we show that these results are particular
phenomena of a general fact.

Theorem 2.1. Let B be a basis. The following statements arc equivalent.
t} For each 1 < p < 0o, end whencver w € A, 5

{1} Mp : LP(w} — LP(w);
w) for each 1 < p < 0, and whenever w € Ay

{2) Mp o LP{w) — LP(w).

Proof: Assume that the basis B setisfies ii}. Fix 1 < p < oo, and let w € A4, 5.
By denoting ¢ = w’_*”, we have that o € A, g C Ao 3, and thus

{ Mgy LF,(U)) — LP’(w)
Mg g : LP(a) — LF(s).
Applying now Theorem 1.1 we get
Mg : LP{w) — LP{w)
{ Mg : LP () - L¥ (o),
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which in particuler gives us i} .

Assuming now 1), we fix 1 < p < oo, and we take w € 4. Suppose that
w € A,, 1 < ¢ < oo, There are two cases.
a) ¢ <9
b)g>p.
In the first case we have that w € Ay, which means that w!™? ¢ A,. Hence,
by hypothesis, ' i
Mg : LP (w) — LP (w)
{ Mg : LP(w'P) — LP(w?~P).

And applying again Theorem 1.1 we obtain
Mg . LP(w) — [P(w).
In the second case we have that

{ Mg Li(w)} — L¥(w)
Mg : L8 (w' =) — LY (w!~7),

since w! ™% € A,. Now by using Theorem 1.1 we get

Mg LY (w) — LY (w).
Since we always have that

Mg w: L={w) - L®{w),
we can interpolate to get

Mgy 2 LP(w) — LP(w),

for every ' < p < oo, and hence p' < g. This concludes the proof. B

Example 2.2, Let Mg be the Cérdoba-Zygmund maximal operator. The
basis R defining this maximal operator is formed by those rectangles in R® with
sides parallel to the coordinate axes whose sidelengths are of the form {s,¢, st}.
It has been shown by R. Fefferman (see for instance [4] ) that Mg is bounded
in LP(w), for each 1 < p < o0, if and only if w € A, ». Hence, by Theorem 2.1

Mg o+ LP(w) — LP(w).

for each 1 < p < 00, whenever w € A, w
In view of all these important examples we make the following definition.

Definition 2.3. We say that the basis B is a Muckenhoupt basis if for each
T <p<oo, and every w € Ap 8

Mg : L¥(w) — LP{w).
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With this definition, Theorem 2.1 can be stated as follows
B is a Muckenhoupt basis

if and only if
(3) Mg i LP{(w) — LP{w),

for each 1 < p < co, and whenever w € A g

Next result is an extension of Lin's result (cf. [12]) for the strong maximal
operator to any maximal operator whose basis is a Muckenhoupt basis.

Corollary 2.4. Suppese thel B is ¢ Muckenhoupt basis. Lei 1l < p < oo, and
supposc that w € Ay 5, then the following Feffermen-Siein ineguality holds

@ sty < [ 1wrs uvas

Proof: Suppose that w € A, g, for some 1 < r < co. The following point-
wise inequality then follows easily from Hélder’s inequality and from the A, g-
condition

() M(xe)(z) < e(Mp.u(xs)z))'’"
Since 8 is 2 Muckenhoupt basis, Theorem 2.1 yields
(6) Ms, o LP(w) — LP(w),

and together with (5} we easily conclude that for each measurable E and each
0 < A < oo the following inequality holds:

(7) w(Ma(xg) > A) < (A)w(E).

Since also Mg : LP(R™} — LP(R™), we are now in a position where we can
proceed as in the proof of Lemma 7.1 in [9), to conclude the proof of the
Corollary. N

Remark 2.5. We point out that for (4) to hold, we do not need to assurne
that w € Ay g; (7) for some 0 < A < 1 would be sufficient.

For the sake of completness we observe that Muckenhoupt bases satisfy Jones’
factorization theorem. We just state the result and refer the reader to [9),
Coroliary 6.1, for the proof under a weaker condition on the basis.

Proposition 2.6. Suppose that B is o Muckenhoupt basis, and let 1 < p <
00. Suppose that w € A, . Then there are weights wy, w2 € Ay g such that

-
w=wiw; .
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3. Vector—valned inequalities

It is well known by now that there is an intimate connection between vector
valued inequalities and weigthed norm inequalities (cf. [7] Chapter 5}. In this
section we shall use the results from the previous one to obtain an extension of
the classical Fefferman-Stein vector-valued inequality (cf. [2])

=0

oo 1/g ) t/g
(8) (2 Mg f,-l‘*) < g (Z ml*) ,
Ly =0 Ly

where 1 < p < oo and 1 < ¢ € 00, to any maximal operator Mp whose basis
is a Muckenhoupt basis (cf. the definition above). We would like to point out
that (8) has played a fundamental role in the analysis made in the recent works
[5] and [10]. We shall assume throughout the section that B is 2 Muckenhoupt
basis.

For afix 1 < p < oc, and motivated by the method introduced by J. L. Rubio
de Francia (c¢f. section 5.5 in [7] and section 6 in [9] }, we denote by Ry the
operator

Rg : LP(R™) = LP(R™}

[+ ]

Mif
f_’ E Br,‘:
pard (2K}

where M§ = [, and Rafg; is the ith iterate of the operator Mp. K is the norm
of Mg, as an operator on LP{R"). Although Rg is pointwise larger than Mg,
it preserves most of its properties, namely

i)

u< Rpu
it}
N Rs ullerny < 2l[ullLrrn)-
Furthermore, Ry has the property that
1i)
Ref€ A

for each f € LP(R") . The last statement is not true for Mpf as the following
argument shows. Consider the Hardy-Littlewood maximal operator M = Mg,
and take any positive function € LI(R®). We shall show that My is not

even an A., weight, Indeed, suppose that My € A,, for some 1 < p < oo
Then (Mgo)j_"" € A, and, by Muckenhoupt's theorem,

[ vty oty ay < [y Mot)' 7 oy
jiig mn
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By taking f = ¢ we see by Lebesgue’s differentiation theorem, that the right
hand side of the inequality is finite, while the left hand side is infinite?®.

Lemma 3.1. Letl < p,t < co, and let B be ¢ Muckenhoupt basis. Then for
each nonnegative function v € Ugn 1 L(R™) we have

f Ms f(y)? uly)dy < c f fuY Rsu(y)dy,
R= nr

and

f__ L s L 4
(9) /R" Mg f(y) Rl (7" dy < chn fly) u(y)d.}:

1
for each t > 1

Proof: The first inequality follows from above remarks and (4). For the
1—
second we observe that (Rg u}_l/t = [(RB u)lmp_”] g € A, 5, and this, in

turn, follows from the fact that if w € A; 5 then wt ¢ Ay, 0 <8 <1,
and from the easy part of (2.6). Finally, (9} follows from the definition of
Muckenhoupt basis and from above remarks about Ag. B

Remark 3.2. We point out that for the case B = @ the following inequality
holds:

P W c a”@
(10) L Mrr gt se [ sy,

forl<p<ocandi> p—il. The result is false if { = p+1= (cf. [14]).
We may think of Rg as being the right substitute in the general case.

Once we have this lemma then the vector-valued inequality for My follows
from Theorem 5.2 Chapter 5 in [7].

Theorem 3.3. Letl < p < oo, end 1 < g < 0o. If B is a Muckenhoupt
basis, then

oo /g o0 ilg
(1) (ZiMsfsiq) < g (Z |f,-|q)
=0

t=A

Lr Le

Remark 3.4. Although we have mentioned that the theorem follows from
Lemma 3.1, it is to be mentioned that we just nced the first half of it. Indeed,
this and a standar procedure would give the case ¢ < p. Now, since the theorem
is obvious for ¢ = p, and also for g = oo, the case 1 < p < ¢ < 00 is obtained
by interpolation.

In the same spirit we make the following observation about the class A 5.

'Following the method in [16] it is possible to prove that My may not be even doubling. We
are indebted to F. Sorta for showing this to us.
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Lemma 3.5. Assume that B is ¢ Muckenhoupt basis. Let ) < g <1, and
let w € Ups1 LP(R"). Then
w e 441_3

if and only if there i3 o positive function g € U, LP(R"), such that for some
large enough constont A

Proof: By iteration Miw < ¢‘w, for some constant ¢. Then putting 4 =

¢23/% and g = w we get
oo i 9]
L)) e

=0

oo : g
Myg\*
ws (Z (") ) '
=0
(12) follows.

To prove the converse, let G denote the right hand side of (12). Since w ~ G,
it is enough to deal with G. We first show that G is in Up5 1 LP(R"). Indeed,
suppose that ¢ € LP{R"}, 1 < p < oo. Then

> (M)

=0

Since obviously

1Gl%, =

Lels

_ 2/ ( sg(y)) w(y)dy,

for some u € L®/ W(R“) with unit norm. Therefore, by the above remarks and
by iterating (4), the last expression is dominated by

Z/ (Msg(y)) Rpu(y)dy < i (%)qi /R 9(y)? Re v(y)dy.

=0 =0
Here F denotes the smallest constant for which {4) holds. Finally, by taking
A = 2YeF, using Holder's inequality, and ii} above obtain that ||G|lz» <

219Ig)|z- -
We shall prove now that G € A, 5. For each B € B we shall see that

!BI/ Gly)dy < AG(z),
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a. e. z € B. Indeed, by Minkowski’s integral inequality with r = % >1

(o) [ (5 () o]

< i (%/B —Aﬁﬂzdy)w < A‘?i (%)g = ATG(z)!. W

=9 =0

4. An alternative formulation of Muckenhoupt’s theorem

In this section we give a different criterion to decide whether the operator
Mp is bounded on LP{w), assuming that the basis is a Muckenhoupt basis. In
particular this result applies to the case 8 = Q, providing a different charac-
terization of Muckenhoupt’s theorerm. This approach is inspired by the results
in [8].

Theorem 4.1, Let 1 < p < oo, and suppose that B is a Muckenhoupt basis.
Let w be a weight for B. Then

(13} Mg : LP(w) — LP(w)
if end only +f
(14} My (w(Msgo)* '} Scwge®?,

for some nonnegative measurable function gy, with fB go{y) dy < oo for each B
in B, and for some positive consiant c.

Proof: Assuming (13) it is standard to see that w € A, s, and hence o =
wl=? € Aprg. Since B is a Muckenhoupt basis Mp : LF(w} — LP(w), and
Mg : L”‘(a) — LP,(G). Hence

S : IP(R™) - LP(R™)
= wll? My (w7 f)

and

Sy : IF(R™) — LF (R™)
f— w7 Mg (177 ),

which implies

T:LP(R™) — LI’ (R")
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- 5% ((Slfp,lp)p_l) .
Hence, by using the iteration technique of Rubio de Francia (¢f.[7] p. 434, (9]
p-392, or the previous work of Gagliardo in [6] }, there exists a nonnegative
measurable function h € L¥ (R") for which

5 {51 wIPp1) < ch,
or, equivalently,

, —1
Mg (w (Mg(w'””h” fp))p ) < cw'/Ph.

Taking go = w— PR /P we obtain {14). Note that f5 90(y) dy < oo for each B
in B since

wdvs ([ o an) ([ hara<) <oo
B B B

by Holder’s inequality, and because wir' ¢ Appgand h € L?”(R“ )
To prove the converse, we note that it is enough to show that w satisfies the
A, g—condition since B is a Muckenhoupt basis. For each B € B we define the

constant 4 by
" 1 / ( )dy( i /' ()7 d )P—l
== | w(y T |owly y =
1Bl /& 1Bl /5

1 1 f gt . p—l
=ITB—|wa(y)dy (I_I?I fagé”p g9 7 w(y) P dy) :

Applying Hélder’s incquality and the hypothesis about go we estimate A by

1 1 (p_])lpt 1 - . fp—1¥p
1Bl nw{y}dy<l_f3l /sgﬂ(y)dy (Eﬂ;g"(?’) Pu(y)? dy =
1 ( }d ( 1 / ( )d )P—l
=T w Y| — y) s
[B| /g yr ey 1Bl Ju goly) oy
1 _]J'!I” 1 ' 1){1’”
x (I_B_I /”,‘}n{?f}d;f,') (I_lrﬁ Lyg(y)l-,,w(y)_p dy) <

a1 =1 s , y 1/p'
“eifuwgd ] = ) di — “Puw(y)” <
=« infa g, (IBI L tuly )¢ ‘J) (1B| L go{y) Puw(y) y) <

1 _Ih*’ 1 1{?’
o e | oauly fl'y) (—“] fuly df) =¢,
(iBi /f olv) 51/, W

concluding the proof of the Theorem. B
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5. A characterization of the reverse Hélder inequality classes
for general bases

We denote by RH,; 5, 1 < ¢ < co, the class of weights satisfying a reverse
Holder inequality of order ¢ uniformiy on each B € B. That is

(15) RHq,F{w:(I—fgi fB wlu)*d)'t < 7o /B w(y)dy, B € B)

for some positive constant ¢, independent of B € B.
To illustrate the interest of the reverse Holder classes, consider the simpler
operator

o 5 f(2) = %B} /B £(3) w(y)dy x5(2),

where B is an arbitrary fixed set in 8. It readily follows from the next (easy)
lemma that for 1 < p < oo

my g LP{R™) - LF(R™)

if and only if
w e RHp',B‘

Lemma 5.1. Let 1 < p < oo. The following statements are equivalend,

1) There i3 o positive constani ¢, independent of B € B, such thet for every
nonnegative locally integrable funciion f

ﬁ [ sty s(% fB f(y)f’dy)”p;

)
w e RHP',B.

Proof: ii) follows from i) by taking f = wP'/? and i) follows from i) by
Holder’s inequality:

1
o / F)w(y)dy <

w(B) (/ f(J)pd?) (ﬁ}w(v)’”dy)wz
= % ([_;l/Bf(y)P a’y)”p (-l—é—l/,gw(y)”’ dy)]m <
-c(ﬁfgﬂy)ﬂdy)w. .
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To obtain a result for Mg ,,, we need a way of measuring how the different
my g's interfere. This is intimately connected with the geometry of the partic-
ular basis B, and hence to covering properties of families of sets belonging to
B. This, in turn, is essentially equivalent to mapping properties of the maximal
operators.

Qur characterization is the following

Theorem 5.2, Let 1 < p < co. Suppose that B is o basts and that w is ¢
weight. Then
{ Mp .« LP(R™) — LP{R"}

Mp Lpf(w?"} — Lpp(w”')

if and only if
w e RHPJ,B
Mg: L7 (R™) - LF (R")
Mg :LP(w?') = LPw?).

Proof: Let dw denote the measure dw = wdz. Noticing that w € RH, g is
equivalent to w™! € A, s(dw), and writing dz = w™"'dw, and w’ = ot dw,
where o = w! ™' the following equivalence follows

Mg: LP(R"™) — LP(R")

w < RHp"‘B
My g : L2 ) - DP(?)

if and only if

Mg w-tdw Lpi(w_ldw) —t LP’(w'ldw)

w™le Ap s(dw)
Mp o140 1 LP (o7 dw) — LP{o 7 dw)

If we now apply Theorem refA with the Lebesgue measure replaced by the
measure dw, this is equivalent to

{ Mg 4w : LP(w™ dw) — LP(w ™ dw)
Mg aw : I (67 dw) — L (o™ dw)
that is
{ Mg LF(R") — LP(R")
Mg LP (w?') = L7 (w?')
And this concludes the proof of the Theorem. W

In particular we have the following coroliary,
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Corollary 5.3. Let 1 < p < oco. Suppese that B is a basis such that
Mg : LF'(R™) — LP(R™), and thai w € RHp g imphes Mg\ 1 LP(wP } —
Lp(w-") Then

(16) Mg LP(R™} - LP(R™)
if and only if
(17) w € RH, 8.

Proof: (17) follows from (16) by taking f = w? /?x p, and using the definition
of Mg .,. The converse is immediate from Theorem 5.2. W

Corollary 5.4. Let 1l < p < co. Then
(18} Moy IP{(R"} = LF(R")
if and only if
(19) w € RH,y o.

Proof: Mg : EP(R") — EP(R™) is the Hardy-Littlewcod maximal Theorem.
For MQ,wP' : LP(wP’) — L?’(wP’}, it would be enough to prove that wP s
doubling, but in fact something better holds {cf. [17])

(20) wERHy g o w’ € Ang. B

Remark 5.5. There is an L? — L? version of this characterization. Let
0 < § < n, and assume that 1 < p < g < o0, satisfy the “Sobolev relation”,

B

n .

1 1
@ P
Then, the following statements are equivalent.
)
Mg LF(R™) — LY(R");
i)
we RH, o,

Here My ., is the following weighted fractional maximal operator

Q1

Mﬁwf('c)—sup (Q)

/ F(y) wly)dy,
Q
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where the supremum is taken over all cubes.

Remark 5.6. There is ancther proof of the nontriviel part of Corollary
5.4, closer in spirit to the classical proof of Muckenhoupt’s theorem. Suppose
w € RH, o. It was discovered by Gehring that w € RH(,.y ¢ for some tiny
e > 0. Then by Lemma 5.1 we have

#QSLf(y)iu(y)dy < (%]Lf(y)p_‘dy)wp_E)‘

and by picking € > 0 smaller if necessary, we have

[ Montwrays [ (o(rrw)”" ) dy < |y ds,

by the Hardy-Littlewood meximal Theorem.

Corollary 5.7. Letl < p < oo. Then
{21) Mg o LP{R™} — LP(R™)
if and only if
- (22) w € RHy &

Proof: As in the proof of Corollary 5.4,2 we just nered to check both Mg :
LP(R™) — LP(R") and Mg .0 : Lr(wP )y — LP(w” ). The first one is the

classical Theorem of Jessen, Marcinkiewicz and Zygmund. Now, since R is a
Muckenhoupt basis, (3} yiclds the boundedness of Mg .+ if we show that

w"' < Aoo,R S we RHpr_R.

To prove this, we use Theorem {6.7) p. 458 in [7], and the proof of the case
B = Q in [17] applies mutatis mutandis to the case B=R. B

6. Two weight theory
In this scction we discuss two weighted norm inequalities for Mp. We shall

extend the two weights results in 9] to the Lorentz spaces.
We recall that a function f belongs to the Lorentz space L(r, s} if

17 heeroyn = Mm (tifz e R s (@) > 177 gt{] v
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Theorem 6.1, Let 1 < p,q < oo, and led (v,u) be & couple of weights. Call
o =ul"P. Assume that the basis B satisfies the condition that for every set G
which s a union of sets in B the following holds

if
| [ Matoxa) @ vwas] < eoteye

Then for each smooth f
(23) 138 fllzet) < ellMpo(f/o}ir (o
for some constant ¢ independent of f, v, and .
Proof: For each integer & consider the set
Er = {y e R": 2F « Mp f(y) < 2811}

From the definition of Mg, By C U; By ;, where B ; € B satisfies

1
2k < —-—-f f{y)dy.
1B 5 By (®)

Define
Ery = By N Ey,

and for j > 1
By ; =By j\ Uscs Br )N Ey.

Each of the sets Ej is the disjoint union of the sets Ej ;.

We now can write

[ sy otwrdy = ) / M ()" w(3)dy =

= Z/ Ms f(y)¥ v(y)dy <20 2¥(Ey ;) <
g Y Eri k,j

} g
< ckX,j}v(Ek.;—) (|ET| l} W) dy) _

1
° ZU(EIEJ) (Ij%’hj! v/Bk.j a(y)dy) [( U(B}k,j) B ; igii o{y)dy )p]q{P -

k.
_ a/p
=c)_ w0l
kd
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1 q
;= u(Ex ) (W ]B W) dy> ,

o 1 Fy - !
I (U(Bk,j) B.; 7(¥) (y)dy)

We view the sum 3, . ﬂk,jggffs as an integral on a measure space { X, ) built

over the set X = {k,;}, assigning to cach (k,7) the measure gz ;. For A > 0,
set

where

and

I‘(A} = {(ksJ} : gk,j = ’\}1
G(A) = Uk yern B j-
Then
dA
Yok s = [ auron S

We can estimate p(I'(A}) as follows

pTON = D mry <

(k,FYET{A)
f Mg (oxn,, )v)7 o(y)dy <
(k,FYER(A} Y D
< co{GONYP < co({y € R™: Mg ,(F/o)(y) > AN,

Here we have used the hypothesis on Mg, in the third inequality. Finally by
making a change of variables we obtain

IR ZOTOVE
Rﬂ

< clm (}.0({9 ER™: My (flo)y) > /\})Up)q %{\ _

= c||Ms,o(f/g)"§-(p.q) '

concluding the proof. B

As a consequence of this theorem we can deduce the following characteriza-
tion,
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Corollary 6.2, Let 1 < p < ¢ < oo, and let (v,u) be a couple of weighis.
Suppose that Mp , : LP(c} ~ LP(0), where o = w!~P'. Then

(24) My LP(u) — Lv)

if and only if

/g
(25) ([ msexembnrsta) - < eoteoys,
for every set G which is ¢ union of sels in B.

Proof: By setting f = oxga) in (24) we readily get (25). To prove the
converse we use Theorem 6.1, that p < ¢, and our hypothesis on Mg »

165 fllieey € el|Mae(F/o)l|Lraoy <
S cl|Mpo (f/o)linror S cllf/olletey = || fllery W

As a consequence of this result we can obtain Sawyer's characterization of
those couple of weights (v, u) for which the Hardy-Littlewood is bounded from
L?(u) to LY(v). We just state the result since the proof is like the given for the
case p = ¢ in [7] p.432, with some obvious modifications.

Corollary 6.3, Let 1 < p < ¢ < oo, and let (v,u) be a couple of weights,
and o = ul™? . Then

(26) M LP(u) — Li(w)

if and ondy if

g
(21) ([ o)y viia) < eatapr,
for every cube (} .
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