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Abstract

EXPLORING W.G. DWYER'S
TAME HOMOTOPY THEORY

HANS SCHEERER AND DANIEL TANRÉ

Let S,, be the category of r-reduced simplicial sets, r >_ 3 ; let G,._ 1 be the
category of (r - 1)-reduced differential graded Lie algebras over Z . Ac-
cording to the fundamental work [3] of W.G . Dwyer both categories are
endowed with closed model category structures such that the associated
tame homotopy category of SI is equivalent to the associated homotopy
category of G,._ 1 . Here we embark on a study of this equivalente and
its implications . In particular, we show how to compute homology, coho-
mology, homotopy with coefficients and Whitehead products (in the tame
range) of a simplicial set out of the corresponding Lie algebra. Ihrther-
more we give an application (suggested by E . Vogt) to 7r �(BI3) where
BI'3 denotes the classifying space of foliations of codimension 3 .

0 . Introduction

In [13], D . Quillen defines the structure of a closed model category on the cat-
egory GQ of 1-reduced differential graded Lie algebras over Q and constructs an
equivalente of categories between the rational homotopy category of 2-reduced
simplicial sets and the homotopy category of GQ . In [3], W.G . Dwyer proves
that a similar construction can be performed with respect to systems of sub-
rings of Q . For r >_ 3, he obtains an equivalente between his tamo homotopy
theory of r-reduced simplicial sets and a corresponding homotopy theory of
(r - 1)-reduced differential graded Lie algebras over Z . This theory is recalled
below in more detail . In [13], D . Quillen also shows how to detect the various
essential rational homotopy invariants of a simplicial set in the corresponding
Lie algebra . This point of view has been very useful in rational homotopy the-
ory for explicit calculations as well as for theoretical purposes . In the present
paper we embark on determining the essential tame homotopy invariants of a
simplicial set, e.g . homology, cohomology and cup-products, homotopy groups
with coeficients and Whitehead products, from the corresponding Lie algebra .
We give also an application to ir, (BI'3) where BF3 denotes the classifying space
of foliations of codimension 3 . This application was suggested by E . Vogt . Since
the paper [3] and its sequel [4] there has been -at least to our knowledge- no
further study of W.G . Dwyer's tame homotopy theory and its implications. We
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hope that our results render this theory more accessible . Working with it has
the advantage that no finite type conditions have to be imposed on the sim-
plicial sets . This is e.g . the case in the tame homotopy theory via differential
forms developed by B . Cenkl and R. Porter [2] (A report on that theory is
given in [141) .

Before we can state our results we have to recall the main result of W.G .
Dwyer's tame homotopy theory.
Let r be an integer, r >_ 3 and let s always be r - l . Let R* be a tame ring

system, Le. an increasing sequence of subrings Rj (j > 0) of Q such that Rj
contains the inverse of each integer k with 2k - 3 < j .

Let S,. be the category of r-reduced simplicial sets . The tame closed model
category structure on S,. is defined as follows : cofibrations are injective maps ;
weak equivalences are maps f : X -> Y such that the induced homomorphisms
7r,.+k (X) ® Rk ---> 7r,+k(Y) ® Rk are isomorphisms for all k >_ 0 ; fibrations are
the maps having the right lifting property (RLP) with respect to the class of
trivial cofibrations, Le . g : X --> Y is a fibration if in any diagram

Y

a right lifting, indicated by the dotted arrow, exists .
Here and in the sequel, ">-+" (resp .

	

resp. "Z") denotes a cofibration
(resp . fibration, resp . weak equivalence) .

Let Ch., be the category of s-reduced chain complexes (over Z) with the
following closed model category structure : cofibrations are injective maps with
dimensionwise projective cokernels, weak equivalences are maps f such that
Hs+k (f) ® Rk is an isomorphism for all k ; fibrations are maps g which are
surjective in degrees > s, for which Hs+k (kernel (g)) is a Rk-module and
cokernel H3+k(g) has no p-torsion for p invertible in Rk, k > 0.
LetG be the category of s-reduced differential graded Lie algebras over Z .

It is given the following closed model category structure : fibrations and weak
equivalences are as in ; the cofibrations are the morphisms having the
(LLP) with respect to the class of trivial fibrations . (Note that the underlying
Lie algebras of cofibrant objects are retracts of free Lie algebras on free abelian
groups and hence are also free) . The category of Lie algebras we use will be
discussed shortly in section 1 .
For X E S,. let GX be the loop group of X ; let Laz GX be the Lazard

completion of GX, (denoted by log GX in [3]), considered as a simplicial
Lazard Lie algebra . Let 0-Lázs be the category of s-reduced simplicial Lazard
Lie algebras . Then there are adjoint functors (the left adjoint always appears
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as the upper arrow)
Laz G

sS,.

	

" A-Lázs

There is another pair of adjoint functors

N*
A-Lázs `

	

; G
N

where N denotes the normalization of a simplicial module, (note that NL is a
Lie algebra for a simplicial Lie algebra L), and where N* is a left adjoint of N,
(N* is denoted by UN* in [3]) .
The category A-Lázs is also endowed with a closed model category structure

fibrations (resp . weak equivalentes) are maps f such that Nf is a fibration
(resp . weak equivalente) in .C ; cofibrations are maps which have the (LLP)
with respect to trivial fibrations .

Let A := NLaz G ; since Laz G and N carry weak equivalentes to weak
equivalentes, so does .1 . Hence it induces a functor : Ho-S,. -a Ho-£ of the
associated homotopy categories . The other functors have total derived functors
in the sense of [12] ; let p : Ho-C -> Ho-S, be their composition .
The main result of [3] now says that one obtains equivalentes of categories

For each closed model category D, we denote by (D)~, (n)f and (D),f the full
subcategories of D, consisting of the cofibrant, fibrant and cofibrant-fibrant
objects of D respectively.

In section 1, if Y E G and A is an abelian group, we define 7rs+k (Y; A) as
the (s + k)eh homology group of the complex Y ®A. We will show

Theorem A. If X E S,. is a Kan complex andA is a cyelic Rk-module, then
the homotopy grouus with coefjicients, 7r,.+k(X; A) are isomorphic to
7rs+k (A(X) ; A), where =7rs+k( -; A) is the derived functor of 7rs+k(- ; A) .

Therefore, if Lx - A(X) is a cofibrant model, Le . Lx is cofibrant and
Lx Z A(X) a weak equivalente, we have

We will also prove

Ho-S, .

	

Ho-£ .

7rr+k (X; A) _ 7rs+k(Lx ; A)
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Proposition . Every H-space X, (r - 1)-connected with r >_ 2, such that
7rr+k(X) is a Rk-module, is of the homotopy type of a weak product of Eilenberg-
MacLane spaces .

In particular, the loop space QX of a tame (Le . fibrant) space in Sr is
homotopy equivalent to a weak product of Eilenberg-MacLane spaces . In fact,
we will deduce the proposition from this particular case. Some version of this
result has been established in [5], [6] .

In section 2 we will show how one can build cofibrant models of L EC in
a simple way. Together with the results of section 1, this allows to construct
models of \(X) in examples . But it is also possible to build a functorial cofi-
brant model, Le . a functor F : C -> (C ),, together with a natural weak
equivalence FL Z L. This construction will be useful for theoretical purposes .

In section 3 we will study the homology of X E Sr through C.

	

First, if
L E C, define abL E Ch, as L/F1L where F1L is the commutator subalgebra
of L, and denote by uabL E Ch,, the suspension of the chain complex abL. We
will prove

Theorem B . If MX E .C is a functorial cofibrant model of \(X), X E S,.,
then there is a canonical isomorphism

In section 4 we will display the diagonal in homology . For this purpose, if
L = (L(V), 0L) is a cofibrant object inC, we define Ov : uabL -+ o-abL®o,abL
from the quadratic part of the differential in the universal enveloping algebra
UL. The map induced in homology by Ov does not depend on the choice of
V, we denote it by AL . We will prove

Theorem C. If MX EC is a functorial cofibrant model of A(X), X E Sr,
then the morphism

in a canonical way.

Hr+k(X ; Rk) - Hr+k(oabMX ; Rk) for k > 0 .

AM,< : HT+k(uabMX ; RO -Hr+k(o abMX (9 uabMX; Rk)

can be identified with the reduced diagonal

Hr+k (X ; Rk) - Hr+k (X A X; Rk)

As a consequence, we get a natural isomorphism

H<r+k
(X ; RO

- H<r+k(oabMX ; RO,

compatible with cup products . The additive isomorphism can be obtained in a
more direct way, as indicated in section 5.
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In section 6, if X E S,. is a Kan complex, we compute Samelson and
Whitehead products withcoefficients in a cyclic Rk-module A by means of
the functor A . They correspond, modulo a suspension, to the bracket on
7r<s+k(A(X) ; A) induced by the Lie structure of A(X) .

Finally, the following application will be given in section 7. Let BF3 be
the classifying space of foliations of codimension 3 and let y E 7r4(BF3) be a
generator . Then we get

Theorem D. The element [y, y] ® 1 E 7T7(Bh3) ® Q is non trivial . Never-
theless, any homomorphism from 7r7(Br3) into a subring R of Q, containing

z , s and different from Q, is trivial on [y, y] .

We would like to mention that the results of this paper have been announced
in the notes [16], [17], [18] .

1 . Homotopy groups

We first have to introduce some notations and conventions .
Let L be the category of differential graded Lie algebras over Z . We note

that the underlying Z-module of X E C may Nave 2- and 3-torsion and that we
require only the following identities for the Lie bracket

(i)

	

[x,y] =-(-1)I=IM[y,x]
for homogeneous x, y, (1 - 1 will always denote the degree) .

(ii)

	

(-1)I=II=I [x, [y, z]] +(-'),Y11XI [y, [z, x]] + (-1) I=Ilvl [z, [x, y]] = 0 .
The category G is the full subcategory of G given by the s-reduced objects .
Let Ch (resp . Chs ) be the category of chain complexes which are zero in

degrees G 0 (resp . s-reduced chain complexes) over Z .
We have a functor L : Ch , G which is left adjoint to the forgetful functor

G --> Ch ; in fact, L(V) is the free differential Lie algebra on V.
Let Ab denote the category of (ungraded) abelian groups .
Let C be a model category and F : C - D a functor (compare [12, 1 .4]) .

If F carries weak equivalences in C into isomorphisms in D, then F induces
a functor F : Ho-C --> D, such that F o y = F, where ,y : C - Ho-C is the
canonical map.

IfD is also a model category and F carries weak equivalences in C into weak
equivalences in D, we will also write F for the induced functor F : Ho-C -+
Ho-_D.

If F carries weak equivalences between cofibrant objects of C into isomor-
phisms (resp. weak equivalences) in D, we will write F : Ho-C -+ D (resp .
F : Ho-C -> Ho-D) for the derived (resp . total derived) functor of F.

Similar conventions will be followed in the dual situation.
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Definition 1 .1 . For X E G and A E Ab, we denote by 7rj (X ; A) the jeh

homology group of the complex X ® A. (Note that later on, in section 3, we
will introduce H;(X) !) .

Lemma 1 .2 . Let A be a Rk-module, then the functor 7r,+k(- ; A)

	

Ab
has a left derived functor

7rs+k (- ;A) : Ho-L. -> Ab .

Proo£ For X E _Ch, we have HS+t (X ; Rk) = H,+t (X ; Z) ® Rk, by the uni-
versal coefficient formula . Let now f : X -; Y be a weak equivalente in ,C . If
A is torsion-free, then 7r,.+ t (X ; A) - 7r,.+ j (Y ; A) is an isomorphism for l < k,
again by the universal coefficient formula . But this is also true in general if X
and Y are cofibrant ; the lemma follows now from [12, (Proposition 1, § I .4)] .

In particular, if A is torsion free, then Trs+k(- ; A) : Hó- - Ab exists .
Recall the definition of homotopy groups with coefficients [10] . For a Kan

complex X E S, ., we let 7rr+k(X ; Rk) := 7rr+k(X) ® Rk . If A is a cyclic Rk-
module of finite order, we define 7r,+k (X ; A) := [M(A, r + k - 1), X], where
[-, -] denotes the set of homotopy classes of maps and M(A, n) is a 1VIoore
complex with Hn (M(A, n) ; Z) -A. In this case we always want to assume
k >_ 1, such that M(A, r + k - 1) may be chosen in Sr . For k = 0 the results
of [10] give a canonical isomorphism 7r, (X; A) =7rr(X) ® A.

	

Hence, for our
purposes we will take this formula as a definition for 7r, (X; A) .
We can now state theorem A more precisely

Theorem 1.3 . Let A be a cyclic Rk-module. Then there is a natural iso-
morphism 7rr+k(X; A) =Trs+k(A(X) ; A) for Kan complexes X E Sr .
In particular, if Lx -> N Laz GX is a weak equivalente with Lx cofibrant,

then 7rr+k(X ; A) =~fs+k(Lx ; A) .

Proo£ To define =7r we have to take a trivial fibration Lx -» A(X) with Lx
cofibrant ; then the adjoint N*Lx - Laz GX is a weak equivalente by lemma
1.4 below .
By [3] we have isomorphisms

7rr+k (X; Rk) =7r,+k(GX ; Rk) 7rs+k(Laz GX; Rk) =7rs+k(N* Lx ; Rk)
7rs+k(NN* Lx ; Rk) =7rs+k(Lx ; Rk)

because Lx --> NN*Lx is a weak equivalente by [3, proposition 8.2] .
Suppose now that A is of finite order. According to [10] , there is an exact

sequence

0 --> 7r�,(Y) 0 A -> 7r �,(Y; A) -+ Tor(7r�,_1(Y), A) -> 0
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which is natural in Y and which is compatible with the isomorphisms
7r,.+k(X ; Rk) =7rs+k(GX ; Rk) and Wr+k(X ; A) =7rs+k(GX ; A) . By the five
lemma the sequence of isomorphisms 7r,.+k (X ; Rk)= . . .=7rs+k(N* Lx ; RO yields
the corresponding sequence of isomorphisms 7rr+k(X ; A)= . . . =7r.,+k(N*Lx ; A) .
By lemma 1.5 below we have an isomorphism7r.,+k(N*Lx;A)=Ws+k(NN *Lx;A) .
Finally, 7F3+k(NN* Lx;A) is isomorphic to W9+k(LX ;A), because Lx -> NN*Lx
is a weak equivalente .

Lemma 1 .4. For X E S, . let f : Lx - NLaz GX be a weak equivalente
inG with Lx cofibrant . Then the adjoint f# : N*Lx --> Laz GX is a weak
equivalente in 0-Láz s .

Proof.. By definition, f# is a weak equivalente if Nf# is one . In the diagram

NN* (Lx)

	

N(f

	

NLazGX

the arrow (1) is a weak equivalente by [3, proposition 8.21 and (2) is again f,
hence N(f#) is a weak equivalente .

Let the category Ch of chain complexes over Z be endowed with its usual
structure of a closed model category (see [12]) : weak equivalentes are the
homology isomorphisms ; cofibrations are the injective maps with dimension-
wise projective cokernel and fibrations are the maps being surjective in degrees
greater than 0 . Then, for A E Ab, the functor Ch => Ab, X ~---> H�,(X ; A) has a
left derived functor Ho-Ch -> Ab, X ~--> H�, (X ; A) .

Lemma 1.5 . Let G be a simplicial abelian group and let A be a cyclic finite
abelian group, then : 7r,, (G ; A) -Hn(NG; A) .

Proof.. Recall that N is the normalization functor . We consider the pairs of
adjoint functors

Z N-1
S

	

A-Ab `	_Ch
i N

where S is the category of simplicial sets with its usual structure (see [12]) of
a closed model category and A-Ab denotes the category of simplicial abelian
groups .

For X E S, ZX is the simplicial abelian group generated by X ; it is obtained
by dimensionwise application of the free abelian group functor ([12, II .5 .3]) .
The functor i is an inclusion . The closed model category structure on Ch is
transferred to one on A-Ab by the equivalente N (with quasi-inverse N -1) . One
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verifies that the functors induce adjoint functors of the associated homotopy
categories . Hence

7r�,(iG ; A) = [M(A, n - 1), iG]s = [ZM(A, n - 1), G]o-Ab
[NZM(A,n - 1), NG]Ch

	

(" )

	

[W, NG]ch

where W is the complex

. . .0`Wn f Wn,_1->0 . . . ,

Moreover, QNG Z NG is a trivial fibration with QNG cofibrant and (**)
holds by definition .

Clearly, [W, QNG]ch = H,,(QNG; A) = H,(NG; A) . E

Remark 1.6 . IfA is of finite order, the isomorphism

[W QNG] ch

with Wn = Wn_1 = Z and f is the multiplication by the order of A.
The isomorphism (*) is induced by a weak equivalence W -> NZM(A, n-1) .

7rr+k(X; A) = Ws+k(Lx; A)

of theorem 1.3 depends on a choice of a weak equivalence W -> NZM(A, r +
k-2) .

Proposition 1.7 . Let X ESr be fibrant, r > 3, let QX be a loop space of
X in S. Then QX has the homotopy type of

11t2
K(7ri(X), i - 1) .

Corollary 1.8 . Let X ESS be an H-space, s >_ 2, such that 7rs+k(X) is a
Rk-modulefor all k >_ 0. Then X is of the homotopy type of a weak product of
Eilenberg-MacLane spaces .

Proof of proposition 1.7. We may take QX = GX. Then GX -> Laz GX
induces isomorphisms

7rs+k (GX) =7Fs+k(GX) ®Rk -5II> 1rs+k (Laz GX) ® Rk

But Laz GX is in particular an object in A-Ab, hence homotopy equivalent to
a product of Eilenberg-MacLane spaces ([9, theorem 24-5]) . Thus the result
follows .
Proofof corollary 1 .8 : If E denotes the suspension, then there is a retraction

52EX ~ X . Because of the assumption on the homotopy groups of X, we have
also a retraction S2(EX) t , X, where (EX)t is the tamed EX (or EX made
fibrant in Sr) . Hence, X is a product of Eilenberg-MacLane spaces as a retract
of a product of Eilenberg-MacLane spaces . To see this one may e.g . apply the
theorem of Moore ([22, ch. IX, theorem 1 .9]) .
Remark 1 .9 . Versions of there results (1 .7 and 1.8) have been shown in [5],

[6] .
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2 . Models

Notations :
(1) For M, N E G we denote by M LJ N the sum (free product) of the Lie

algebras M,N.
(2) For M E G and V E Ch a free complex with differential á, let 7- : V -+ M

be a chain map of degree -1 (Le -rá = -dm r) . Then there is exactly one Lie
algebra differential dT on M Li L(V) with : dTIM = dm, d, (v) := T(v) + 9v, for
all v E V. This differential Lie algebra will be denoted by M UT L(V) .

Let now s be an integer, s > 2 .
Remark 2.1 . Since G is a closed model category, any X E

	

., has a
cofibrant "model", Le . there is a cofibrant M(X) (free, as Lie algebra, on a
free abelian gróup) and a weak equivalente M(X) -} X. For computational
purposes, it might be interesting to construct cofibrant models with a "small"
number of generators .
Construction 2 .2 : Building "small" models .
Let X E L . We inductively construct a differential free Lie algebra M(k) to-

gether with a morphism M(k)
f(k)

X, such that 7rs+¿(f(k) ; R1) is an isomorphism
for l <_ k.
We may start the induction at k = -1, by setting R_1 := Z and M(-1 ) := 0 .
Suppose M(k), f(k) are constructed .
(a) Choose classes [ai] E 7s+k+1(X; Rk+1) , i E I, such that {[a¡]} and

f~k)(71s+k+1(M(k) ; Rk+1)) generate 7rs+k+1(X ; Rk+1) and such that al E X.
Then let W be a free Z-module generated by wi, i E I, Iwil = s + k + 1, and
define a map M(k) u L(W) Z X by

gIM(k) =
f(k)

' g(wi) := al .

Then, obviously, irs+t(g ; RI) is an isomorphism for l <_ k and a surjection for
1=k+1.

For the next step, let us redefine M(k) := M(k) Li L(W) and f(k) := g .

(b) Note that irs+t(X ; Rk) =7rs+I(X)®Rk . Choose cycles zi E Zs+k+1(M(k))
such that their images in 7rs+k+1(M(') ; Rk+1) generate
kernel (7rs+k+1(f(k) ; Rk+l)) . Hence in particular [f(k)

(zi) ® 1] = 0 in
7rs+k+1(X ; Rk+1), or f(k) (z2) ® 1 = áX (Z: j wij ® a?,7) for some w?,9 E X,
a?, .7 E Rk+l . Assuming that all denominators of ai,7 are invertible in Rk+l, we
may multiply zi by their product to get zi, and it is still true that the classes
of zi generate kernel (Irs+k+1(f(k) ; Rk+1 )) . But now, we have

f(k)
(zá) ® 1 = aX (¡~Vi) ®1

	

for some 1Di E X .

Hence, the order of f(k)(;ji) - aX (¡vi) is invertible in Rk+1 . Multiplying zi by
this number, we finally have f(k) (zi) = aX (wi) and the classes ofzi still generate
the kernel .
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Let W be a free Z-module generated by wi, i E I, with I wi1 =s+k+2. Then

we define M(k+1) := M(k) uT L(W), with T(wi) = zi, and M(k+1)
f(k1) X,

as the extension of f(k) by the map L(W) - X given by wi t--> Ivi . Then
7rs+c (f(k+1) ; Rt) is an isomorphism for l < k + 1.

(c) Finally, the cofibrant "small" model for X is obtained as
M(X) := liMM(k) .

Remark 2.3 . The above construction also works without any restriction
on s and the ring system R � . Only the conclusion that the result is cofibrant
refers to the closed model category structure of ,C .

Proposition 2.4. There exists a functorial cofibrant model, i.e . a functor
G F> (Gs)= together with a natural weak equivalence F(X) ---> X.

Proo£ The arguments are adapted from [3] . It sufices todo the construction
for the constant ring system R* = Z, (see remark above) .

(a) Let X E G. We denote by Zs+ j (X) the free Z-module (concentrated
in degree s + l) generated by the set of cycles Zs+j(X) . We define M() :_

u1=0L(Zs+t(X)) . The inclusions Zs+j(X) C X define a morphism M(O) -> X
which induces a surjection of 7r * .
Given f : X --> Y, we obtain M(°) (f) : M(') -> MI(,°) as induced by the

restrictions of f to Z,.+ j (X) -> Z,.+ j (Y) ; Le . the diagram

MX
°) ; X

i
I M(°)( f)

Mro)
Y

commutes .

(b) We now define functorial extensions M(O) C M(s) C . . . MXs+k) C
. . .

together with a natural map ax+k) : MXs+k) -> X which induces a surjection
of 7r � and isomorphisms of 7ri for i <_ s +k. Suppose MXs+k)

a(z+k) are defined .
Let Px be the free Z-module generated by

{(Z, x) E Zs+k+1(MX+k) ) X Xs+k+2/a(s+k) (z) = Óx(x)}

The elements p E Px are given the degree Ipl = s + k + 2. Define
MXs+k+1) := MXs+k)

UT L(Px), with T(p) = z for p = (z, x), and define

M(s+k+1) «Xs+k+1~
X .x

as the extension of aX+k) by the map L(Px) -> X given by p = (z, x) >--> x .
Then, a(X

+k+1) induces still a surjection of 7r,, and isomorphisms of Sri, for
i<s+k+1.
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Given f : X --> Y, we have an induced map PX -> Py, defined by
(z x) - (M(s+k)

(f) (z), f(x))

which gives M(s+k+1)(f) : MX+k+1 )

	

MYs+k+1) .

(c) Finally, we define MX := limMXQ) .

Remark 2.5 . It is also possible to construct functorial fibrant models but
we do not need this construction here .

Corollary 2.6 . The functor F induces a functor F : Ho-G -> Ho-(G),
which is an equivalente of categories.

This proof is clearly part of general constructions with model categories as
follows .

Lemma 2.7 . Let C be a model category and F : C --> (C),, a functor with a
natural weak equivalente F(X) --> X. Then F induces a functor F : Ho-C ->
Ho-(C),, which is an equivalente of categories.

Proof.. This is a particular case of proposition 2.3 of [13], nevertheless we
give the proof which is really simpler .

Let f : X -> Y be a weak equivalente in C . From the diagram

F(X)

	

X

F(Y) Y

_we deduce that F(X) -> F(Y) is a weak equivalente . Hence F induces
F : Ho-C -> Ho-(C),,, because the homotopy categories are localizations with
respect to the classes of weak equivalentes .

Similarly, the inclusion i : (C), -> C induces i : Ho-(C), -> Ho-C . We claim
that i and F are quasi-inverses . This follows from the fact that, for X E C,
i o F(X) = F(X) --> X is a natural weak equivalente, hence an isomorphism in
the homotopy categories .

3 . Homology

In this section we preve that the homology H, .+ 1 (X ; Rl) of X E S,. is naturally
isomorphic with the homology H,.+, (A(X) ; Rl) which has to be defined .

Definition 3 .1 . Let ab : G -> Q, be the functor abelianization Le .
ab(X) := X/1'1X, where I'IX is the commutator subalgebra of X .

Let i : Chs -> Gs be the inclusion . (For V E C-hs, the underlying Lie algebra
of i(V) is abelian) .
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Proposition 3.2 . The functors Cs

derived functors are adjoint functors

ab
Ho-,C f

	

Ho-Ch, .
i

Proof.. The adjointness of (ab, i) is clear . To prove the second part, we note
that, by definition, i maps fibrations to fibrations and weak equivalentes to
weak equivalentes . Hence we can apply the proposition in the appendix to this
section .
Remark 3.3 . It can be shown more directly that ab maps cofibrations

to cofibrations : if X -> X LI L(W) is a free map, then its abelianization
ab(X) - ab(X) ®W is a cofibration. Since any cofibration is a retract of a free
map, the result follows . Similarly, it can be shown more directly that ab maps
weak equivalentes between cofibrant objects to weak equivalentes.
We denote by u : Ch, -4 Ch, . the suspension functor : a(A) y+1 := Aq ;

A,(A) = -Q8A . Note also that the functors H,.+j(- ; RI) induce functors

H,.+1 (- ; RI) : Ho-Ch, ~ Ab .

Definition 3.4 . For X E G and A a Rk-module, we define
Hr+a (X,- A) = Hr+c(oabX ; A) .
Now we can restate theorem B as

Theorem 3.5 . Let A be a Rk-module, the functors Ho-Sr --> Ab, X H
H,.+k(X; A) and X ~-4 H,.+k(A(X ) ; A) are isomorphic for k > 0 .

To prove it, we first have to establish the analogue of proposition 3.2 for
simplicial Lazard Lie algebras

Definition 3.6 . 1) Let Láz be the category of Lazard Lie algebras . By
definition, each X E Láz is equipped with a central series X = I'oX D I'1X D
. . . establishing the Lazard structure .
We define abX = X/I'1X . Then ab : Láz -+ Ab is a functor which has a right

adjoint j : Ab , Láz given by j(V) = V with r'1V = 0, V E Ab .
2) Similarly, we have the simplicial analogues denoted by the same letters

ab
A-Láz,

	

A-Ab, .
j

are adjoint and their total

Note that A-Láz, has the closed model category structure described in the
introduction and A-Ab , the category of s-reduced simplicial abelian groups,
is given the closed model category structure obtained by the equivalente of
categories N : A-Ab, ---> Ch, .
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ab
Proposition 3.7 . The functors A-Laz., ,~ A-Abs are adjoint with ad-

j
joint total derived functors

ab
Ho-O-La~x fHo-A-Ab

7

Proof.. We again apply the proposition in the appendix to this section . By
definition, j maps fibrations to fibrations and weak equivalentes to weak equiv-
alences .

The pairs of functors in 3.2 . and 3.7 . are related as follows

Lemma 3.8 . Consider the diagram

A-L
N

Ch., Í A-Abs
N

then ab N* and N-lab are isomorphic .

Proof.. The right adjoint functors are Nj and iN which are equal . Hence
their left adjoints are isomorphic .

Proposition 3 .9 . Suppose there is a functor S,. -> (,C.,),, X ~-4 LX, such
that there is a natural weak equivalente LX -> NLazGX . Then there is a
natural chain map abLX --> NabGX which is a weak equivalente in Ch" .

For any group G we denote by abG its abelianization ; similarly, if G is a
simplicial group (like GX), then abG is its (degree-wise) abelianization.

Proof.. Let f : LX Z NLazGX be given . Then the adjoint f# : N* LX -->
Laz GX is a weak equivalente by lemma 1.4 .
Now N* LX and Laz GX being cofibrant, we obtain a weak equivalente (by

proposition 3.7 and lemma 3.8)

N -1 abLX - ab N* LX --~- ab Laz GX- ab GX

and hence a weak equivalente abLX => NabGX, which is natural in X if f
depends .functorially on X.

Proof of theorem 3.5 : We first recall some facts from the theory of simplicial
sets ([9, sectíon 26)) .
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Let X E S,, and R C Q a subring . We denote by RX the reduced simplicial
free R-module generated by X which can also be considered as a chain complex .
Denote by T : X - GX the canonical twisting function ; denote as well by
T : X , abGX the composition X -> GX -> abGX. Then T : X -> abGX
induces a chain map of degree -1 : ZX -> ab GX, which induces isomorphsm
of homology groups . It follows that the map T : ZX -> uabGX, defined by
x ~--> o (--rx) is a chain map inducing an isomorphism in homology.

Consider now the following diagram where F is the functorial cofibrant model
of 2.4

A-Lázs

LazG

	

Ñ

	

F
Ho-S, A-Láz,j:Ho-L-Ho-(G H,+k

For the natural isomorphism between H,.+k(- ; A)FNLaz G and H,.+k(-, A),
we may take the isomorphism induced by

NZX -> uNabGX <- QabFNLazGX .

(Note that the right one is established in 3.9) .
Let now L E Ho-,C ; by definition, H,.+k(L ; A) is equal to H,.+k(QabQL ; A)

with QL =-> L a trivial fibration and QL cofibrant . In the diagram,

FL - > L

the dotted arrow, making the diagram commute, exists . Moreover, an arrow,
making the diagram homotopy commute, is unique up to left homotopy. It
follows (3 .2) that FL -> QL induces a unique isomorphism in homology. Ad-
ditionally, this isomorphism depends functorially on morphisms L -> K, Le.

QL ; QK

aQL

FL

homotopy commutes . This proves the theorem .
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Appendix to section 3 . On total derived functors of adjoint functors
between closed model categories .

F
Let C, D be model categories and C' D adjoint functors . Denote the

G
class of cofibrations, fibrations and weak equivalences by cof, fib, we respec-
tively. Then theorem 3 of [12, (Section I.4)] says the following

Assume F(cof) C cof and F(f) E we for any weak equivalence f E (C)~,
assume G(fib) C fib and G(g) E we for any weak equivalence g E (j2)f ; then
the total derived functors

exist and are adjoint .

exist and are adjoint.

G

F
Ho-C;Ho-D

G

F
Proposition . Let C

	

'D be adjoint functors between closed model cat-

egories such that
(i) G(fib) C fib,
(ii) G(we) C we .

Then F satisles the aboye conditions and hence

F
Ho-C Ho-D

G

Proof- The proof will be based on [12] without detailed references .
(1) We first show that F(cof) C cof and F(cof f1 we) C cof f1 we .

In a closed model category, cof (resp . cof n we) is the class of morphisms
having the left lifting property (LLP) with respect to fib f1 we (resp .

	

fib) .
Hence, if f : X >--, Y is a cofibration in C, we have to show that in any diagram

FX : A
T

FY > B

a left lifting h exists . Applying G one obtains the diagram

Y ~- GFY > GB
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in which a left lifting h exists . But then its adjoint h is a left lifting for Ff.
Similarly, one proves F(cof fl we) C cof fl we .
(2) Let A, B E (C)c , f : A => B . We form a diagram

A > ~ RA

with RA, RB E (C),f . A morphism g making the diagram commutative exists .
Hence g is a weak equivalence and therefore a homotopy equivalence in the
ordinary sense, because RA and RB are in (C),:f, Le . there exists g' : RB -~
RA with g' og - idRA and g o 9'- idRB .
We want to show that the imago of Fg in Ho-D is an isomorphism . This will

imply that Fg is a weak equivalence because D is a closed model category.
(3) Let X E (e), a,

	

: X

	

Y . If a, Q are left homotopic, then we
claim that Fa and Fo are left homotopic .
A left homotopy between a, ,0 may be chosen as H in the diagram

XVX ; X
ao+al

X
Applying F we get a diagram

FX V FX

shows that Ff is a weak equivalence .

Fa+F/3
FY

FA -----> FRA

FB =~ FRB

FX
and we need only to show that Fu E we.
But 8o : X -> X is a weak equivalence and a cofibration, hence Fu is a weak

equivalence, because Fáo is one and váo = idx .
(4) It follows that Fg' o Fg is left homotopic to idFRA and Fg o Fg' is left

homotopic to idFRB . Now, the images of left homotopic maps in the homotopy
category are equal ; hence Fg becomes an isomorphism in Ho-D .
The diagram
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4. The homology of the reduced diagonal

Let L E G such that the underlying Lie algebra is free on a free Z-module
V. For the sequel we fix V . We denote the underlying Lie algebra by L(V)

and the space of commutators of length i by LM(V) . The differential aL can
be written as aL = Ei>oáz, where a¡ (V) CL(V). For instante, 090 and al
are the linear and the quadratic part of aL respectively.

Let uabL be the suspension of abL - V ; u ® a : abL ® abL -> uabL ® QabL,
x ® y ~-4 (-1) M o x ® ay, is a chain map of degree 2 .
One verifies that the universal enveloping algebra of L(V) is T(V) . The

canonical map of L(V) finto T(V) is denoted by u : L(V) -> T(V)
Definition 4.1 . We define Ov : QabL ~ uabL ® QabL as

Av := (u0 u)0u0010Q-1 .
(Note that Ov is of degree 0) .

Lemma 4.2 . (1) With these defznitions Av is cocommutative and a map of
chain complexes .

(2) Let f : L = (L(V), aL) - L' _ (L (V'), aL') E G, then f induces
o,abf : QabL --> vabL' andAv,ooabf is chainhomotopic to (vabf®vabf)oAv .

Proof.. Both parts follow by a straightforward calculation . For (2), we note
that a homotopy is defined by ov ~--> (a ® a)(flv), where fl is the quadratic
part of f .

Remark 4.3 . As a consequence, we note that the map induced by Ov in
homology does not depend en the choice of V ; we denote it by
AL : H(uabL) ---> H(uabL ® vabL) .
Then theorem C can be restated as

Theorem 4.4 . Let X E S,., L = (L(V),OL) E (,f-), and L Z NLazGX be
a weak equivalente . Let 0 : Q2X -> Q2X ® Q2X be induced by the diagonal
X ---> X x X .

Then the diagram

o,abL ® Q2

	

uNabGX ® Q2 <

	

NQ2X

1
vabL ® uabL ® Q2 ; uNabGX ® uNabGX ® Q2 <

	

NQ2X ® NQ2X

commutes in homology H,.+j(- ; R1) for l > 0, where Q2 := Z[2] .

	

(Note that
the horizontal arrows induce isomorphisms) .

The proof will be modelled on proposition 6.5 in [13] .
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Denote the canonical twist by T : X - GX . Let G := LazGX for sake of
simplicity and let Po = G D ti D . . . the series defining the Lazard structure
on G. Let r also denote the composition X -> GX -> G and denote by T1
and r2 the compositions X ' G - Po/Pl (9 Q2, X -> G -> Po/P2 ® Q2,
respectively. Note that Po/P2 ® Q2 denotes the localization of the 2-nilpotent
group Po/P2 away from 2 .

Lemma 4.5 . The diagram

1r-Q2X

7r,.o

	

~a

'r-(QX ® Q2X)

	

7f..-2(PO/Pl ® PO/Pl ® Q2)-7rn-2(P1/P2 ® Q2)

commutes, where

(?) Q2X ®Q2X and Po/P1 ® Po/P1
simplicial groups .

(ii) r' OT"(x ® y) := Tldox ® doT1y.

) :Po/Pl®Po/Pl®Q2-Pl/P2®Q2
(x, y) = xyx-ly-l .

(iv) á is the boundary homorphism of the sequence

are dimensionwise tensor products of

is induced by the commutator

* -Él/P2 (9 Q2 -; ro/r2 ® Q2 -ro/rl ® Q2 - * .

7r�,-1(PO/rl ® Q2)

Note that z ( , ) defines a bijection of the subgroup of skew-symmetric tensors
ÍofPo/Pl ®

	

o/rl ® Q2 onto P l /P2 (9 Q2 .

Proof.. Let a E 7r,,,(Q 2X) be represented by z = Eaxx E N(QX) ; Le .
diz = 0 for all i = 0, . . . ,n. It follows that, for all i = 0, . . . , n

(4.6)

	

E ax = 0

	

for any

	

y

	

* .
d;x=y

(In the computations, we will use 6.1 . of [13])..
On the lower path z will go to 2Eax ( ,rldox , do-r1x) .
On the upper path we have to calculate ó[EaxT1x] . To this end we have to

choose some element z' E N(Po/P2 ®Q2) being mapped to Eax -rl(x) . We may
view Po/P2®Q2 as a Lie algebra in a canonical way since it is a nilpotent group
of class 2 which is local at the set of primes different from 2 (compare [21]) .
Therefore, the equation EaxT2x makes sense ; clearly Ea,,-r2x maps to Eax,r1x.
Moreover, for j > 0, we have dj(E ax ,r2x) =Eaxdj-r2x = 1: a.,T2dj+lx, which
is zero by equation (4.6) and the fact that T2* = 0.
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Hence á[E a.,7-1x] will be represented by do (E axT2x) . Now, do (r_ axT2x) =
axdOT2x = Eax(T2dox) -1 - (T2dlx), where the dot is multiplication in the

group ro/r2 ® Q2 . We can express the multiplication by the Baker-Campbell-
Hausdorff formula

do(57 a.T2x) _

	

ax(-T2dox + T2dlx - 2 (T2dox, T2dix))

We note several facts
(i) the sums r_ a.,T2dox, E ax.r2dix vanish because of (4.6) .
(ii) the commutator (T2dox, -r2dlx) only depends on the classes of the

corresponding elements in ro/ti, hence

(iii) Tldlx = -rldox + do rlx .
Finally, we get

(T2dox, T2dix) = (Tidox, Tldlx) .

do(E axT2x) _ ax(-ridox, do-rlx)

Proof of theorem 4.4: We first need some notations . Let A be a chain complex
over Q2 . Then we denote by sym (A ® A) the symmetric tensors in A ® A, by
ssym (A ® A) the skew symmetric ones . We have canonical retractions

p :A®A , sym(A(9 A),a®b -; 1 (a(9 b+(-1)Iali bi b® a),

similarly p' : A ® A -~ ssym(A ® A) .
Furthermore, we note that up to homotopy a "diagonal" A factors as in the

diagram :

	

NA
NQ2X ---,	NQ2X®NQ2X

sym(NQ2X ® NQ2X)

This follows from the fact that the interchange map fixes the elements of
image (NO), .
For any Lie algebra X we denote the descending central series by I'oX := X,

FiX := [X, X], . . . . If L EL, we denote by FiL/I'jL, j > i, the induced chain
complex .
Let now L = (L(V), aL) -> NLaz GX be as in the statement . Let

8i : Hi (FoL/FiL 0 Q2) - Hi-i(FiL/r2L (9 Q2)
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be the boundary homomorphism defined by the exact sequence
0 -> r1L/I'2L ® Q2 -> I'oL/P2L ® Q2 -> FOL/I'1L ® Q2 -> 0 .

Note that al is induced by al, the quadratic part of the differential aL on L(V) .
Clearly, abL (D Q2 - FOL/I'1L ® Q2 and

Next, we note
1) N(I'i/ri+1) = NI'i/NI'i+1,
2) ri(NLazGX) C NI'i .
1) is obvious ; one proves 2) by induction on i

It is trivial for i = 0 . From the commutator map Po (Z fi ---> ri+l, we derive
N(ro) ® N(Pi) , N(I'o ®fi ) -+ N(Í'i+l), and hence ri+l(NPo) C N(I'i+1) .
(Note the different meanings of "®" here !) .

Recall that L -> NÍ'o = NLaz GX gives rise to map abL - N(i'o/rl),
which is identical with FOL/FlL , NÍ'o/NPl .

Thus, the left side of the following diagram commutes . Note that
AL : H(abL) --> H(abL ® abL) is obtained from AL by composing with the
appropriate suspensions .

H;_z(wym(abL ® abL ® Qs))

n:11
H;-2 (abL ®abL ®Q, )

ssym(abL ® abL (9 Q2) - I'1L/I'2L ® Q2 .

Hi-s(N(PI/rx) ®Qs)

	

(rvn)1
I

-- ( E¡-2(99y-(N(ro/r l ) ®N(ro/ri) ®Qz) S. H,(9ym(Niq,X C NiQ X))

o.Jl

	

l
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H,_,(N(to/ÉJ®Q2) . ~

	

(-r) .

	

H;(NQ2X)

H,_s(N(i'o/r>) ®N(ro/r1) ® Qo)

Let T : NQ2X --> N(Í'o/rl)®Q2 be induced by T1 (see the conventions before
lemma 4.5) . Then S is given by the formula S(a (9 b) = (-1)IalT(a) ®T(b) by
[13, proposition 6.4] .
The right half also commutes by lemma 4.5 . Hence, taking the appropriate

suspensions proves the theorem .

5 . Cohomology

Definition 5.1 . Let A be a R,k-module (in the ungraded sense) and L E ~C, ;
then we set

Hr+k(L . A) := Hr+k (uabL; A) .

H;(NIQ2X ® NizX)



EXPLORING W.G. DWYER'S TAME HOMOTOPY THEORY

	

395

Remark 5.2 . If M is a cofibrant model of L, then

Hr+k (L; A) - Hr+k (o abM; A) .

Theorem 5.3 . a) The functors Hr+k(- ; A) oA andHr+k(- ; A) from Sr to
Ab are isomorphic .

b) Let A be Rk or a quotient ring of Rk .

	

Then the cup product structure
on H:~r+k (-; A) corresponds to the cup product structure on H<r+k(- ; A) o A
derived from 4.1 .

Proof: This follows from the results of sections 3 and 4 .

We would like to mention a different proof of the first part of 5.3 . This gives
us the occasion to introduce a path object for abelian fibrant objects of L.

Definition 5.4 . Let I'(t, dt) be the free commutative algebra with divided
powers, with ¡ti = 0 and ldt1 = -1 . Let L E ,C, then we set

(LI)P := (r(t, dt) ®L),

	

for

	

p > s,

(LI)s := Zs (I'(t, dt) ® L) .

Then LI is a differential Lie algebra with Lie bracket given by

[a 0 x, b® y] := (-1)J=J i bl ab (9 [x, y]

Direct computations give

Lemma 5.5 . (i) The canonical inclusion L -; LI is a homology isomor-
phism (over Z) .

(ii) If L is abelian, then the evaluation maps LI --> L given by t = 0, t = 1
are Lie algebra morphisms.

(iii) If L is abelian fibrant, then LI is a path object for L, i.e .

	

there is a
commutative diagram :

	

o

LI

Lemma 5.6 . Let A be a Rk-module. Let A(s+k) be the graded module which
is A in degree (s + k) and xero in other degrees ; we consider it as an abelian
differential Lie algebra .

	

Let X E Sr and LX a cofibrant model of A(X) ;
then there is an isomorphism [X, ~I(A(s+k))]sr -

Hs+k(abLX ; A) , where p
Ho-fs -> Ho-Sr is the equivalence of categories given in [3] .

Proof.. Since A(s+k) is abelian, the addition A(s+k) x A(s+k) --, A(s+k) is a
morphism in Ls . This defines a multiplication on p(A

(s+k) ) such that we have
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the following sequence of isomorphisms

[X,li(A(s+k»]sr - [>,(X)
A(s+k)]

c_s = [LX,A(s+k)]c s (~[abLX,A(s+k)]I~s

Part (*) is due to the commutativity of the Lie algebra A(s+k) ;

part (**) follows from the fact that the path object LI ofL := A(s+k) inG
is also a path object of L in the category of chain complexes .

Corollary 5.7 . The space h(Al9+k)) is equivalent in Ho-S,, to the Eilenberg-
MacLane space K(A, r + k) and Hr+k(X ; A) - Hs+k(abLX ; A) .

Proof- In lemma 5.6, let X be a sphere Sr+c and let L Z A(Sr+i) be a
cofibrant model . By section 3, we have

H.,+¡ (abL ; Rk)

	

Rk

0

It follows that

Remark now that an Eilenberg-MacLane space K(A, r + k) is fibrant in Sr ;
hence K(A, r + k) is a fibrant model of p(A(s+k)). Therefore, by remark 5.8
below

Hr+k(X; A) =[X, K(A, r + k) ].l=[X, K(A, r + k) ]s.- - H9+k(abLX; A)

for X ESr. a

) [abLX, A(s+k) ]Che -H9+k(abLX ; A) .

else

HS+k(abL ; A)

	

A

	

if

	

l = k

0

	

else .

provided

	

0 < i < k .

Remark 5.8 . Let X, Y E Sr and let Y be tame (Le . fibrant) . Then Y is
also fibrant in S (3.2 of [3]) and we have [X, Y]s = [X, Y],5, , for we may take
the same cylinder object in both theories .

6 . Samelson and Whitehead products

We refer to [10] for the definitions of Whitehead and Samelson products (to
be recalled below) and a study of their interrelations . The objective of this
section is to prove the following
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Proposition 6.1 . Let X E S,. be a Kan complex and let Lx Z A(X) be
a weak equivalente with Lx cofibrant . Let r + k >_ l + m + 1 and let A be a
cyclic Rk-module . Then, under the isomorphisms of theorem 1.3, the Whitehead
product

irl+1(X ; A) x W~1(X; A) - 7rc+m.+1(X ; A)
corresponda to the map induced by the Lie bracket

Trc(Lx ; A) x xm(Lx ; A) , 7rl+m(Lx ; A)

Remark 6.2 . The Whitehead product is identified with the Samelson pro-
duct by way of the commutative diagram

1,1
7rl (GX ; A) x 7r�z(GX ; A)

	

7rl+�,, (GX ; A)
where 8 : 7r�, +1(X ; A) --~ ir,,(GX; A) is the connecting homomorphism in the
path fibration over X.
To prove the proposition it suffices to show the corresponding statement

about Samelson products, Le. the Samelson product
Sri (GX ; A) x ir n (GX ; A) -, Sri +T�, (GX ; A)

corresponda to the Lie bracket as stated above .
To begin, we observe the following things
(a) There is no need to take any precautions with respect to the p-primary

parts for p = 2, 3, because by calculating in the "tame range" the usual diffi-
culties are ruled out .

(b) We have to distinguish the cases where A is Rk and where A is finite . In .
addition, if A is finite, the situation where l or m is equal to s requires special
attention . But we shall give the proof only for A finite with l, m > s, because
the necessary adaptations of the arguments to the other cases are natural .

Next, we shortly recall the definition of Samelson products with coefficierits
using the notations of section 1 and we will immediatly consider only those in
the "tame range" .

Let A = Z/qZ be a Rk-module . Let G be a s-reduced simplicial group . Let
Ce E 7rl (G ; A), ,(j E 7r r. (G ; A) with l + m <_ s + k .

	

Let a, ,(i be represented by
maps f : M(A, l - 1) -> G, resp. g : M(A, m - 1) -~ G .

	

Consider the map
< f, g >: M(A, l - 1) x M(A,m - 1) - G, (x, y)

	

f(x)g(y)f (x)-Ig(y)-1 .
Then, there is a factorization of < f, g > as follows <f,s>

M(A, l - 1) x M(A,m - 1)

	

>

	

G

M(A,l+m-1)
e
- M(A,l-1)AM(A,m-1)' /

a
c
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and a canonical arrow e (sea [10]) which exists only in Hu-S (by abuse of lan-
guage we denote it as above) . The Samelson product [a, /3] is then represented
by ce .

	

.
If G E A-Lazs , then G will be considerad as simplicial group or simplicial

Lie algebra according to the context .

Lemma 6.3 . Let G E O-Láz4 with central series (Gi) defning the Lazard
structure. Let P := M(A, l - 1) x M(A, m- 1) . Assume that for soma i the
map of groups of homotopy classes

[P, G] - [P, GIGi]

induced by ~¿ : G -, G/Gi is bijective .
Then < f, g > is homotopic to [f, g] where [f, g] is defined by the Lie structure

ofG vio the formula [f, g] (x, y) = [f (x), g(y)] .

Proo£ It suffices to prove that <D(< f, g >) =< d>f, (Dg > is homotopic to
[-¿f, <Pg] . Set .f := <Df, j := 4>g . Then by the formula of Baker-Campbell-
Haussdorff we have < f, g >_ [f, g] + v where v is a finite sum of iterated
brackets of length >_ 3 in f, g with some coefficients .

	

By the inverse of the
Baker-Campbell-Haussdorff formula ([8]) v can be interpreted as an element
in r3

	

(mors(P G/Gi )), the third term of the lower central series of the group
mors(P, G/Gi ) . But the group [P, G/Gi ] is nilpotent of class <_ 2, because P
is a product of two suspensions . Hence v is homotopic to zero .
Proof ofproposition 6.1 :
(a) By section 1 we have weak equivalentes GX - LazGX +-- N*Lx, hence

there is an isomorphism 7r<s+k (N*Lx ; A) -Ir<s+k(GX ; A) compatible with the
Samelson products .

(b) We verify the conditions of lemma 6.3 for Laz GX . We will rely heavily on
§ 8 of [3] and will therefore adopt the corresponding notations . Let Y := GX
and I'iY the lower central series subgroups of Y ; let EY := LazGX and EiY
the central series subgroups ofEY defining the Lazard structure . Then, by [3,
§ 8], for i large and a given prime number p there are isomorphisms

7rr+t (YlriY) ® Z(P) - nr+t(EY/EiY) ® Z(P)

for t _< 2p - 4, where Z(P) denotes Z localizad at p. Moreover for i large
7rr+t (YlriY) = 7rr+t(Y) . Hence we also have

7rr+t(Y) ® Z(P) - 7rr+t (EY/EiY) ® Z(P)

Let now p be a prime occuring as factor of q (recall A = Z/qZ) . Then we
have p > ~, l + m _< s + k hence r+ 2p - 4 >_ r + k. It follows that the map
EY -> EY/EiY induces isomorphisms of 7rr+t (-) ® Z (P) for r + t < r+ k . The
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dimension of P is leas than r + k. Hence [P, EY] --+ [P, EY/EjY] is bijective
(because these groups are torsion groups whose orders involve only the prime
factors of q) .

(c) Let f, g represent elements a E 7ri(N*Lx ;A), Q E 7r,n,(N*Lx ;A) . Let
a E 7ri(Lx ; A), b E 7r�,,(Lx ; A) correspond to a, Q via the equivalence Lx ->
-> NN*Lx . Then it suffices to show that [a, b] E 7r� ,.+i(Lx ; A) corresponda to
[a, Q] which is represented by [f, g] .
Hence we have to consider the following diagram

M(A, l - 1) x M(A, m- 1)

	

f 9 >

	

N*Lx x N*Lx

	

111 >

	

N*Lx

M(A, l - 1) n M(A,m- 1) - -

NZM(A, l + m- 1)

c

M(A,1+m-1)

According to the procedure in section 1, we form the following diagram :

NZ(M(A, l - 1) x M(A,m- 1)) ; NN*Lx x NN*Lx

	

1 >-NN*Lx

NZ (M(A, l - 1)

	

M(A,m- 1))

	

Lx x Lx

	

Lx
X

To obtain [a, b] we apply cé to a canonical class in

7 . Application

a

Having identified enough algebraic invariants of spaces X in the model Lx
of A(X) we can now do a little computation .

Proposition 7.1 . LetX be 3-connected, 7r4(X) = Z[2] and let y E 7r4(X) be
a Z[2]-module generator. Note that H4(X ; R) = Hom(7r4(X), R) for any sub-
ring R C Q, with 2 E R. Let aR be the corresponding generator for H4(X; R)
with aR(y) = 1 . Asume aQ Uaq = 0, but that for all R as aboye, R 7~ Q, the
map R -> H8(X; R), r H r(aR U aR), is injective. Then we have
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(z) [y, y] ®1 :~ 0 in 7r7(X) ® Q,
(ii) If R 7É Q, 2, s E R, then any homomorphism 7F7(X) -> R vanishes

on [y, y] . In particular, [y, y] ®1 is not in any direct summand R of 7r7(X)®R.

Example 7.2 . The proposition might be interesting because it applies to the
classifying space BP3 of CP-foliations of codimension 3, p jA 4. This is not the
place to recall what is known about the structure of 7r,k BP3 . (E.g . it is proved
by S . Hurder [7] that there is a surjective homomorphism 7r7BP3 -> R3) . But
this result seems to be new .
We have to show that BP3 satisfies the assumptions of the proposition . The

condition on 7r4 follows from theorem 2 of [19] . The condition on aQ U aQ
is Bott vanishing ; the condition on aR U aR can be proved by following the
method in the appendix of [1], see also [20] . Thus theorem D is established .
Remark 7.3 . This application has been proposed to us by E . Vogt . He

arrived at the result by different methods which are, however, similar in spirit .
In [15], there will appear a proof within a different algebraization of tame
homotopy theory.
Proof of proposition 7.1 :
We work in the category 123 and may replace X by a taming (Le . a fibrant

model) of X.
We first construct a naive cofibrant model M of. A(X) according to section

2 . In degrees < 7 it looks as follows

We need one generator y in degree 3 corresponding to y ; the differential is 0
in degree 3 and 4 and on decomposables of degree 7 . The elements zi and wj
denote generators . We set

with rj , s.~ E Z.

71 wj ,

	

[y, ?]
6 zi, [y, y]
5 ?
4 ?
3 y

áwj = rj [y, y] +E

Assume now that f : 7r7(X) -> R is a homomorphism . We may look at f as
a homomorphism 7rs (M®R) -> R or a homomorphism Z6(M ® R) -> R which
vanishes on boundaries, Le . image (8 ® 1R).

Clearly, Z6(MOR) is a direct summand in M®R, so we may finally interpret
f as a homomorphism M6 ® R -> R which vanishes on boundaries . Hence,
setting f ([y", y]) = u, f(zi) = ui, we have

= 0

	

for all

	

j .
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We identified the cohomology of X as the cohomology of the module of in-
decomposables of M, the cup-product as given by the quadratic part of the
differential . Thus we see

(aR U aR)(wj) = f2rj .

But, if (7.4) holds, 2u(aRUaR) is a coboundary, namely f6(0) with O(zi) = ui .
Hence equation (7.4) has no solution with u E R, u =,A 0 .

If [y, y] were a boundary in M ® Q, then we had aQ U aq 7~ 0 .
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