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Abstract

and

(1.3')

A MÁXIMUM PRINCIPLE FOR THE
BERGMAN SPACE

Let f(z) and g(z) be holomorphic in the open unit disk D and let Zf and
Z9 be their zero sets . If Zf D Zg and if(z) >_ Ig(z)j (2e-2 < Iz1 < 1),
then jifil > jigll where 11 .11 is the Bergman norm: jif ij2 = 7r-1 f® If (Z)1 2drn
(dm is the Lebesgue area measure) .

where II - II is the Bergman norm :

1 . Introduction

Let f(z) and g(z) be holomorphic in the open unit disk D and let Zf and
Zy be their zero sets . If for some c, 0 < c < 1,

(dm is the Lebesgue arca measure) .
If we replace the

implies
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If(z)I ? I9(z)1

	

(c < IZI < 1)

ZfCZ9 ,

then g/f is holomorphic, and the classical maximurri principle implies that (1 .1)
holds in D and

IIfII >_ 110 ,

IIfII 2
=ir` f If(z)I Zdm

D

Bergman norm with the HP norm (0 < p < oc), then (1.1)

IIfIIP >_11911P

without any additional assumptions about the zero sets . It is therefore natural
to ask whether condition (1 .2) is really essential for the implication (1 .1) =*
(1.3) ; in particular, can we allow f to have more zeros than g provided that
c is small enough . The main purpose of this paper is to prove the following
theorem which more or less answers this question .
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Theorem 1. If
(1 .5)

	

Zf D Zg
and (1.1) holds with c= 2e-2, then (1.3) holds.

The proof of this result is based upon the following inequality for functions
f(z) holomorphic in D:

(1 .6)

	

1exp{-2(1+z)/(1-z)}f(z)1 2dm< f Izf(z)1 2
D

	

D
dm .

This inequality was first established in [1] where the idea was to use the
substitution w = u + iv = i(1 + z)/(1 - z) that maps D onto the half-plane
C+ = {v > 0} and transform (1.6) to

(1.7)

	

¡F(w) i + we2iw l2dudv <

	

¡F(w)1 2dudv
fC+

	

i - w

	

_

	

c+
where F(w) = (i + w)-2f(w - i/w + i) . Representing F as a Fourier integral

F(w) = f
000

O(x)e-ixwdx

we can reduce (1.7) to

(1.8)

	

f 00(x
+ 2) -1 10(x) - 2 Jo~

O(x + t)e-tdt12 <.f10(X)1 2dx/x

00
with

f

	

O(x)e-xdx = 0. After a chain of substitutions (e-xO(x) = «x) ;
0

f0

x
iP(x)dt = p(x) ; exp(x) = u(x)) (1 .8) reduces to

(1.9)

	

10

	

[x(x+2)] -2 1u(x)1 2dx <
2
f[x(x+2)] -1 U,(X)1 2dX

for differentiable functions u(x), u(0) = 0 . The proof of (1 .9) given in [1] is
based on the Sturm-Liouville theory of second-order linear differential opera-
tors . For the reader's convenience a much simpler proof of (1.9) due to Richard
O'Neil [2] is given below (see s . 3) . Note that another proof of (1.6) based on
completely different ideas is given in [3] ; see also s. 2 below .

Inequality (1.6), as well as some others of a similar nature (see [3]), suggests
a general notion of comparative norm 11hllh2ll of two bounded functions viewed
as multipliers on the Bergman space (see s . 2 for details) . The most interesting
situation arises when hl and h2 are inner functions, say Il and 12 . In this case
111111211 always is > 1, and it is important to know when 111111211 = 1 ; we write
then Il -< 12 and say that Il is dominated by 12 .
The paper is organized as follows . After the introduction of formal definitions

we list some general properties of the comparative norm and domination and
illustrate these notions by several examples . Then, using (1 .6),, we establish
the following result which is needed for the proof of Theorem 1 but also is of
independent interest .
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Theorem 2 . Let g E H°°, 11gil. < 1, g(z) 71 0 (z E D) . ff Ig(0)j < e-2
then g ~ z, i .e . for all holomorphic f

(1.10)

	

L Ig(z)f(z)j Zdm <_ L jzf(z)12dm
D

	

D

The constant e-2 is sharp .

Having proved Theorem 2 and its two corollaries, we then easily complete
the proof of Theorem 1 .

If instead of (1.6) certain other domination inequalities are used (see [3]), then
condition (1.5) can be substantially relaxed. However, this involves considerable
technical complications which the author would rather avoid here . Moreover, it
is strongly felt that Theorem 1 may be true without any conditions whatsoever
on the zero sets, although perhaps with a smaller constant than 1/2 e-2 (see
s . 6) .
The last section (s . 6) is devoted to the discussion of some questions, open

problems and conjectures that naturally arise from the maximum principle . In
particular, we consider the question whether it is possible to extend Theorem
1 to subharmonic, or at least to totally subharmonic functions f (Le . A"f >
0, dn E N), and we give a negative answer to this question .
Acknowledgements. This reseach was done during the author's visit to

the Centre de Recerca Matemática, Bellaterra (Barcelona) in June 1989 . The
author wishes to thank this institution for its hospitality and support .
Thanks are also due to Richard O'Neil who kindly gave his permission to

include in this paper his proof of the crucial inequálity (1 .9), and to Joaquim
Bruna for several useful suggestions .
The author is grateful to Lennart Carleson for his interest in this paper and

for stimulating discussions.

2 . The Comparative Norm and Domination

Definition 1 . L2 (D) is the Hilbert space of measurable functions f : D -+ C
with the norm (1.4) . A2 = L2(D) is the subspace of L2 (D) consisting of
analytic functions. A2 is called the Bergman space .

Definition 2. For any pair of bounded measurable functions hl, h2 on D
the comparative norm is

(2 .1)

	

11hilh2ll = sup {¡Ifhill/iifh2ii}
fEA2

If 11hilh2ll < 1 we also write hl --< h2 .
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Here are some general properties of the comparative norm that easily follow
from the definition :

(i)

(2.2)

	

Ilhl-wIh2-WII =IIhilh2II

(ii)

(2.3)

	

IIhilh2II <_ IIhilh3II - IIh31h2II

(iii) If g E H°° then

(2.4)

	

IIhl91h2911 :5 IIh1Ih2II ;

(2.6)

If M is the Mdbius group of conformal isomorphisms of D, then for all
W E Nl and all hl, h2 E L'(D)

the equality occurs if g is cyclic in A2 , Le . clos{gA2} = A2 .
(iv)

	

If hj, gj E H°°(j = 1, 2, . . . . n) then

(2.5)

	

IIhih2,-,hn19I92, . . . . 9..11-II h1I91Ii' IIh2I92II . . . IIhnI9.II

(vi) If h, 12 are inner functions, and p, q some nonnegative numbers, then
we always have II IIIIpi II2I 9 II > 1 . Thus, IIIIp _< I I2 Iq is equivalent to
II IIIIpi II2I 9 II =1.

We give now some examples of domination and the comparative norm in-
volving the simplest inner functions, namely single Blaschke factors B,,,(z) =
(a - z)/(1 - áz)(a E D) and singular functions with the measure concentrated
at one point .

Proposition 1. For p, q > 0 and a E D

(2.7)

	

II IB.IP I IB.Igjj = II Izlpl IzJ 1 II = max{(p +
1 ) 1 / 2 ' 1} .

The proof is based on a direct computation involving the formula

where f(z) = EC�.zn .

II(hl + h2)Ih3II <_ IIhiIh3II .+ IIh2Ih3II

Illzlp .f(z)II = (E-OIcnl 2 /p+n+ 1)1/2

	

,
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Proposition 2. ¡Bbi9 -< IB,,,IP if and only if

(2.8)

	

p
>«2 - a)(b - (i)/(2 - b)(a - (1)

where SIab(2 is the hyperbolic geodesic through a, b with the end points at (1, (2 E
áD .

(This is a reformulation of a result from [3] on contractive movements of
zeros in the Bergman space.)

Proposition 3 .

(2.9)

	

exp{-2p(1 + z)/(1 - z)} -< jzj'

and

(2.10)

	

exp{-(2 - e)p(1 + z)/(1 - z)} 7~ lzlp

	

(e > 0)

(For p = 1 (2.9) is equivalent to (1.6) ; for arbitrary p > 0 cf . [3] .)

and if

3. Proof of (1.6)

It is convenient to put (1.9) in the following equivalent form:

Proposition . f is a measurable function on (0, oo) with

(3 .1)

	

m lf(x)l 2 [x(x + 2)] -l dx < oo
0

(3 .2)

	

F(x) =fx f(t)dt

	

,
0

then

(3.3)

	

~ IF(x)12[x(x+2)]-2dx <_ 1f j(x)12[x(x+2)]-ldx~
o

	

2 0

Proof- Since ¡F(x) j <_
lx

lf(x) l dt, there is no loss of generality in assuming
0

f(x) non-negative . We can also asume that f is supported on some interval
(a, b) with 0 < a < b < oo . In fact, consider the function

fa,b(x) -

	

f(x)

	

if x E (a, b)

0

	

if x 1 (a, b)
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If (3.3) holds for fa ,b, then letting a - 0, b , oo and using the monotone
convergence theorem we obtain (3.3) for f .
Now we integrate by parts and use the inequality 2ab <_ 2a2 + 2b2 with

a = F(x), b = xf(x):

f00 F(x) 2 [x(x + 2)] -2dx = f00 F(x) 2x-2 d(-(x + 2)-1)
0

	

0

21m (x + 2)-1(F(x)/x) (xf(x) - F(x))x-2dx

- j ° 2F(x)xf (x)dx -
2
f°F(x)2

dxo

	

x3(x + 2)

	

o

	

x3(x + 2)

< 2

	

F (x)2

	

dx+ 1

	

- (X&»2dx

f0oo x3 (x + 2)

	

20

	

x3 (x + 2)

- 2
o
~~

F(X)2dx = 1

	

l (X&»2dx > 0
x3 (x + 2)

	

2 o

	

xa(x_+2)

4 . Proof of Theorem 2

We have

where A is a constant with ~Al = 1 and dp, a positive Borel measure on áD with

tc(áD) = -loglg(0)I > 2 .

Clearly, we can assume that it(8D) = 2. Using arithmetic-geometric mean
inequality combined with the Fubini theorem and (1 .6), we obtain for all f E A2

D I9f I 2dm = fD exp
{-4 J

2n Re
ezt ± z '

d
2
(t)

} If(z) I 2dm.

which proves Theorem 2.

2,CJn ~~

	

lexp{-4(e"+z)/(e"-z)}l d 2
(t)

] If(z)I2dm.
r2n d

2(t) JD ~

exp {

-

2(e"
z z)

}
f (z)

I2
dm.

<

L
Iz .f (z)

12 dm,

Corollary 1 . If g E H°°, IIgil. < 1, g(z) =,A 0(z E D) and g(a) < e-2, then
g -< (z - a)/(1 - áz) .

This follows from Theorem 2 and (2.2) .
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Corollary 2. Let g E H°°, II9il . < 1,g(z) 91 0(z E D) . If B(z) is a fanite

Blaschke product with zeros at av(v = 1,2, . . . . n) satisfying

(4.2)

	

la,,, l :~-: 2e -2

	

(v

	

n)

and if

(4.3)

	

Ig(z)I <- IB(z)I

	

(IzI = 2e-2 ) ,

then g -< B.

Proof.- An easy computation shows that a Blaschke factor B,, (z) = (a -

z)/(1-áz) with ¡al < 2e-2 satisfies IBa(z)I < e-2 on {IzI = 2e-2 } . Therefore
(4.3) implies

or

Ig(z)I <- e
-2n

	

(Iz1 < 1e-2)

Ig(z) 11 nl <- e-2 (Izj < 2e-2)

By Corollary 1 g(z) 1/n --< Ba. (z) . Taking the product for v = 1, 2. . . . , n and
using (2.5) we obtain g -{ B.

5 . Proof of Theorem 1

Let a = {al, a2, . . . , an } = Zf\Zg .

	

Clearly, la,¡ <

	

le-2(V = 1, 2, . . . , n) .
Construct the Blaschke product for a :

(5 .1)

	

B(z) = Il(a� - z)/(1 - á� z)
v=1

and let fl = f/B. By the classical maximum principle Ig1 < Lf1I in D.

	

Let
h =glfl =gB/f. We have IIgII . < 1 and Ihl < IBI on IzI = 2e-2 . Therefore,
by Corollary 2, h --< B, which implies IIhf1II <- IIBflli, Le ., IIgII :5 I1f1I .

6. Remarks, Conjectures, Problems

A) . As mentioned in the Introduction, the following conjecture seems to be
plausible:

Conjecture: There exists a numerical constant c, 0 < c < 1, such that if f
and g are holomorphic in D and If(z)I > Ig(z)I (c < IzI < 1), then IIf1I > IIgII .

B) . It would be interesting to know the sharp (Le . the largest) value of c in
Theorem 1 . It is easily seen that for c > 1/N/2- Theorem 1 fails, as delnonstrated
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by the pair of functions f = y/-2-z and g = 1 + e for which Ilf11 = 1, lig ll = 1-t- e
and lf1 > Ig1 for (1 + e)/v~2- < Iz1 < 1 . A more sophisticated example due to
Rainer Martin [4] shows that for c = 1/v"2- Theorem 1 also fails :

with e = Ní2- - 1 ; we have lf 1 >

	

191 (1/V/-2 < lzl < 1) but

	

1, lIgll
(1 + e - 2-10) -1

	

1 + e2/21 > 1 .
C) . If f is analytic then l f12 is totally subharmonic, Le .

	

QnlfI2

	

>

	

0,
n = 1, 2, . . .

	

.

	

A question may be asked whether Theorem 1, or the above
Conjecture, holds if lf 12 and Igl2 are replaced by arbitrary totally subharmonic
functions . The answer is negative ; in fact, it is easy to construct two functions
of the form

with nonnegative ak, bk so that

1

	

1
p~ > q, for c < Iz1 < 1 but

	

rp,(r)dr G

	

rq,(r) dr
0

	

0

where c > 0 is arbitrarily small .

f= -,/2-z, g = (1 + s2-10)-1 (1 + ez20)

n

	

n
p. (z) = 1: akIZ1 21 ,q,(z) = 1: bklzl2k

k=0

	

k=0
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