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A bstract

HOPFIAN AND CO-HOPFIAN OBJECTS

K. VARADARAJAN1

The aim of the present paper is to study Hopfian and Co-Hopfian
objects in categories like the category of rings, the module cate-
gories A-mod and mod-A for any ring A . Using Stone's represen-
tation theorem any Boolean ring can be regarded as the ring A of
clopen subsets of a compact Hausdorff totally disconnected space
X . It turns out that the Boolean ring A will be Hopfian (resp .
co-Hopfian) if and only if the space X is co-Hopfian (resp . Hop-
fian) in the category Top . For any compact Hausdorff space X let
C7,(X)(resp . Cc(X)) denote the R(resp . C)-algebra of real (resp .
complex) valued continuous functions on X . Using Celfand's rep-
resentation theorem we will prove that C7¿(X)(Ce(X)) is Hopfian
(respectively co-Hopfian) as an R(C)- algebra if and only if X is
co-Hopfian (respectively Hopfian) as an object of Top. We also
study Hopfian and co-Hopfian compact topological manifolds .

Introduction

The notion of a Hopfian group [4] is by now classical . Throughout
the present paper the rings A we consider are associative rings with an
identity element lA =,1= 0 . Any subring B of A is required to satisfy
the condition that lB = lA. All the modules considered are unitary
modules . A-mod (resp . mod-A) will denote the caterogy of left (resp .
right) A-modules . In [12] V.A . Hiremath has introduced the concept
of Hopficity for a ring A regarded as a ring and also for any MeA-
mod . We will show in the present paper that A is Hopfian in A-mod
if and only if it is Hopfian in . mod-A (Theorem 1 .3) . When these two
equivalent conditions are satisfied we will simply say that A is Hopfian
as a module . There are obvious dual notions of A being co-Hopfian
respectively as a ring, as an object in A-mod and as an object in mod-A.
We obtain a necessary and sufficient condition for A to be co-Hopfian in
A-mod (Proposition 1 .4) . Unlike the Hopfian case, by means of a specific
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example we show that có-Hopficity is not left-right symmetric . Also, we
will give examples to show that A being Hopfian (resp . co-Hopfian) as
a ring and A being Hopfian as a module (resp . co-Hopfian in A-mod or
mod-A) are independent of each other . As an immediate consequence of
our necessary and sufficient condition it will follow that a nót necessarily
commutative integral domain A is co-Hopfian in A-mod as well as mod-A
if and only if A is a skew-field .

It is a well-known result that any noetherian MeA-mod is Hopfian in
A-mod and that any artinian MeA-mod is co-Hopfian ([17, page 42]) .
Arguments used in proving this result will show that any ring A with
a.c .c . on two sided ideals is Hopfian as a ring and any ring A with d.c .c
on subrings is co-Hopfian as a ring. In particular any left noetherian
(hence any left artinian) ring A is Hopfian as a ring. Easy examples
can be given to show that even fields need not be co-Hopfian as rings .
Similar to the result that any left artinian ring is left noetherian we have
the result that any ring A which is co-Hopfian in A-mod is automatically
Hopfian in A-mod, hence also Hopfian in rnod-A (Proposition 1 .10) . Let
n be any integer > 1 . It is easy to prove the following implications :

a) M�, (A) Hopfian (resp . co-Hopfian) as a ring => A Hopfian (resp .
co-Hopfian) as a ring.

b) M� (A) Hopfian (resp . co-Hopfian) in M,, (A)-mod => A Hopfian
(resp . co-Hopfian) in A-mod.

The analogue of Hilbert's basis theorerra is valid for Hopficity, namely
MEA-mod is Hopfian if and only if M[X] is Hopfian in A[X]-mod, where
X is an indeterminate over A . This and the analogous result for M[[X]]
in A[[X]]-mod are proved in Section 2 of the present paper (Theorem 2.1) .
We do not know whether the analogous result is valid for M[X,X - 1] in
A[X, X-1]-mod . For any non-zero MeA-mod, it is easy to see that M[X]
(resp . M[[X]]) is not co-Hopfian in A[X] (resp . A[[X]])-mod .

In Section 3 we are mainly concerned with the case when A is commu-
tative . For the results stated in the present paragraph it will be assumed
that A is a commutative ring . Then it is well-known [22], [24] that ev-
ery f.g . (abbreviation for finitely generated) A-module is Hopfian . It can
easily be shown that M�,(A) is Hopfian in M�,(A)-mod or mod-M,,(A)
for all integers n >_ 1 . Our necessary and suffrcient condition for A to
be co-Hopfian in A-mod (Theorem 1 .3) implies that A is co-Hopfian in
A-mod e-* A is its own total quotient ring . In this case we will prove that
Mn(A) is co-Hopfian in both M�,(A)-mod and mod-M,(A) . We will also
prove that An is co-Hopfian in A-mód for all n >_ 1 . The proof of this
will depend on an auxiliary result asserting that an A-homomorphism
f : A' - A' is not injective if and only if det f is a zero divisor in A,
whatever be the commutative ring A (lerrama 3.1) . It is also well-known
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[2], [25] that every f.g A-module is co-Hopfian if and only if every prime
ideal of A is maximal . We will explicitly construct a commutative ring
A which is its own total quotient ring admitting a prime ideal which is
not maximal . In particular this ring will satisfy the condition that A' is
co-Hopfian in A-mod for cach integer n >_ 1 and there are f.g A-modules
which are not co-Hopfian . The ring A that we construct will have the
following additional properties :

c) A is not noetherian
d) A does not have d.c .c for subrings

In [12] Hiremath shows that if the Boolean ring of clopen subsets of a
compact Hausdorff totally disconnected space X satisfies the condition
that A is Hopfian as a ring then X is co-Hopfian as a topological space .
He says he does not know whether the converse to this result is true .
Actually we not only show that the converse is true but we also show
that A is co-Hopfian as a ring if and only if X is Hopfian as a topological
space . This is carried out in Section 4 .

Let X denote a compact Hausdorf£ space and C(X) denote either
C7z (X) or Cc (X) . We regard Ciz (X) as an R-algebra and Ce (X) as a
C-algebra and simply write "the algebra C(X )" . Using Gelfand's rep-
resentation theorem we show that C(X) as an algebra is Hopfian (resp .
co-Hopfian) if and only if X is co-Hopfian (resp . Hopfian) in the cat-
egory Top of topological spaces . (Theorem 5.3) . Wc do not have any
characterization of compact Hausdorff spaces which are Hopfian (resp .
co-Hopfian) . However it is an easy consequence of invariance of domain
that compact topological manifolds without boundary are co-Hopfian .
Among compact manifolds without boundary it can casily be shown that
finite sets are the only Hopfian objects . Among compact rnanifolds with
a non-empty boundary there are no Hopfian or co-Hopfian objects . If M
is a compact manifold with boundary (9M then the pair (M, (9M) is a
co-Hopfian object in the category Tope of pairs of topological spaces .

We conclude our introduction by pointing out that Hilton ; Roitberg
etc ., have studied epimorphisms and monomorpliisms in the hornotopy
category and were led to investigating Hopfian and co-Hopfian objects in
the homotopy category [10], [18] . Finally we wish to thank the referee
for information on literature . In fact most of the material in Section 7
has been pointed out by the referee .
Acknowledgements . Part of this work was done while the author

was visiting Centre de Recerca Matematica, Bellaterra in Spain . The
author would like to thank Professor Castellet for creating a very con-
ducive atmosphere for research . Also while carrying out this research
the author received support from NSERC grant A8225 .
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1. Hopfian and co-Hopfian rings and modules

Throughout we will formulate our results in the category A-mod of left
unital A-modules . There are obvious analogous results in the category
mod-A of unital right A-modules . We first fix our terminology and no-
tation . For any aeA, £A(a) = {beA 1 ba = 0} and rA(a) = {beA 1 ab = 0} .
By a left (resp . right) zero divisor in A we mean an element a :~ 0 in
A with eA(a) 7~ 0 (resp . rA(a) ~L 0) . An element aeA will be called a
left (resp . right) unit if there exists an element ceA with ca = 1 (resp .
ac = 1) . We call aeA left (resp . right) regular if Wa) = 0 (resp .
rA(a) = 0) . It is trivial to see that any left (resp . right) zero divisor is
never a right (resp . left) unit . Also any left regular element a which is a
left unit is automatically a two-sided unit .

Definition 1 .1 . MtA-mod is said to be Hopfian (resp . co-Hopfian)
if every surjective (resp . injective) homomorphism f: M -> M is an
isomorphism .

It is wcll-known that any noetherian (resp . artinian) module is Hopfian
(resp . co-Hopfian) [17, Lemma 4, pago; 41] .

Proposition 1 .2 . AeA-mod is Hopfian if and only if no left zero di-
visor in A is a left unit in A . This is theorem 9 in [12] . Equivalently it
is welll-known and easy to see that AeA-mod is Hopfian if and only if A
is directly finito (i .e . xy = 1 ==> yx = 1) [11] .

Theorem 1 .3 . AeA-mod is Hopfian if and only if Ae mod-A is Hop-
fian .

Proof.. Direct finiteness is clearly left right symmetric .

Proposition 1 .4 . AeA-mod is co-Hopfian if and only if every left
regular element aeA is a two-sided unit .

Proo£ Immediate consequence of the fact that injective homomor-
phisms f: A -> A in A-mod are exactly given by f(a) _ Aa with aeA
left regular .
Examples 1.5 . Consider the ring

A = [Z/2Z

	

Z/2Z
0 Z(2)

where Z(2) is the 2-localization of Z, namely 2121 = { `cQ 1 n odd } .
71

The element

	

2

	

EA is easily checked to be right regular but not
(0

invertible in A . Hence A is not co-Hopfian in mod-A.
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(b) Thc; orily ríng homomorphism of i (resp . Q) ís the ídentity map .
Hence Z and Q are Hopfian and co-Hopfian as rings . Whilc Z
is Hopfian in Z-mod, it is not co-Hopfian in Z-mod. Q is both
Hopfian and co-Hopfian in Q-mod (hence also in Z-mod) .

(c) For any ring A the unique ring homomorphism cp : A[X] ~ A[X]
carrying X to X2 and satisfying ep 1 A = IdA is an injective ring
homomorphism which is nót surjective . (Here X is an indetermi
nate over A) . Thus A[X] is not co-Hopfian as a ring, whatever be
the ring A . A similar argument shows that A[X, X-1] and A[[X]]
are not co-Hopfian as rings .

(d) Let A = K[(Xj]a,i over a conirnutative ring K. Then A is
a cornmutative ring hence Hopfian in A-rnod . Let O : J , .1
be a surjective; rnap which is not 1bijective . Since J is infinite
such a map exists . The unique ring homomorphism f: A --> A
satisfying f 1 K = IdK and f(Xa) = Xo(a) is then a surjective
ring homomorphism which is not an isomorphism . Thus A is not
Hopfian as a ring .

(e) Let K be a field and L = K((Xa)a,j) the field of rational func-
tions in an infinite-; number of indeterminates . Any field is Hopfian
as a ring . Thus L is Hopfian as a ring . If O : J -> J is any in
jective map, there is a unique homomorphism cp : L , L of fields
satisfying cp(X.) = Xq(a) and ep/K = IdK . If O is not bijective,
then cp is an injective ring homomorphism of L in L which is not
surjective . Hence L is not co-Hopfian as a ring . Since L if a field
from remarks 1.6(a) and (c) we see that L is both co-Hopfian and
Hopfian in L-mod .

(f) For any simple ring A any ring homomorphism f: A -; B is
automatically injective . Hence every simple ring is Hopfian as a
ring . From example (e) above wc, see that a simple; ring (even a
fiel(1) need not be c:o-Hopfian as a ring .

(g) Let K be a field and V an infinite dimensional vector space over
K . Let A = EndKV. There exist K-linear surjections f : V --> V

which are not injective.

	

Choose such an f.

	

Since V ~ V ~ 0
splits in K-rnod, 3 a K-linear map h: V --> V with f o h = IdV .
This means f is a right unit in A . Since ker f 7~ 0 we can choose
a, g :V -> V with g q¿ 0 and g(V) C Ker f. Then gEA satisfies
f o g = 0 . Thus f is a right zero divisor in A which is not a right
unit in A . From proposition 1.4 we see that A is not Hopfian in
rriod-A and hence also not in A-mod from theorem 1 .3 . In case
V has countable dimension it follows from exercise 14.13, page
164 of [1] that there are only two non-zero ideals in A = EndKV.
Hence A is Hopfian as a ring (see; proposition 1.12) .



(h) If A = K[(xj~Ej] with K any commutative ring and J infinite,
from 1.8(d) we see that A is Hopfian in A-mod, but not Hopfian
as a ring . When K is a field and V a countably infinite dimen
sional vector space then A = EndKV is Hopfian as a ring but not
Hopfian as an A-module . As already sien Z is co-Hopfian as a
ring but not as a Z-module . When K is a field, A = K((X«)«Ei)
the field of rational functions in an infinite number of indetermi-
nates is an example of a commutative ring which is co-Hopfian as
a module but not co-Hopfian as a ring from 1 .8(e) .

Proposition 1.9 .
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(i) IfA is a ring satisfying a . e . e for two sided ideals then A is Hopfian
as a ring .

(ii) If A is a ring satisfying d.c .c for subrings then A is ro-Hopfian
as a ring .

The proof of this proposition is similar to that of lemma 4, pago 42 of
[17] and hence omitted .

Proposition 1 .10 . Leí A be a ring with the property that A is co-
Hopfian in A-mod. Then A is automatically Hopfian in A-mod .

Proof- Let a be a left zero divisor in A . From proposition 1 .2 we have
only to show that a is not a left unit in A . On the contrary if a is a left
unit in A, there exists an elerrient ccA with ca = 1 . Then clearly c is left
regular . Since A is co-Hopfian in A-mod, from proposition 1.4 we see
that c is a two sided unit in A . Then ca = 1 implies that a is the inverse
of c and hence a is also a two sided unit . This contradicts the fact that
a is a left zero divisor .
Remarks 1.11 . Hiremath [12] has already observed that a direct

summand of any Hopfian module is Hopfian . The same observation is
valid for co-Hopfian modules as well. He remarks that he does not know
of any example of a Hopfian module with a submodule not Hopfian .
Later in Section 3 we will construct such modules . Q is Hopfian and co-
Hopfian in Z-mod, the quotients Zr_ of Q are not Hopfian in Z-mod.
Later results in Section 3 wilf also show that quotients of co-Hopfian
modules need not be co-Hopfian' .

Proposition 1 .12 . Leí A be a ring and n an integer > 1 . Then
(i) M� (A) Hopfian (resp . co-Hopfian) as a ring ==> A Hopfian (resp .

co-Hopfian) as a ring .
(ii) M�,(A) Hopfian (resp . co-Hopfian) in M,(A)-mod => A Hopfian

(resp . co-Hopfian) in A-mod .
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(iii) M,,(A) Hopfian (resp . co-Hopfian) in A-mod => A Hopfian (resp.
co-Hopfian) in A-mod .

Proof.
(i) is an immediate consequence of the observations that if f : A , A

is a ring homomorphism, M� (f ) : Mn (A) --> M,,(A) defined in the
obvious way is a ring homomorphism and that M,,(f) is surjjective
(resp . injective) t~ f is surjective (resp . injective) .

(ii) similar to (i) above except for the observation that if f: A -> A
is a map in A-mod, then ,,(f): Mn (A) ~ Mn, (A) is a map in
Mn(A)-mod .

(iii) is immediate from the fact that A is a direct summand ofMn(A)
in A-mod .

The converses for (ii), (iii) are not true in general. Counter examples
will be given in Section 7 . But when A is commutative for (ii), (iii) the
converses are true and they will be proved in Secton 3 . We do not know
whether the converse for (i) is true .

Given any non-zero M6A-mod it is known that any infinito direct sum
of copies of M is neither Hopfian nor co-Hopfian in A-mod. Any such
module will admit the module N =®�>,M,, as direct summand where
M,, = M for each n >_ 1 . The shift map s+ which carries the nth copy
of M to the (n + 1)st copy identically is an injective map which is not
surjective . The shift rnap s_ which maps the (n + 1)" copy to the nth
copy identically for n _> 1 and which maps the l` copy of M to zero is
a surjective map which is not injective . This fact will be mide use of by
us later in Section 3 for constructing a Hopfian module admitting a non-
Hopfian submodule . An infinito direct sum of norr-zero modules could
very well be simultaneously Hopfian and co-Hopfian . If P denotes the
set of all primes, M = ® PEp(i/pi) is easily seen to be simultaneously
Hopfian and co-Hopfian in i-mod,

Proposition 1 .13. Let A[G] denote the group ring of a group G over
the ring A . If A[G] is Hopfian (resp . co-Hopfian) as a ring then A is
Hopfian (resp. co-Hopfian) as a ring and G is Hopfian (resp. co-Hopfian)
as a group .

Proof. Let f: A - A be a homomorplrism of rings and cp : G -+ G
a homomorplrism of groups . Then the rnap ,i : A[G] -> A[G] defined

by 0 (I:g,c asg) = I:g,c f(ay)W(g) 1is a ring homomorphism . Also it
is easily checked that 9 is surjective (resp . injective) <=> f and cW are
surjective (resp . injective) . Proposition 1 .13 is an easy consequence of
these facts .
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Remarks 1 .14 . If f : A -> A is a map in A-mod and W:G -> G is
a group homomorphism it is in general not true that /d:A[G] --> A[G]
defined ~ (I:,EG a,g) = z9Ec f (as)W(g) will be a map in A[G]-mod . In
case cp = MC it is true that Q is a map in A[G]-mod . The analogue of
1 .13 for module categories is not valid . If A is any commutative ring
and G any abelian group, A[G] is Hopfian in A[G]-mod . G need not be
Hopfian . However, the following can be proved .

Proposition 1 .15 . If A[G] is Hopfian (resp. co-Hopfian) in A[G]-
mod, then A is Hopfian (resp. co-Hopfian) in A-mod.

Proposition 1 .16 . Let {Aa}a,J be any family qf rings and A =
IIa,jAa their direct, product.

(i) A is Hopfian (resp. co-Hopfian) in A-mod <~:> each Aa is Hopfian
(resp. co-Hopfian) in A,-mod.

(ii) If A is Hopfian (resp.

	

co-Hopfian) as a ring then each Au is
Hopfian (resp. co-Hopfian) as a ring .

Proof.:
(i) is an immediate consequence of the fact that any map f: A - A

in A-mod is uniquely of the form IIfa : IIAa -> IIAa with fa :
Aa -> Aa a map in Aa -mod and f is surjective (resp . injective)
~-:> each fa is surjective (resp . injective) .

(ii) If fa : A<, -> A,, is a ring homomorphism for each aE .I, then
f = IIfa : IIAa -> IIA, is a ring homomorphism . Moreover f is
surjective (resp . injective) if and only if each fa is surjective (resp .
injective) . (ii) is an immediate consequence of these facts .

Actually proposition 1 .16(1) can be improved as follows :

Proposition 1 .17 . Let {Aa}a,J be any family of rings and A =
II.EJAa their direct product. Let MacA.-mod for each acJ. If M =
IIá,jMa with A-action defined by a.m = (aama)c.l u)henever a= (acr)aEJ
with aa E Aa and m = (ma)aE,1 with mc, E Ma . Then M is Hopfian
(resp. co-Hopfian) in A-mod if and only if each Ma is Hopfian (resp .
co-Hopfian) in A,,-mod .
Again this is an immediate éonsequence of the fact that any map f:

M - M in A-mod is uniquely of the form IIfa : IIMa - IIMa with f,, :
Ma - Ma a map in Aa -mod .

2 . Hopficity of the modules M[X],M[X]/(Xn) and M[[X]]

Given any MEA-mod and an indeterminate X over A we define
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M[X]eA[X]-rnod, M[X]/(X7')EA[X]/(X7')-rnod arid M[[X]]c-A[[X]]-rnod
as in Section 1 of [23], where A[X] denotes the polynomial ring,
A[X]/(Xn) for any integer n >_ 1 denotes the truncated polynomial ring
and A[[X]] the formal power series ring . The main result proved in this
section is the following :

Theorem 2 .1 . Let, McA-mod . Then the folowing are equivalent .

(1) M is Hopfian in A-mod.
(2) M[X] is Hopfian in A[X]-mod.
(3) M[X]/(Xn) is Hopfian in A[X]/(X")-mod .
(4) M[[X]] is Hopfian in A[[X]]-mod.

Proof.. (2) => (1) . Let f: M -+ M be any surjective map in A-
mod .

	

Then f[X] : M[X] -~ M[X] defined by f[X]
(Ekj=o ajXj) _

a

	

Xj is a sur, ective ma

	

in A X mod . Since M[X] is Ho flan
in A[X]-mod we see that f[X] is injective . This irrimediately yields the
injectivity of f.
The proofs of (3) ==> (1) and (4) => (1) are similar and omitted .
(1)

	

(2) . Let W : M[X] - M[X] be any surjective A[X]-honiorplrism .
Let 0 = coI M:M - M[X] . Then 0 is an A-honiornorphism : Moreover

k

	

k

(4)

	

cp ajXj= X'O(aj) .
j=0 j=o

For any i > 0 let pi : M[X] -~ M be define(¡ by

ifi<k
rf i > k .

Then pi : M[X] - M is a map in A-rnod for each i > 0 . Since ep is
surjective, given any ceM there exist an element E~-o ajXy E M[X]
With W(L_j=oaj Xj ) = c.

Using 4, we see that the "constant terco" of O(ao) is c or equivalently
pood(ao) = c . This shows that the mala po~oO:M , M is a surjective rnap
in A-rnod . The Hopfian nature ofM in A-rnod iniplies that poOOM -> M
is an isornorphism, in particular injective .
Our airri is to show that cp:M[X] - M[X] is injective . Let z:kj=o bj XjE

M[X] satisfy W(j:k=o bjXj) = 0 . Using 4 and observing that O(bj) _
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Lri>opi o B(b;)X' we see that ep(Z:~=objXj) = Ek-o djX~+ tercos in-
volving higher powers of X where
(5)

	

dj = pi o O(bo) + pj_ r o B(b1) + . . . +po o O(bj)

for 0 <_ j < k. Hence cp(~~=() bjXj) = 0 implies bj = 0 for 0 <_ j < k .
Writing these out we get the following system of equations :

po o O(bo) = 0
p1 o B(bo)+p1 o e(b1) = 0

(6)

	

p2 o B(bo)+p1 o B(b1) + po o B(b2) = 0
.

pk o B(bo)+pk-1o B(b1) + . . . . . . + po o 8(bk) = 0

3. The Commutative case

We know that po o0 is injective . Hence from the first of these cquations
we get bo = 0 . Substituting this in the second equation we get pooO(b)) =
0, hence b1 = 0 . Now the third equation will yicld po o 9(b2) = 0, hence;
b2 = 0 . Procecding thus we see; that bo = b 1 = . . . = bk = 0 . Hence cp is
ir),jective .

(1) => (4) . The proof is similar to that of (1)

	

(2) . We ; will only
indicate the changos needed . In the proof replace M[X] by M[[X]],

j=oa7 Xj by ra_>oaiXj , eqcation 4 by

	

~- ajXj)=I:j>o

	

(~XjO a.t) .
The pi's are defiried by pi (Ej>o aj Xj) = al for all i > 0 . The calcula-
tion of cp(j:j>o b;X~) will now be cp(~j>objXj) = J:.j>o d;X3. where
d; = pj 0 O(bo) + . . . + po o B(b;) . Hence W(r_ j>() b,Xj) = 0 if and orrly if
d; = 0 for all j > 0 . The equation dj = 0 combined with thc; fact tlrat
po o B:M --~ M is injective successively yield bj = 0 f'or all j > 0 . Hence:
(p:M[[X]] -~ M[[X]] is injective .

(1) => (3) . Again the proof is similar to that of (1) = :> (2) and hence
omitted .
Remarks 2.2 .
(a) For any 0 :,A MeA-rnod, the modules M[X] in A[X]-rnod and

M[[X]] in A[[X]]-mod are never co-Hopfian . In fact the rnap
"multiplication by X" is an injective non-surjcctive map in both
cases .

(b) If MeA-mod is Hopfian we do not know whcthcr M[X,X -) ] will
be Hopfian in A[X, X-1]-rnod . However if M[X, X -) ] is Hopfian
in A[X,X-1]-mod it can be shown that M is Hopfian in A-rnod .
The proof is similar to the proof (2) ==> (1) in Theorerri 2.1 .

Througlrout this section unless otherwise stated A denotes a c :orrlrnu-
tative ring . The following Lermna rnight be well-known . As wc-; can not
find an explicit refererlce we include a proof of it here .
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Lemma 3. 1 . Let P be an n x n matriz over A . Then there exists a
non-zero column vector acA" with Pa = 0 if and only if det P = either
0 or a, zero divisor in A, where 0 denotes the column vector in A' with
all entries 0 .

Proof.. Let Pa = 0 with a =~ 0 . Let adj P denote the adjugate of P .
Then 0 = (adj P)Pa = (det P)I",a = (det P)a. If al is a non-zero entry
of a, then (det P)CLi = 0 with al 7~ 0.

Conversely, let P = dcA and let there exist an <fement a 7~0 in A
with da = 0 . By induction on n we show that 3 an element c r~ 0 in
A' with Pc = 0 . For n = 1, we have P = (d) and Pa = 0 with a 9~ 0
in A . Assurne tlae result valid for square matrices of size <_ n - 1 . Let
C,.¡ be the i,j cofactor of P . From P(adj P)a =(det P)a = 0 where a

Crra

is the column vector all of whose entries are a we get P

f

Crasa

:~ 0, there is nothing to prove . Otherwise Crra, = 0 and

Ca r a,
Cl r is the determinant of the (n - 1) x (n - 1) matrix S got from P by
deleting the first row and first column . By the inductiva assumption 3
an element v =A 0 in A"-r with Sv = 0 in A" -r . If c = (°) E A', then
c :~ 0inA"andPc=0 in A .

Theorem 3 .2 . Let, A be a commutative ring with ¡he property that
A is co-Hopfean as an A-module. Then for each integer n >_ 1, A" is
co-Hopfian as án A-module.

Proof.. Let f:A` -> A" be any injective hornornorplrisin of A-modules.
Let P denote the matrix of f w.r .t . the standard basis of A" . From
lemrria 3.1 we sea that det P is not a zero-divisor in A . From remark
1 .6(b) we see that A is its own total quotient ring. It follows that det P
is a unit in A, hence P is invertible. This means f is an isomorphism .

Examples 3.3 . Let B be any abelian group with the property that
the p-primary torsion tp(B) is not zero for every prirne p . Let A =
B ® Z as an abelian group and let us define multiplication in A by
(b, m) (b', m') = (mb' + m'b, mm') . A is a commutative ring . In fact A is
the ring got by adjoining an identity element to B with the so callad zero
ring structure on B. Every element of the forra (b, m) with m :,A f 1 is a
zero-divisor in A . In fact if p is any prirne divisor of m, we can choose
an element 0 ~ b' E t7, (B) with pb' = 0 . Then (b', 0) (b, m) = (0, 0) . Also
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from (b, 1) (-b, 1) = (0, 1) and (b, -1)(-b, -1) = (0, 1) we see that all the
non-zero divisors in A are invertible . From remark 1.6(b) and theorem
3 .2 we see that A' is co-Hopfian in A-rnod for every integer n >_ 1 . B
is a two sided ideal in A with A/B - Z as a ring . Thus B is a prime
ideal of A. However, B is not maximal, because r7-1 (m8) D B for any
m =~ 0 where r/:A -> A/B is the canonical quotient map . Thus from
remark 1 .6(d) we see that there are finitely generated A-modules which
are not co-Hopfian . In fact the cyclic A-module, A/B - Z is itsclf not
co-Hopfian as an A-module . For any m =~ 0, multiplication by rn is an
A-module homomorphism which is injective but not surjective .

In the above example let us choose B as follows . For some prime po, let
t,,, (B) be an infinite direct sum of copies of Z/poZ and for prirnes p :,A po
let tp(B) be any arbitrary p-primary torsion abelian group which is not
zero . Let B = EHp,pt r,(B) where P denotes the set of all priores . Since-; B
is an ideal in A, B is an A-submodule of A . The A-endomorphisrns of B
are the same as the abelian group endomorpllisnls of B. As an abelian
group, tro (B) is neither Hopfian nor co-Hopfian . Since: t r,,) (B) is a direct
summand of B, we see that B is neither Hopfian nor co-Hopfian as an
abelian group and hence as an A-module . For any subgroup H of B,
H® z`', is a subring of A . Clearly as an abelian group B does not satisfy
the a.c .c . for subgroups . It follows that as a ring, A (loes not satisfy the
a.c .c . for subrings . Since all subgroups of B are ideals in A, it is also
alear that A is not noetherian . In this example A is both Hopfian and
co-Hopfian as an A-module but the submodule B of A is neither Hopfian
nor co-Hopfian .

Proposition 3.4 . For- any commutative ríng A anal any integer ra _>
1, the ring M�,(A) is Hopfian, as an M,,(A)-module .

Proof: It suffices to provea that M,,(A) is Hopfian in M,,(A)-rnod . Let
X denote a left zero-divisor in M,,(A) . We llave to show that X is not
a left unit in M,,(A) . If possible let Y E M,(A) satisfy YX = I,, . Since
A is commutative, it follows that X is invertible: in M,,(A) and hence
cannot be a left zero divisor contradicting the original assumption .

Proposition 3.5 . Let A be a, commutative ring which is co-Hopfian,
in A-mod. Then, M,,(A) is co-Hopfian in both the categories M,,(A)-mod
and mod-M, (A) .

Proof. Let X E M,,(A) be a left non-zero divisor in M,,(A) . Then we
claim that there exists no non-zero row vector á = (al, . . . , a,L ) in A"
with á X = 0(0 = the zero row vector in A-) . Because if there existed
such an á, then the n x n matrix Y each of whose rows is á satisfies
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YX = 0 and Y =~ 0 E M,,(A) . From thc; right analogue of lernma 3.1
we see; that det X is not a zero divisor in A. But A being co-Hopfian in
A-mod, we see that det X is a unit in A, hence X is invertible inM� (A) .
Hence M,, (A) is co-Hopfian in Mn(A)-mod .

The; proof for the otlrer half of the proposition is similar .
Let P be a prirne ideal in A and MEA-rnod . Let Mp be tire localization

of M regarded as an Ap-module. A natural query is in what way the
Hopfian (resp . co-Hopfian) nature of M E A-rnod related to tire Hopfian
(resp . co-Hopfian) nature of Mp E Ap-rnod . The following examples
show nothing much can be said .
Examples 3 .6 .
(a,) For any prime p, ZP_ ® Z is neither Hopfian nor co-Hopfian in

Z-rnod . It's localization at the prirne ideal 0 of Z is Q in Q-mod
and Q is botfr Hopfian and co-Hopfian in Q-rnod .

(b) For evcry prirne; p, let Z(p) = {!`eQ(n,p) = 1} . Since, Z(.) is
noetherian as a ring, Z(p) is Hopfian in Z(,)-rnod, hence Hopfian
in Z-rnod . If H = ®PEPZ(P), wlrere P is the set of a.ll primos, using
the fact that Homz(i(.), Z(q)) = 0 if p and el are distirrct primes
we: see: that H is Hopfian in Z-rnod . Now Q ®H is an infinite
direct sum of copies of Q and hence not Hopfian in Q-mod.

4 . Hopfian and co-Hopfian Boolean rings

Recall that a ring A is said to be Boolean if a2 = a for all aEA . It
is well known that any Boolean ring A is corrrmutative and that 2a = 0
for any a, E A . If A is a Boolean integral domain a,nd a ;~ 0 in A,
then frorn (a - 1)a = 0 we see that a = 1 a,nd llene(-; A - Z/2Z . In
particular it follows that any prime ideal in an arbitrary Boolean ring A
is necessarily maximal in A . From 1 .6(c) and (d) we see; that all finitely
generated modules over A are Hopfian and co-Hopfian . The object of
the present section is to determine necessary and sufficient conditions
for A to be Hopfian (resp . co-Hopfian) as a ring using M.H . Stone's
representation thcorcrn [20] . Given any cornpact totally disconnected
Hausdorff space X let B(X) denote the set of clopen subsets of X . 13(X)
turrrs out to be a Boolcan ring únder addition and rnultiplication defined
by C + D = CVD, the symmetric difference of C and D, and C - D =
C n D. Let H denote Z/2Z = {0, 1} with the discreto topology. For
any set S let HS = II,,,SHs where H, = H for all scS, endowed with
the cartesian product topology. Given a Boolean ring A let XA = {f E
HA lf (a, + b) = f(a) + f(b), f (ab) = f(a)f(b) and f (1) = 1} . Then it
is known that XA is a closed subspace of HA , hence XA is a compact
totally disconnected Hausdorff space . Let T:A -> B(XA) denote the
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map T(a) = {f E XAlf (a) = 1} . Then Stone's representation theorem
asserts that T:A , B(XA) is a ring isornorpliisrn . A hice account of
Stone's representation theorern is given in appendix there of [20] .
Given any continuous map cp:X - Y of cornpact, Hausdorff totally

disconnected spaces, for each clopen set E of Y, ~p-r(E) is a clopen set
of X; also B(ep) : B(Y) - B(X) defined by B(W)(E) = cp-r(E) E B(X)
for each EE B(Y) is easily seen to be a ring homomorphism .

Conversely, given a homomorphism a:A -B of Boolean rings there is
an associated rnap X(a) : XB -> XA . For defining this observe that XB
is nothing but the set of ring homomorphisms of B into Z/2Z, regarded
as a topological subspace of HB . Given any ring homomorphism f:B ,
Z/2Z, clearly f o ca:A , Z/2Z is a ring homomorphism . The map
X(c¿) is given by X(a) (f) = f o a. It tums out to be continuous . Let
B(X(a)) :B(XA) ~ B(XB) be the ring homornorphisrn associated to
X(ca) as described in the earlier paragraph . Then

A

diagram 4.1

B

r

B(XA) B(X(-)),
B(X13)

is known to be a commutative diagram . Actually, for any a E A, we have
T o a(a) = {f:B --> Z/2Zlf a ring homomorphism with f(a(a)) = 1}
and B(X(a)) oT(a) = B(X(a)) {g : A, Z/2ZI,g a ring lrornornorplrism
satisfying g(a) = 1} = X(a) -'{g: A --> Z/2ZIg a ring hornornorphisrn
satisfying g(a) = 1} _ {f : B -~ Z/28lf a ring hornornorphisrn with
(X (a) (f)) (a) = 1 } _ {f : B -~ Z/2Z l f a ring homornorphisrn with
f(a(a)) = 1 } = To rx(a) . This proves the commutativity of diagram 4.1 .

Lemma 4.1 . Let X be a cornpact Hausdorff totally disconnected space
and Y a closed subspace of X. Let F be any clopen subset of Y. Then
there exists a clopen subset C of X with C f1 Y = F.

This is actually lemma 4 in Hiremath's paper [12] .

Proposition 4.2 . Let, ce:A - B be a homomorphism of Boolean
rings. Then

(i) a is surjective <=> X(a) :XB - XA s injective; <~* B(X(a)) :
B(XA) , B(X13) is surjective .

(ii) a is injective 4=~> X(a) : XB -> XA is surjective 4=> B(X(a)):

B(XA) --> B(XB) is injective .
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Proof. (i) From the commutativity of diagram 4.1, we see that a is
surjective <=> B(X(a))B(XA) -- B(XB) is surjective .
Assume a surjective . If possible let X(a) be not injective . Let u 54 v

be elernents in X13 with X(a)(u) = X(a)(v) . There exist clopen sets
E, F in X13 with u E E, v E F and E n F = 0. Since B(X (a)) is
surjective, there exist clopen sets C, D in XA satisfying X (a) -1 (C) = E
and X(ca) -1 (D) = F.

	

From u E E and v E F we get X (a) (u) E
C, X(a) (v) E D.

	

But we have X (a) (u) = X(a) (v) = t (say) .

	

Then
t E C n D and hence u and v are in X(a)-1 (C n D) = E n F.

	

This
contradicts the fact that E n F = ¢. This proves the implication a
surjective => X(a) injective .

Conversely, assume X(a) :XB -> XA injective . We will prove that
B(X(a))B(XA) -> B(XB) is surjective . Since X(a) :XB ' XA is injec-
tive and the spaces involved are compact Hausdorff, it follows that X(a) :
XB -> X(a)(XB) is a homeomorphism when we regard X(a)(X13) as
a subspace of XA . Given any clopen subset F in XB, from lemma 4.1
we see that there exists a clopen subset C of XA with CnX(a) (XB) _
X(a)(F), or equivalently X(a)-r (C) = F. Thus B(X(a)) :B(XA)
B(X13) is surjective, completing the proof of (i) .

(ii) Again from the commutativity of diagram 4.1 we see that a is
injective < ::> B(X(a)) : B(XA) --> B(XB) is injective .
Assume a injective . If possible let X(cx) : XB --> XA be not surjec-

tive . Then there exists some x E XA with x 1 XA - X(a)(XB) . Since
XA-X (a)(XB) is an open set in XA containing x and since clopen neigh-
bourhoods form a fundamental system of neighbourhoods of any point
in XA, wc; get a clopen set C in XA with x E C C XA -X (a) (XB) . The
sets XA and XA-C are distinct clopen sets in XA with X(a) -1 (XA) =
X(0)-r (XA - C) = XB showing that B(X(a)) is not injective . This
contradicts the assumption that a is injective .

Conversely, assume that X(a) :XB -> XA is surjective . If cp:S -> T
is any set theoretic surjection and Ti =~ T2 are distinct subsets of T,
it is clear that W- ' (T1) 7 cp-r (T2) .

	

In particular if C, D are distinct
clopen subsets of XA we see that X(a) ` (C) =~ X(a) -r (D), showing
that B(X(ca)) :B(XA) -+ B(XB) is injective . This ira turn shows that
orA -> B is injective, thus completing the proof of (ii) . --

Proposition 4.2 implies the well-known result that the isomorphism
type of the ring A determines the homeomorphism type of the space
XA . It is well-known [21] that f -> Ker f establishes a bijection between
points of XA and maximal ideals of A . Wc can transport the topology
of XA to max Spec A using the above bijectiorr . If we start with a
compact Hausdorff totally disconnected space X, for cach x E X if we
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set I,, = {C e B(X) Ix 1 C} then x 1-- fx is a hoeomorphism of X with
max Spec B(X).

Definition 4.3 . A topological space X is said to be Hopfian (resp .
co-Hopfian) in the category Top if every surjective (resp . injective) con-
tinuous map f : X - X is a homeomorphism .
The main result of this section is the following .

Theorem 4 .4 . A Boolean ring A is Hopfian (resp . co-Hopfian) as a
ring if and only ifXA is co-Hopfian (resp . Hopfian) in the category Top .

Proof.. Immediate consequence of proposition 4.2 .

Remarks 4.5 . Let J be any finite set . The product space H" where
H = {0, 1} is neither Hopfian nor co-Hopfian . As a set Hj is the set
of all maps of .7 into H. For any set theoretic map 0 : J - J we have
an induced rnap f ~--> f o 0 of Hj into Hj, which is easily seen to be
continuous . If 0 is an injective (resp . surjective) map which is not a
bijection, then f ~--> f o 0 fs a surjective (resp . injective) map which is
not bijective .

Since A = B(H j) is a commutative ring in which every prime ideal is
maximal, all f - gA-modules are simultaneously Hopfian and co-Hopfian
in the category of A-modules but A is neither Hopfian nor co-Hopfian as
a ring .

It would be nice to characterize completely the Hopfian (resp . co-
Hopfian) compact Hausdorff totally disconnected spaces .

5 . Hopfian and co-Hopfian function algebras

Let K be a commutative ring and K-alg denote the category of K-
algebras .

Definition 5.1 . A K-algebra A is said to be Hopfian (resp . co-
Hopfian) as a K-algebra if any surjective (resp . injective) K-algebra
homomorphism f:A , A is isomorphism .

Let R (resp . C) denote the field of real (resp . complex) numbers with
the usual topology. For any compact Hausdorff space X let CR (X) (resp .
Cc(X)) denote the R (resp . C)-algebra of continuous functions f'rom X
to R (resp . C) . Using the Gelfand respresentation theorem we will
determine necessary and sufñcient conditions for Cn(X) (resp . Cc(X))
to be Hopfian or co-Hopfian in the category R-alg (resp . C-alg) . We will
mainly concentrate on CR(X) . Similar results are valid for Cc(X) .
X denotes a compact Hausdorff space and C(X) denotes the R-algebra

CR (X) . It is well-known that the map x t-, (f (x)) fEC(x) is a topological
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imbedding of X into II_

	

fEC(x)R f with the cartesian product topology,
where Rf = R for each f E C(X) . Also x ~-- m~, = {f E C(X) lf(x) =
0} is a bijection from X to the set of maximal deals in the R-algebra
C(X). If X ~ Y is a continuous mal) of compact Hausdorff spaces,
there is an induced homomorphism cp * : C(Y) - C(X) in R-alg given
by p* (g) = goce for every g E C(Y) . Also given any R-algebra homomor-
phism a : C(Y) -+ C(X), there is a unique continuous map W:X - Y
satisfying a = cp* . To see this, for any x E X, a-' (rr¿,;) is a rriaximal ideal
of C(Y) and hence a-r (M X ) = m,,(=) for a unique elemcrrt w(x) E Y. If
jx :X -; IIfEC(x)Rf and jy : Y -> IIg E C(Y)R,, denote thc: imbeddings
jx(x) _ (f(x))fEC(x) and jy(y) = (g(?f))IEC(y)y respectively, then the
set theoretic map cp : X -> Y obtained above satisfies the condition that

diagram 5 .2

Y

II

	

a T7 ~1-~
I EII	nf

	

.
Jc(y) i~,g

is comniutative, where a*((rf)feC(x)) = (S9)9EC(Y) with sg = ra(g) .
Since a* composed with any projection IIRg --> Rg fs continuous we
see that a* is continuous, hence cp is continuous, provided we check the
comniutativity of the diagram 5.2. But it is straightforward . Thus the
set of R-algebra hornorriorphisnis C(Y) - C(X) is the sarrrc as the set
{W*:lW:X -> Y continuous } . The results quoted so far are well-known
([20, pagos 327-330] ) .

Proposition 5.2 . Let W :X -> Y be a continuous map of compact
Hausdorff' spaces . Then

(i) cp* :C(Y) --> C(X) is injective <=> W :X --> Y is surjective .
(ii) cp* :C(Y) -> C(X) is surjective ~-¿ W :X --> Y is injective.

Proof
(i) Suppose cp:X -+ Y is not surjective . Then W(X) is á proper closed

subset of Y . We can pick an element b E Y - W(X). Let h:cp(X) -> R
be any continuous function . Then we can get continuous extensions
gr :Y -> 1Z, g2:Y --> R of h with gi(b) = 0 and g2(b) = 1 (by Tietze
extensiori theorem) . Then gl :~ 92 in C(Y) but cP*(gi) = h o co = cP*(g2)
Since gr l ~o(X) = g21 ;G(X) = h. Thus ep not surjective =:> cp* not injective
or equivalently W* injective => co surjective .
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If cp:X - Y is surjective, then for any two set theoretic maps gr :Y ->
R, 92 : Y ~ R, we have thc; implication gr o ;o = 92 o cp ==> gr = .g2 .
In particular this implication is true with gr, g2 in C(Y) . This proves
(i) . (ii) Suppose cp is not irrjective, say xr jA x2 in X satisfy W(x1) =
cp(x2) . Any f E C(X) of the form g o cp with g E C(Y) has to satisfy
f(X1) = f(x2). However, we do know that 3f E C(X) with f(xi) = 0
and f(X2) = 1. Thus ep*:C(Y) -> C(X) is not surjective .

Conversely, assume that cp is irrjective . Then cp:X - W(X) is a horrre-
omorphism in(¡ W(X) is closed in Y . Given any f E C(X), h:W(X) -> R
defined by hW(x) = f(x) is continuous . By Tictze extension tlicorcrn,
there exists ,g E C(Y) with ,gl~o(X) = h. Then cp*(g) = f, slrowing that
cp* :C(Y) - C(X) is surjjective .

Theorem 5.3 . Let, X he a, compact Hausdor;ff' space. Then C(X) is
Hopftian (resp . co-Hopfian) as an R-algeóra if and on1y if X is co-Hopfian
(resp. Hopfian) as a topologicall space.

Proof: Immediate consequence of proposition 5 .2 .

6 . Hopfian and co-Hopfian objects in
Top among compact manifo1ds

For each integer n >_ 1 let D" denote an n-disk . We may take D' =
{x E R"1 11 .r, 11< 1} where 11 x 11 denotes the usual norm in R" . B,y
definition D° consists of a point . For n > l, thc" rnap .r, ~-- Zx is a
continuous irr,jc;<aion whic;h is not a surjection . The rnap H:D" -" D"
given by

2x

	

f'or jj x jj <

	

2
0(x) =

~~

	

for ~jx jj_
XI 1

	

2

is a continuous surjection which is not irrjective . Thus D" is neither
Hopfian nor co-Hopfian for n >_ 1 . Observe that B:D" , D" clcfined
above has the aclditional property that BIS` = Id,_, . Let M" be; any
compact topological manifold (with or without boundar.y) of dirrrension
n > 1 . Then irrrbedding a disk D" in M" wc can define a continuous
surjection f:M". -" M" with fi(M"_ IntD") = Id(m__ir,cl)_) and .f ¡D"
a continuous surjection of D" with itself satisf'ying . f ¡S" -r = Id,_, and
fID" not irrjective . It follows that M" is not Hopfian . Thus wc-; obtain
the following .
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Proposition 6 .1 . Th,e only compact, manifolds (with or without,)
boundary which are Hopfian are finite discreto spaces .
As usual for any topological space X we denote the set, of arcwise

connected componente ofX by IIO(X) .

Theorem 6 .2 . Let Mn and Nn be a compact topological manifolds
of the sane dimension n >_ 1, boíh of them without boundary . Suppose
further jIIo(Mn)J = III°(Nn)j . Then any continuous injection f:M ~ N
is a homeomorphism.

Proof..- Since Mn and Nn are compact wc: see that III0(Mn)J=IIIo(Nn)1
< oo . Lc:t {Mi-}k r denote the set of connected componente ofMn . Each
Mi is a compact connected manifold without boundary, of dimension n.
Hence f(Mi`) is a compact, connected subset of Nn. Since; f is injective
we see that f¡M`:Mi` -+ f(Mi`) is a horrreornorphism . By irivariance of
dornain it follows that f(M`) is open in Nn. Tlms f(M`) is open and
closed in N" and aleo connected . Herice f(Mi`) is a connected corriponent
of Nn . Frorri the injectivity of f it follows that if i :,I: j, f(Mi') and f(Mjr`)
are distinct connected componente of N"` . Since; IIIo(N"`)1 = 1IIo(M")1 =
k < oo, it follows that {f(Mi)}~ r are all the connected components of
Nn, lienee f:Mn -> N' is into . From the compact Hausdorff nature of
M and N wc; see that f : M" - N" is a homeormorphism .
As an inrmediate consequence of theorem 6.2 we get

Corollary 6 .3 . Any compact manifold M" witlaout boundary is co-
Hopfian in Top.

Proposition 6.4 . Any compact manifold M' with a, non-empty
boundary 8M is never' co-Hopfian in Top.

Proof..- By Morton Brown's collaring tlreorem, there exists a homeo-
morplrfsrrr 0:BM x [0, 1] -> W where W is a neighbourhood of áM in
M, satisfying B(x, 0) = x. for all :L E &M . Let f:M --> M be defined by
f(v,) = u for all u E M - 0fM x [0, 1)), f (0(x, t)) = 0(x,,r") for all
x E rW and t, E [0, 1] . Then f:M , M is a continuous irrjection which
is not a surjection.

Let Tope denote the category of pairs of topological spaces .
Definition 6 .5 . A pair (X, A) E Tope is called Hopfian (resp . co-

Hopfian) if any surjective (resp .

	

injective) map f:(X, A) - (X, A) of
pairs is a horneomorplrism .

For any spaee X let Hj (X) denote thc: singular hornology with integer
coefñcients .
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Theorem 6 .6 . Let, M, N be compact, manifolds with, boundary satis-
fying the following conditions .

(i) dimM= dirn N
(ii) rank Ho(OM) = rank Ho(OM), rank Ho(M) = rank Ho(N) and

rank Ho (M, (9M) = rank HO(N, &N) .

Then any injective continuous map f:(M,am) - (N,aN) is a homeo-
morphism .

Proof.. Let V denote the double M+ Uam M_ of M. Let r = rank
Ho(M) and s = rank Ho(M, (9M) . If i:&M , M denotes the inclusion,
then from the, exact sequcnce Ho(¿)M) i Ho(M) - Ho(M,t9M) - 0
we see that rank Im i � = r - s. From the Mayer-Vietoris sequence
Ho(aM) lx+

	

1 Ho(M+) ® Ho(M-) - HO(V) -' 0 where i+ :c7M
M+ , i_:áM , M_ are the respective inclusions, we sce tlrat rank HO(V)
= 2r- rank of irnage ((i+ ) �

	

However Irn((i+) � (i_),) ¡s - the
same as the diagonal subgroup of Im i* ® Im i� herrce has the same
rank as Im i, . Thus rank Ho(V) = 2r - (r - s) = r + s. Sirnilarly if
W denotes the doulbe N+ Uaiv N_ we have rank Ho(W) = r + s. In
particular we get 1rro«)M)1 = rank Ho(9M) = rank Ho(8N) _ 1rra(r7N)1
and 1rro(V)1 = r + s = 1rro(W)1 .
flOM :OM , riN is a.n injective continuous rnap and 1rro(l9M)1 =

lrro(aN)1 . Henee theorerrr 6.2 iníplies that fJOOM is a horneornorphism .
There is a well-defined continuous map g :V -> W satisfying gIM+:M+ ->
N+ and glM- :M- - N- are the same as f. Then g is injective and
l7ro(V)j = j7ro(W)j . From tlreorem 6.2 again we see that g : V - W is a
homeomorphism . It follows irrrmediately that f: (M, (9M) -> (N,BN) is
a homeomorphism .

Corollary 6.7 . If M is any compact, manifold with boundar'y OM
then (M, ¿9M) is a co-Hopfare ohjectt in Tope .

Proof. Irnrnediate consequence of theorem 6.6 .

Theorem 6 .8 .
(i) If M is any compact manifold withoutt boundary then C(M) is

Hopfian in R-alg.
(ii) IfM is an,y compact, topological manifold with a, non-emr)ty bourad-

ary OOM, then C(M) is neither- Hopfcan nor co-Hopfian in R-alg.
(iii) If M is a compact, manifold, then C(M) is co-Hopfiart in R-alg if

and only ifM is a,finitte set,.
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Proof.: Irnmediate consequence of theorem 5.3, corollary 6.3 and propo-
sitions 6.1 ancl 6.4 .

7 . Some related results and counter examples

Recall that a ring A is said to be left (resp . right) 7r-regular if given
any aeA there exists a,n element bEA and an integer n > 1 satisfying
a'L = ba"' (resp . a' = a"+ l b) . F . Dischinger [7],[8] has slrown that 7r-
regularity is left right synrmetric . Before Dischinger obtained this result,
G . Azumaya [3] referred to a ring which is both left and right 7r-regular
as a strongly 7r-regular ring . By Dischinger's result A is left 7r-regular if
and orily if A is right n-regular if and orily if A is strongly 7-regular . In
[7], [8] Dischinger also obtained the following results :

1 . A ring A is strongly ir-regular if and only if every cyche left; or
right A-module is co-Hopfian .

2 . For a ring A tlhe f'ollowing conditions are equivalent .
(i) Every finitely generated left A-module is co-Hopfian .
(ii) Every finitely generated right A-module is co-Hopfian .

(iii) M,,(A) is strongly 7r-regular f'or all integers n > 1 .
In [9] K .R. Goodearl introduced the concept of a left repetitive

ring . A ring A is said to be left repetitive if given any aeA and
any f g left ideal I of A, the left ideal Ia" is .f - g . One of
thc; results proved by Goodearl in [9] is the following :

3 . Every f -gMcA-rnod is Hopfian if and only if M,,(A) is left repet-
itive for all integers n > 1 .

A good report on thesc : questions including new proof;s and rew results
can be f'omid in [13] .
Examples 7.1 .
(a) It is clear that MeA-mod Hopfian => En(¡ (AM) directly finite .

In [19] J .C . Stepherdson gives examples of directly finite A witii
M,.,, (A) not directly finite for Borne integer n >_ 2 .

	

For any such
ring A, wc; llave, A Hopfian in A-rnod . Also M,,(A) is not Hopfian
in M,,(A)-rnod . Since A" is a direct surrimand of Mk(A) in A-
rnod, whenever k 2 > n, we also sc:e that Mk(A) is not hopfian in
A-mod whenever k2 > n .

(b) In part C of [5] G .M . Bergman constructs for each integer n > 1 a
ring A with the property that all regular elenrents in A are invert-
ible, but M"(A) is not its own classical ring of quotients . In [13]
P . Menal constructs a ring A which is its own classical quotient
ring but M,,(A) is not Ore, henee M,,(A) does not caven have a
classical ring of quotients . A careful inspection shows that in both
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these examples the left regular and the right regular elements of
A coincide . Hence by proposition 1 .4 in our preserit paper A is co-
Hopfian in both A-mod and mod-A. However, M,,(A) is neither
co-Hopfian in M,,(A)-mod nor co-Hopfian in mod-M,(A) .

(c) In section 5 of [16] it is remarked that W.L . May has a method
of obtaining an infinite abelian Hopfian group G such that the
complex group algebrá C(G) is not Hopfian as a C-algebra, hence
not Hopfian as a ring. In this example C is Hopfian as a ring, G
is Hopfian as a group but C[G] is not Hopfian as a ring .

8 . Open problems

1 . If A is Hopfian as a ring, is A[X] Hopfian as a ring?
2 . If A is c:o-Hopfian as a ring and G a . co-Hopfian group is A[G]

c:o-Hopfian as a. ring?
3 . If A is Hopfian in A-rnod and G a Hopfian grouli is A[G] Hopfian

in A[G]-rnod?
4 . If A is co-Hopfian in A-mod and G a co-Hopfian group is A[G]

co-Hopfian in A[G]-mod?
5 . If A is Hopfian (resp . co-Hopfian) as a ring is it true that M,, (A)

is Hopfian (resp . co-Hopfian) as a ring?
6 . Characterire the Hopfian (resp . co-Hopfian) objects in Top arriong

compact Hausdorff totally disconnected spaces .
7 . If M E A-rnod is Hopfian is M[X,X-i ] Hopfian in A[X, X- i]-

rnod?
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