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Abstract

CATEGORICAL METHODS

IN GRADED RING THEORY

ANGEL DEL Río*

A la memoria de Pere Menal

Let G be a group, R a G-graded ring and X a right G-set . We
study functors between categories of modules graded by G-sets,
continuing the work of [M]. As an application we obtain gener-
alizations of Cohen-Montgomery Duality Theorems by categori-
cal methods. Then we study when some functors introduced in
[M] (which generalize some functors ocurring in [D1], [D2] and
[NRV]) are separable. Finally we obtain an application to the
study of the weak dimension of a group graded ring .

Introduction and Notation

The study of group-graded rings has been the ground for the research
of many authors last years . Different methods have been elaborated to
investigate properties of these rings . One of the most successful tools
is that given by Cohen-Montgomery Duality Theorems [CM] . Further-
more, some categorical methods have been introduced by other authors
which have been very useful . For instante the study of separable func-
tors, introduced in [NVV], has caused nice theorems in the field .

Quite often the methods invented have been introduced in the partic-
ular case when the grading group is finite . This is the case of the two
methods mentioned above . Then some efforts have produced different
approaches to the general case . See [Q], [B1], [B2], [AN] and [NRV]
for some extensions of Cohen-Montgomery Duality Theorem and [Ra]
for separable functors .

In [NRV] the authors introduce a category gr - (R, X, G) associated
to a G-graded ring R (G being a group) and a right G-set X . The most
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important example appears when X is the set G/H of right H-cosets .
This category appears to be useful in the study of the ring R .

Let G and G' be two groups, R a G-graded ring, R' a G'-graded ring,
X a right G-set and X' a right G'-set . In [M] covariant adjoint functors
between the categories gr - (R, X, G) and gr - (R', X', G') are studied,
generalizing some results of [Rí2] .

Let p : R ~ R' be a ring homomorphism,

	

: X -> X' a map and
y : G --> G' a group homomorphism and assume that for every g E G and
x E X, p(Rg) C R,(s) and «x)y(g) = «xg). Associated to T = (p, ~, y)
there is a pair of adjoint functors T* = gr-(R, X, G) ---> gr-(R', X', G')
and T* : gr - (R', X', G') -i gr - (R, X, G) for which many functors
occurring in Graded Clifford Theory (cf . [D1], [D2], [GN], [NV2]) as
well as induced and coinduced functors (cf. [MN]) are particular cases .

After some definitions and notations we recall in Section 1 results
of [M] on covariant adjoint functors and point out some similar faca
on contravariant adjoint functors which extend some results of [MR] .
We finish Section 1 with some applications to the functors T* and T*
associated to a context T = (p, ~, y) as in the previous paragraph .
The results of Section 1 set up the framework to give a description

of all the equivalences and Morita dualities (in the sense of Colby-Fuller
[CF]) between categories of the type gr-(R, X, G) using similar methods
as in [Rí2] and [MR]. This is done without proofs in Section 2 .

In Section 3 we apply the tools of Section 1 to extend Cohen-
Montgomery Duality Theorems to our setting by using categorical meth-
ods . Namely, we show how the category gr - (R, X, G) can be seen as
the full subcategory of a category of right modules generated by an
ideal . Then we prove new versions of Cohen-Montgomery Duality Theo-
rems for actions and coactions . All the previous versions of there Duality
Theorems can be obtained as particular cases . Furthermore, some equiv-
alences of categories are given which will be useful in applications .

Section 4 is devoted to study when T* and T* are separable .

	

We
give some arithmetical tests for the matter . When R = R' and p is the
identity map on R, T* and 7* are isomorphic to the functors T, and SI
introduced in [NRV] and, in this case, T~ is always separable while the
test of separability for SI can be simplified .
We finish the paper with an application to the weak dimension of a

group graded ring .
The author would like to express his gratitude to Claudia Menini for

her very interesting suggestions .

All rings are supposed to be associative with unit and all modules are
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unital .
For a ring R, mod-R will denote the category of right R-modules and

R-mod the category of left R-modules .
The notation MR (resp . RM) will be used to emphasize that M is a

right (resp . left) R-module .
In the sequel G will stand for a multiplicative group and R = ® Rg

gEG
for a G-graded ring . The unit of G will be denoted by e while 1 will
denote the unit of R.

Let X be a right (resp . left) G-set . For any g E G and any x E X, xg
(resp . gx) denotes the action of g on x .
Following the notation introduced in [NRV], gr - (R, X, G) will de-

note the category of X-graded right R-module . That is, the objects of
gr - (R, X, G) are right R-modules M with a decomposition into ad-
ditive subgroups M = ® Mx such that for every g E G and every

XEX
x E X, MxRg C Mxg . Given M, N objects in gr - (R, X, G), the set of
morphisms from M to N in gr - (R, X, G) is

Homgr_(R,X,G) (M, N) _

= {f E HOMR(M, N)1 f(Mx) C Nx for every x E X} .

Similarly, if X is a left G-set then (G, X, R) - gr will denote the
category of X-graded left R-modules . If M E (G, X, R) - gr and x E X,
then the x - th component of M will be denote by x M .

If G is considered as a right G-set by regular action, then gr-(R, G, G)
is just gr - R. If X is a singleton, then gr - (R, X, G) is mod-R.

Let H be a subgroup of G and consider G actiog on G/H = {Hala E
G} by (Ha)g = Hag, then gr-(R, G/H, G) is denoted by gr-(R, G/H).
Given M E gr - (R, X, G) (resp . M E (G, X, R) - gr), m E M and

x E X, mx (resp . xm) will denote the x - th homogeneous component
of m. That is, mx is defined by m = Y: mx with mx E Mx for every

xEX
x E X . If F is a subset of X, then MF = ® Mx and mF =

	

mx.
"EF

	

XEF
The support of an X-graded right R-module is defined to be the set

Supp(M) _ {x E X IMx =/' 0} . Also the support of m E M is the set
Supp(m) _ {x E X I mx =,A 0} .
When we refer to the support or the homogeneous component of degree

g E G of R (or of an element of R) we will consider R as a G-graded
right (or left) R-module .

If X is a right G-set then X has a canonical structure of left G-set as
follows : For any g E G, x E X, gx = xg-1 . We will refer to both right
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and left action without specific mention on the side when it is clear from
the context .
Given M E gr - R and x E X, the x - th suspension of M is defined

as the X-graded right R-module M(x) which is equal to M as right
R-module with the grading M(x)y =

	

® M9 . If M E R - gr, X is a
Z=y

left G-set and x E X, then the x - th suspension of M is the X-graded
left R-module (x)M which is equal to M as a left R-module with the
X-grading y (x)M = ® M9.

9x=y

1. Adjoint functors

Throughout this section G and G' will be two groups, X a right G-set
and X' a right G'-set . Moreover R will be a G-graded ring and R' a
G'-graded ring .

In this first section we will give an explicit description of the covariant
functors between gr - (R, X, G) and gr - (R', X', G') and the contravari-
ant functors between (G, X, R) - gr and gr - (R', X', G') . This descrip-
tion has been obtained in [Rí2], for the covariant case, when X = G
and X' = G' with regular action, and generalized for arbitrary G-sets in
[M] . For the contravariant case, when X = G and X' = G', see [MR] .
In the last part of the section we consider some instantes of adjoint

functors introduced in [M].
Definition .

	

Given M E gr - (R, X, G) and N E (G, X, R) - gr,
n

M OR N will denote the additive subgroup of MORN generated by the
elements of the form m® n where x E X, m E M. and n E :N.

n
Lemma 1.1 . (a) R(x) ®R N - ~N for every N E (G, X, R) - gr .

Moreover this isomorphism is natural in both variables .
(b) Let {Mili E I} be a family of objects in gr - (R, X, G) and N E

(G, X, R) - gr, then ( ® Mi) ®R N - ® (Mi OR N) .
¡E I

	

¡EI

Proof. (a) Let D : R(x) ®R N --> N be the canonical isomorphism . If
r E Ry n R(x)y and n E yN then xg = y and hence x = gy . Therefore

n
~D(r ® n) = rn E xN. Thus 4)(R(x) ®R N) C ,N. On the other hand, if_

n
n E ,N, then n = ob(1 ® n) and 1 ® n E R(x) OR N because 1 E R(x),, .

(b) Straightforward .
Definition . Let Z be a G-G'-set . A Z-graded R-R'-bimodule is an

R-R'-bimoduleM with a Z-grading, M = G) Mz such that RgMz R', C_
ZEZ
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gzg, for every g E G, z E Z and g' E G' .

The set X x X' has a canonical structure of G-G'-set given by :

g (x, x')g' = (gx, x'g')

	

(g E G, x E X, x' E X', g' E G').

Let P =

	

®

	

P(x,x,) be an X x X'-graded R-R'-bimodule.
(x,x')EX xX ,

For every x E X, xP =

	

®

	

P(x x,) is a submodule of PR, and
x' EX'

(xP)x, = P(x,x,)(x' E X') defines an X'-grading in xP such that
xP E gr - (R', X', G') . Moreover P is the coproduct of the family
{xPlx E X} in gr - (R', X', G') .

Similarly for every x' E X', Px, =

	

® P(x,x') E (G, X, R) - gr and P
x

is the coproduct of {Px, jx' E X'} in (G, X, R) - gr .

We are going to define three functors associated to the X x X'-graded
R-R'-bimodule P.

n
The functor - ®R P : gr - (R, X, G) --> gr - (R', X', G') .

n
It associates to M E gr-(R, X, G) the right R'-module (-®RP)(M) _
n

M®R P, considerad as a submodule of (M ®R P)R, with the X'-grading
n

	

n
M®R P)x, = M®R Px' (x' E X').

n
The functor - ®RP associates to f E Hom9r_(R,X,G) (M, N) the map
n

f®RP :m®pH .Í(m)®p-

The functor H(PR , , -) : gr - (R', X', G') - gr - (R,X, G) .

It associates to M E gr - (R', X', G') the right R-module

H(PR,, M) =

= {f E Homgr_(R , ,X',G) (P, M) l.f (xP) = 0 for almost all x E X}

considerad as a submodule of HOMR,(P, M)R with the X-grading:

H(PR,,M) x =

={fEHomgr_(R,,X',G')(PM)1f(uP)=0 for all yeX-{x}} (x E X).

The functor H(PR, -) associates to f E Homgr_(R,,X,,G,) (M', N'),
the map H(PR, , f) : H(PR,, M) - H(PR,, N) given by : H(PR , , f)(W) _
f o cp for all cp E H(PR , , M) .
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The functor H(-, RP) : (G, X, R) - gr -+ gr - (R', X', G') .
It associates to M E (G, X, R) - gr, the right R'-module

H(M, RP) =
_ {f E HorrkG,X,R)-gr(M,P)If(M) C PF for some finite subset F C X'}

considered as a submodule of HOMR(M, P)R , with the X'-grading :

H(M, RP) .,, _ {f E Hom(G,X,R)_gr(M,P)I f(m) C P.,}

	

(x' E X1) .

The functor H(-, RP) associates to f E Hom(G,X,R)-gr(M, N), the
map H(f, RP) : H(N, RP) - HR(M, P), given by : H(f, RP%P) = (P° .f
for all co E H(N, RP) .

It is left to the reader to check that the above three functors aren
well defined.

	

Similarly there are two covariant functors P ®R' -
(G', X', R') - gr - (G, X, R) - gr and H(RP, -) : (G, X, R) - gr -~
(G', X', R')-gr and a contravariant functor H(-, PR, ) : gr-(R', X', G')
(G, X, R) - gr .

If C is a category, then C°P will denote the dual category.
Let F : C -* D and G : D ---> C be two contravariant functors . Then

we can consider F : C -> D'P and G : D°P --> C as covariant functors . We
say that (F, G) is a pair of adjoint contravariant functors on the right if
F : C --> D°P is left adjoint of G : D°P --> C .

Proposition 1 .2 . Let P be an R-R'-graded bimodule .
n(a) [M] The functor - ®R P is left adjoint of H(PR, , -) .

(b) (H(-, RP), H(-, PR,)) is a pair of adjoint contravariant functors
on the right.

Proof. See [M] for (a) . In [MR] there is a proof of (b) in the particular
case G = X and G' = X' with regular actions . The same method works
in the general case .

For every r E R let Ar : R -> R be the left multiplication-by-r map
and Xr : R -+ R the right multiplication-by-r map. The following lemma
is obvious :

Lemma 1.3 . Let r E Rg and x E X. Then
(a) Ar E Homgr_(R,X,G)(R(x),R(gx)) .
(b) Xr E Hom(G,X,R)-gr((gx)R, (x)R) .
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Definition 1.4 .

	

Let F : gr - (R, X, G) --> gr - (R', X', G') be a
covariant functor . The X x X'-graded R-R'-bimodule associated to F
is the right R'-module P = ® F(R(x)) with the following structure of

xEX
left R-module :

and the X x X'-grading :

and the X x X'-grading

rp = [F(A,)](p)

	

(r E Rg , p E F(R(x)))

P(x,x,) = F(R(x))x ,

	

(x E X, x' E X') .

Let now F : (G, X, R)-gr --> gr-(R', X', G') be a contravariant func-
tor . The X x X'-graded R-R'-bimodule associated to F is the right R'-
module P = ® F((x)R) with the following structure of left R-module

XEX

rp = [F(Xr)](P)

	

(r E R9, p E F((x)R)))

P(x,x,) = F((x)R)x ,

	

(x E X, x' E X') .

Lemma 1 .5 . Let M E (G, X, R)-gr . Then Hom(G,X,R)_ gr((x)R, M)
xM and this isomorphism is natural in each variable .

Proof.: For any m E M let Xr�, : R --> M be the right-multiplication-
by-r map . For every m E M, Xm E Hom(G,X,R)_ gr((x)R, RM) if and
only if m E xM. Moreover, for every f E Hom(G,X,R)-gr(R(x),P), f -
Xf(I) . Therefore the map m ~-4 Xn, is an isomorphism between xM and
Hom(G,X,R)-gr((xR, M). The naturallity is left to the reader .

Now we are ready to describe all covariant and contravariant functors
between categories of modules graded by G-sets .

Proposition 1 .6 .

	

(a) [M] F : gr - (R, X, G) --> gr - (R', X', G')
is a left adjoint functor if and only :if there exists an X x X'-graded

n
R-R'-bimodule P such that F - - OR P . Moreover, in this case P is
isomorphic to the X x X'-graded R-R'-bimodule associated to F .

(b) F : gr - (R', X', G') - gr - (R, X, G) is a right adjoint functor
if and only if there exists an X x X'-graded R-R'-bimodule P such that
F - H(PR, , -) .

(c) F : (G, X, R) - gr - gr - (R', X', G') ° P is a left adjoint functor
if and only if there exists an X x X'-graded R-R'-bimodule P such that
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F - H(-, RP) . Moreover, in this case, P is isomorphic to the X x X'-
graded R-R'-bimodule associated to F.

Proof. (a) and (b) have been proved in [M] . For a proof of (c), an
argument as in the proof of Proposition 2.1 of [MR] works, by using
Lemma 1 .5 .

Now we focus our attention en some particular functors introduced in
[M] . Some examples of these functors can be found in [D1], [D2], [NRV]
and [MN] .

Let p : R ---> R' be a homomorphism of rings,

	

: X -> X' a map
and ,y : G --> G' a group homomorphism . Assume that the following
conditions hold :

p(Rs) C R7(s)

	

~(xg) = ~(x)-Y(g)

	

(x E X, g E G) .

Set T = (p, 1, " y) (see [M]) . For anyM E gr - (R, X, G), let T* (M) =
M®RR' and for every x' E X', let T* (M),,, , be the additive subgroup of
T* (M) generated by the elements of the form m (9 r' with m E Mx, , r E
R9, and «x)g' = x' .

For every f E Homgr_(R,X,G)(M, N) set T* (f) = f ® R' : T*(M) -~
T* (N).

Proposition 1 .7 . Let T = (p, ~, "y) and T* as aboye.

	

The following
assertions hold:

(a) T*

	

defines

	

a

	

left

	

adjoint functor from gr - (R, X, G)

	

to
gr - (R', X', G') .

(b) The right adjoint functor of T* is isomorphic to the functor T*
gr - (R', X', G') - gr - (R, X, G) given as follows:

T* (M') =

	

® T* (M')x

	

(M' E 9r - (R~, X', G~»XEX

where the map m' H m'x is an isomorphism of additive groups
from MÍ(x) to T* (M')x and the structure of right R-module on
T* (M) is given by the following rule :

(m'x)r = (m'p(r))xg

	

(m' E M', r E Rg ) .

Iff E Homgr_(R',X',G1) (M', N') andm' cM' then T* (f) (m'x ) =
f(m')x .

(c) T* is a left adjoint functor.
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Proof. (a) Clearly T* (M) = E T* (M) and T*(M),,R9, C_T*(M)~,g,,
x'EX'

for every x' E X' and g' E G'.

Let P =

	

® R'(~(x)) E gr - (R', X', G') .

	

For any x E X, let ux
XEX

R'(~(x))

	

P be the canonical monomorphism .
P becomes an X x X' graded R-R'-bimodule after the following rules :

rux(r') = ugx (rr')

	

(g E G, r E Gg , r' E R', x E X)
P(x,x,) = R'(«x)). ,

	

(x E X, x' E X') .

Furthermore, for every M E gr - (R, X, G), the map

A
Om :T*(M)->M®xP

m (9 r' v--->
XEX

For any M' E gr - (R', X', G') we define

mx ® ux(r')

is an isomorphism of right R'-modules and for every x'EX', OM(T*(M)x,)
A

= M ®R Px, . Therefore, T* (M) =

	

® T*
(M)x, and hence T* defines

~~Ex~
a functor from gr - (R, X, G) to gr - (R', X', G') . Moreover T* is a left

A
adjoint, because T* - - ®R P.

(b) For every M' E gr - (R', X', G'),

H(PR,, M') = x(D Homgr_(R , ,X , ,G,)GP, M')

_
X
® Homgr_(R,,X,,G,)(R'(«x)),M') = j®1V1~,(X) .

Using this isomorphism it is straightforward to see that H(PR,, -)
T* and (b) follows from Proposition 1 .2 .

(c) Let Q be the X' x X-graded R'-R-bimodule associated to T* .

A
-Pm, :M' ®R' Q -> T* (M, )

m' ® q H (m'q)x

	

(m E Mx,, q E Q

Then 4)M , is bijective and ~D defines an isomorphism of functors be-
A

tween - ®R, Q and T* . Therefore T* is a left adjoint and H(QR,-) is
its right adjoint .
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Lemma 1.8 . Let T= (p, ~, y) as aboye and assume that R' = R and
p is the identity map . Consider X' as a right G-set by x'g = x'-y(g) (x' E
X', g E G) . Then

(a) gr - (R, X', G') = gr - (R, X', G) .
(b) T* = S* and T* = S* where S = (1R , ~, 1G) .

Proof: (a) Clearly an M E gr - (R, X', G') is an object of gr -
(R,X',G) because for every x' E X', Mx,Rg C Mx,R,(g) C Mx,7(g) _
Mx,9 .

	

-

On the other hand, let M E gr - (R, X', G) . Let g' E G' and 0 =,/= r E
Rg` If g E SUPPR(r), then rg = p(rg ) E R,,(g) . Thus rg = (rg),y(g) . If
y(g) =,b g', then

0 = r7(g) _

	

>

	

(rh)-y(.) -

	

~,

	

rh-
hESupPR(r)n7-1 (y(g)) hES-PPR(r)n-r-(7(g))

Therefore rg = 0. Thus SuppR(r) C -y- '(g) . Let now x' E X' . Then
Mx,r = Mx,

	

r,

	

rg C

	

E,

	

Mx,g =

	

r_

	

Mx'-y(g) = MX'g, .
9ESuppR(r) gESupp,(r) 9ESUPPR(r)

(b) Is obvious .
Let R be a G-graded ring and ~ : X ---> X' a morphism of right G-

sets . If T = (1R, ~,1G), then the functors T* and T* are the functors TI
and SI defined in [NRV] . In [NRV] the authors preve that if for every
x' E X', ~-1 (x') is finite, then SI is left adjoint of TI. But the converse
is also true as the following proposition shows.

Proposition 1.9 . Let R be a G-graded ring and ~ : X --> X' a mor-
phism of right G-sets . Let F be the right adjoint functor of 51 . F is
a left adjoint functor if and only if for every x' E X', j'(x') is finite .
Moreover, in this case F is isomorphic to TI .

Proof: Let Q be the X' x X-graded R-R-bimodule associated te SC .
By Proposition 1 .6, SI = - ®R Q and F- H(QR,-).
Assume that ~-1 (x') is finite for every x' E X' . For each
M E gr - (R, X, G), let

Mm :H(QR, M) -TI (M)

mm(f) =

	

1, (f(1x))x

	

(f E H(QR'M)x')-
I(x)=x'

The claim follows by proving that p, : H(QR, -)

	

TI is a functorial
isomorphism. This is left to the reader .
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Conversely, if H(QR, -) is a left adjoint functor, then it preserves di-
rect sums . Let x' E X' . Consider the functor (-)x' : gr - (R', X', G') ->
mod -R. which associates to M' E gr - (R', X', G') the right Ré-module
M.', and to f E Homgr_(R',X',G')(M',N') the map fx' : m' H f(m,x,) .
This functor preserves direct sums and hence Homgr_(R,X,G)(x'Q,-)
(-)x, o H(QR, -) preserves direct sums too .

	

This implies that x' Q =
Sf (R'(x')) is finitely generated (cf. [S]) .

Let a =

	

1: (l
x )rx = 0 with rx E R. For every y E X, ay =

«x)=x'
(lx)( r_ (rx)g) = 0 . Therefore, we can assume, without loss of

«x)=x, x9=y
generality, that there exists y E Y such that for every g E Supp(rx ), xg -
y . Thus ( E rx)y = ay = 0 and hence

	

r_ rx = 0 . But rx has
1(x)=x'

degree x in (y)R . We conclude that rx = 0 for every x E X. Therefore
the sum E 1xR is direct .

XEX
On the other hand, if r E R9 n Q(x',x), then x'g = «x) . Therefore

rx = 1x9-1 r . We conclude that x'Q =

	

®

	

1xR. Since x'Q is finitely
~(x)=x'

generated, the sum is finite, Le . ~-1 (x') is finite .

2 . Equivalentes and Morita dualities

Propositions 1 .2 and 1 .6 set up the framework to give a description
of all the equivalentes and Morita dualities (in the sense of Colby-Fuller
[CF]) between categories of modules graded by G-sets . This section is
dedicated to present that description . Since the methods are similar to
those given in [Rí2] and [MR] we shall skip the proofs .

Let R be the X x X-graded R-R-bimodule associated to the identity
functor in gr - (R, G, X) .

Let P be an X x X'-graded R-R'-bimodule and Q an X' x X"-graded
n

	

n
R'-R"-bimodule . Then P ®R' Q is a subbimodule of P ®R Q and (P ®R'

n
Q)(x,x") = xP ®R Qx"(x E X, x" E X") defines an X x X"-grading

on RP ®R' QR" . Furthermore the functors (- ®R' Q) o (- OR P) and
n n

- OR (P ®R' Q) are isomorphic .

Proposition 2.1 . The following assertions are equivalent :

(a)

	

The categories gr - (R, X, G) andgr - (R', X', G') are equivalent.
(b) There are an X x X'-graded R-R'-bimodule P and an X' x X-

graded R'-R-bimodule Q such that R = P ®R
n

' Q and R = Q®n RP
as bigraded bimodules.
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n

	

n
Moreover, if P and Q are as in (b), then - ®R P and - ®R , Q are

inverse equivalentes of categories .

Corollary 2.2 . (a) The categories gr-(R, X, G) and gr-(R', X', G')
are equivalent if and only if the categories (G, X, R) - gr and
(G', X', R') - gr are equivalent.

(b) Let P be an X x X'-graded R-R'-bimodule .

	

- ®
n
R P

gr - (R, X, G)

	

- gr - (R', X', G') is an equivalente if and only if
n

P ®R' - : (G', X', R') - gr -> (G, X, R) - gr is an equivalente .

Definition. Let P be an X x X'-graded R-R'-bimodule and Q an
X x X"-graded R-R"-bimodule . We define

H(RP, RQ) = H(RP, Q) n H(P, RQ)-

If we Consider HOMR(P, Q) as an R'-R"-bimodule by

(r' fr") (p) = f(pr')r"

	

(f E HOMR(P, Q), p E P, r' E R', r" E R")

then HR(P, Q) is a subbimodule of R,HOMR(P Q)R", and it is an
X' x X"-graded R'-R"-bimodule with the following grading :

H(RP, RQ)(.',x11) = ~,H(RP, Q) n H(P, RQ).�

	

(x' E X', x" E X") .

Similarly, if P is an X' x X-graded R'-R-bimodule and Q is an X" x X-
graded R"-R-bimodule, then H(PR , QR) = H(PR , Q) n II(P, QR) has a
natural structure of X" x X'-graded R"-R'-bimodule .
Let P be an X x X'-graded R-R'-bimodule . Consider the following

map:

XP :R' - H(RP, RP)
X'(r)(p) = (pr~)y ,	(r' E R'(x')y , , p E P)

XP is a homomorphism of X' x X'-graded R' x R'-bimodules .
Similarly there is an X x X-graded homomorphism of R-R-bimodules

AP :R -> H(PR,, PR,)

XP(r)(p) = x(rp)

	

(r E R(x), p E P).

Theorem 2.3 . Let P be an X x X'-graded R-R'-bimodule . The fol-
lowing conditions are equivalent:

n
(a)

	

The functor - ®R P : gr - (R, X, G) -+ gr - (R', X', G') is an
equivalente of categories .
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(b)

	

The functor H(PR , , -) : gr - (R', X', G") ---> gr - (R, X, G) is an
equivalence of categories .

(c) PR,

	

is a projective generator in gr - (R', X', G'), AP

	

:

	

R
H(PR, , PR, ) is an isomorphism and for every x E X, xPR, is
finitely generated.

(d) RP is a projective generator in (G, X, R) - gr, XF
H(RP, RP) is an isomorphism and, for every x' E X', RP,' is
finitely generated.

Let A be a ring and G a group . For any G-grading in A, the category
mod-A can be seen as a category of X-graded right A-modules where X
is a singleton . Last theorem yields to the following two corollaries .

Corollary 2.4 . Let R be a G-graded ring, X a right G-set and A a
ring . The following are equivalent .

(a) gr - (R, X, G) is equivalent to mod-A .
(b) (G, X, R) - gr is equivalent to A-mod .
(c) There exists a finitely generated projective generator P in

gr - (R, X, G) such that A is isomorphic to Endgr_(R,X,G) (P) .
(d) There exists a finite subset F of X such that U =

	

® R(x) is
xEF

a generator of gr - (R,X, G) and Endgr_(R,X,G) (U) is Morita
equivalent to A .

Corollary 2.5 . Let R be a G-graded ring and X a right G-set . The
following are equivalent .

(a)

	

There exists a ring A such that gr - (R, X, G) is equivalent to
mod-A .

(b)

	

There exists a ring A such that (G, X, R) - gr is equivalent to
A-mod .

(c) gr - (R, X, G) has a finitely generated (projective) generator.
(d) There exists a finite subset F ofX such that ® R(x) is a gener-

XEF
atar of gr - (R, X, G) .

Example 2.6 . Consider T = (p, , ~) as in Section 1 . The functor
n

T* is isomorphic to - ®R P where P =

	

® R'(~(x)) (see the proof
xEX

of Proposition 1.7) . Since for every x E X, xPR, = R'(«x)) is finitely
generated and projective, T* is an equivalence if and only if PR , generates
gr-(R', X', G') and \P : R --> H(PR, , PR , ) is an isomorphism . We claim
that T* - - ®R R' : gr - (R, X, G) ---> gr - (R', X', G') is an equivalence
if and only if the following conditions hold

(a) p is an isomorphism between R and

	

®

	

Rg', .
I-Wg'nI-(I)V!
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(b) For every x' E X' there exists r' E R',, r2 E R',

	

r' E1 9 1	92 n
R'' , ; s' E R9,_ 1 , s2 E R9,

	

ñ E R9,_ 1 , such that x'g2 E
1

	

2 n
Im(~) for every i = 1, 2, . . ., n and Erisi = 1 .

Proof. If r' E R' and x E X, then r'x will denote r' considered in
R'(«x)) .
Assume T* is an equivalence .

	

Then AP : R -> H(PR, , PR , ) is
an ismorphism and PR, is a generator . Let r E Ker(p) . For every
p E P, [AP(rx)](p) = x(rp) = x(p(r)p) = 0 . Thus rx E Ker(AP) = 0 .
Therefore p is injective . If r E Rg and x E X, then p(r) E R. y ( g ) and
~(x)-y(g) = «xg) . Therefore p(R) C

	

®

	

R', . On the other
im(c)g,nim(1)5,~! g

hand, let r' E R'g , and x, y E X such that ~(x)g' _ (y) . Consider the
following homomorphism of right R'-modules

L :P->P
(r's')x

	

if z = y
L(s )=

	

0

	

ifz7~ x

	

(S ER',zeX).

Plainly L E H(PR',PR')(x,y), thus there exists r E R(x)y such that
L = AP (rx) . But r'x = L(1Y) = AP(r)(ly) = x(p(r)x ) = p(r)x . This
proves (a) .

Let x' E X' .

	

Since PR, _

	

® R'(~(x)) is a generator of
xEX

gr - (R', X', G'), then {R'(~(x))1x

	

E

	

X} is a set of generators of
gr - (R', X', G') .

	

Therefore there exist xi, x2, . . . , xn E X and an X'-
n

graded epimorphism ® R'(j(xi)) - R'(x') .

	

Thus there exist ri E
i=l

R,(x/),(x1)5 r2 E R'(x')I(x2), . . . . r'

	

E R'(x')j(xn.) . and sí E R'Wxi))x',n
s2 E R'(~(x2))x', . . . , sñ E R'(~(xn))x' such that ~risi = 1 . If we re-

place the si's and the ri's by its homogeneous componente we can assume
the they are homogeneous . Moreover, if we take the homogeneous com-
ponent of degree 1 we may assume that ri and si have inverse degrees
and if ri has degree gi, then x'gi = ~(xi) . This proves (b) .

Conversely, assume that (a) and (b) hold . Since AP is an X x X-graded
homomorphism, to prove that it is injective it is enought to prove that
if 0 :~ r E R(x)y = P(x,y), then AP (rx) :7~ 0 . But xg = y for every
g E Supp(r) . Therefore rly =

	

Y:

	

rgy = rx . Thus [AP(rx)](1Y) _
9ESupp(r)

x (rly) = x (rx) =,I= 0 . Because AP is X x X-graded, to prove that it is
surjective it is enough to see that H(PR', PR')(x y ) C Im(AP) for every
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(x, y) E X x X . Let f E H(PR,, PR,) (x,y) and r' = f(1y) E R'(~(x))g(y) .
For every g' E Supp(r'), ~(x)g' = j(y) . Therefore, by (a) there exists
rg, E R(x)y such that p(rg,) = r9, . Then it is easy to see that f = \'(r)
where r =

	

rg~ .
g'ESupp(r')

Let x' E X' .

	

Let ri, si and gi(i = 1, 2, . . ., n) as in (b) .

	

Let L
n

	

n
®R'(x'gi)

	

-

	

R'(x') given by L(a', a', . . . . a'

	

_

	

l:r'a' .

	

L is an
=I

	

z=1
homomorphism of X'-graded modules and 1 = L(ri ) r2, . . . , rñ) .

	

But
x'gi E Im(1) . Therefore {R'(«x))Ix E X} is a set of generators of
gr - (R', X', G') . Therefore PR, is a generator of gr - (R', X', G') . This
finish the proof. i

Example 2 .7 . As a particular case of Example 2 .6, let R be a G-
graded ring, X a right G-set, x E X and Gx the stabilizer of x in G .
Consider Y = {x} as a right Gx-set . Set T = (p,~,-y) where p : RG. -->
R, ~ : Y - X and -y : H -+ G are inclusion maps .

In this case condition (a) in the above example always holds . On the
other hand gr - (RH, Y, H) = mod-RH and the functor T* is isomorphic
to the functor (-) x which associates M E gr - (R, X, G) to Mx and acts
on morphisms by restricting on the domains . In this situation the result
proved in last example translates into :

The following conditions are equivalent :

(a) - ORcx R : mod -RG. ---> gr - (R, X, G) is an equivalente .
(b) (-) x is an equivalente .
(c) R(x) is a generator in gr - (R, X, G) .
(d) For every y E Y, R,:-lx = Rx-,y * Ry- lx (where Rx-, y =

	

® Rg) .
x9=y

Notice that condition (d) implies that G acts transitively on X .

When X = G with regular right action, the above equivalent condi-
tions do not depend on x . Namely, if R(g) is a generator in gr - R, then
for every x E G, R(x) is a generator too . Graded rings satisfying these
condition are the strongly graded rings . When X is not G the situation
is not so symmetric, as the following example shows .
Example 2.8 . Let A be a ring and B a proper overring such that the

inclusion map j : A --> B splits as a morphism of A - A-bimodules, Le .
there is an A-A-bimodule homomorphism E : A --> A such that Eoj = 1A .

Let G be the permutation group on there elements . Let a E G be a
transposition and b E G a 3-cycle . Let K be the subgroup of G generated
by b and H the subgroup of G generated by a.
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Let M = A x B x B considerad as an A-A-bimodule . If we define

b(x, y, z) _ (E(z), e(x), E(y))

	

(x, y, z) E M(x, y, z)b = (E(y), e (z), E(x)) }

then M becomes an A[K] x A[K]-bimodule . Consider R = A[K] n M
the trivial extension of A[K] by M. The elements of R are pairs (a, m)
with a E A[K] and m E M with the ring structure given by

(a, m) + (/3, n) = (a + 0, m + n)

	

a ~3 E A[K], m, n E M.(a, m) (~3, n) = (ap, an + m,3)

	

}

Consider in R the following G-grading :

Re = A x 0

	

Rb = Ab x 0

	

Rbz = Ab2 x 0
Ra =Ox(AxOx0) Rab=Ox(OxBx0) Rabz=0x(Ox0xB) .

Let X be the set of right H-cosets and consider G acting on X by
right translation . Let x = H and y = Hb. Then

Rx-.x = RH = RHb ' Rb-1 H = Rx- 1Y ' Ry-1x
Ry-lx . Rx-ly = Rb-1H - RHb = [Ab2 x (0 x B x 0)][Ab x (0 x B x 0)]=

=Ax(0x0xA)=/~ Ax(0x0xB)=Rb-1Hb=Ry- l y.

Therefore, by Example 2.7, R(x) is a generator in gr - (R, X, G) while
R(y) is not .

In [CF] the authors extend the concept of Morita duality to
Grothendieck categories . Let (F : C --> D, G : D -> C) be a pair of
adjoint functors on the right . Let us denote by Q : le --> GF and
T : 1D ---> FG the units of the adjonction (they can be interpreted as
unit and counit of a pair of covariant functors) . Let

Re = {C E Clac is an isomorphism}
RD = {D E DiQD is an isomorphism} .

Then F and G induce a duality between Re and RD .
We say that the pair (F, G) is a Morita Duality if F and G are exact

and the subcategories Re and RD contain a set of generators of C and D,
respectively, and both are closed under subobjects and quotient objects .

In [AW] the authors define an alternativa version of Morita duality
for Grothendieck categories which is not equivalent to the Colby-Flzller's
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one in general but it is so in the case of categories of modules graded by
G-sets (see [GG]) .
Note that if (F, G) is a Morita duality, then Rc and RD are closed

under finite coproducts, therefore RC and RE> contain any finitely gen-
erated object of C and D, respectively.

Let P be is a X x X'-graded R-R'-bimodule . Let u : I gr_(R,X,G) ->
A

	

A
H(PR,, -) o (- ®R P) and e : (- ®R P) o H(PR , , -) , 1gr_(R,,X,,G,)

Athe unit and the counit of the adjonction pair (H(PR, , -), (- ®R P))
and o, : 1(G,X,R)-g, --> H(-, PR,) o H(-, RP) and T : lgr_(R',X',G)
H(-, RP) o H(-, PR, ) the unit and counit of the adjonction pair
(H(- , RP), H( -, PR , )) .
An object M E (G,X, R) - gr (resp . N E gr - (R', X', G')) is said to

be P-reflexive if omt (resp . T,v) is an isomorphism .

Lemma 2.9 . Let P an X x X'-graded R-R'-bimodule. The following
are equivalent:

(a) AP : R -> H(PR , , PR, ) (resp. X'

	

H(RP, RP) is an) is an
isomorphism.

(b) For every x E X (resp. x' E X'), uR(~) (resp. cR,(X,)) is an
isomorphism.

(c) For every x E X (resp. x' E X'), (x)R (resp . R'(x')) is P-
reflexive .

P is said to be faithfully balanced if both Ap and XP are isomorphisms .

Theorem 2.10 . Let P be an X x X'-graded R-R'-bimodule. The
following conditions are equivalent :

(a) (H(-, RP), H(-, PR, ))

	

define

	

a

	

Morita

	

duality

	

between
(G,X, R) - gr and gr - (R', X', G') .

(b) For every x E X and x' E X', every graded quotient of
(x)R, R'(x'), ,P and P.,, is P-reflexive .

(c) P is graded faithfully balanced, {P,,, jx' E X'} is a set of injective
cogenerators in the category (G,X, R) - gr and {xP¡ x E X} is a
set of injective cogenerators in the category gr - (R', X', G') .

3. Duality Theorems

The main goal of this section is to extend the Duality Theorems of
Cohen and Montgomery [CM] to our setting . There are other alternative
extensions which can be found in [Q], [B1], [B2] and [AN] (see also [A]) .
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The originality of our methods is that they are purely categorical . We
give some equivalences of categories which will be useful in applications .

Let R be a G-graded ring and X a left G-set . X will be considered as
a right G-set by xg = g-l x (x E X, g E G) .
Let P = ® R(x) . For every x E X let ux : R(x) --> P be the

xEX
canonical monomorphism and 7rx : P -> R(x) the canonical projection .
P becomes an X x X-graded R-R-bimodule by

and the X x X-grading

rux (a)s = ugx (ras)

	

(r ERg , a, s E R)

P(x,y) = ux(R(x)y)

	

(x, y E X) .

Moreover RP and PR are faithful modules .
Note that P is the X x X-graded R-R-bimodule associated to the

identity functor in gr - (R, X, G) . (See Definition 1.4) .
Given x, y E X we write Rxy-, _

	

Rg . Also if r E R, then rxy-1
x=gy

will denote E rg . Note that Rxy-i (resp . rxy -i ) is both the component
x=gy

of degree x of (y)R (resp . of r considered in (y)R) and the component
of degree y of R(x) (resp . of r in R(x)) .
Remark. Let FCMX (R) be the ring of á,ll finite column square X-

matrices with entries in R . Since RP is free and {ux (1)1x E X} is a basis
of RP, then the map

End(RP) ---> FCMX (R)

fHMf

(being Mf the square X-matrix having 7ryfux (1) at the (x, y) - th
entry) is a ring isomorphism . Moreover, it is quite easy to see that
,P(Endg,_(R,X,G)(P)) = {a E FCMX(R)j for every x, y E X, the
(x, y) - th entry belongs to Rxy-i } . Thus (D gives a matricial description
of (Endgr_(R,X,G)(P)- This matricial description has been obtained by
T . Albú [A] for the particular case X = G .

Let S = Endg,_(R,X,G)(P) . If we consider S trivially graded by G' =
{e} and X' = G' as a left G'-set, then P is naturally an X' x X-graded
S-R-bimodule .

Since P is an X x X-graded R-R-bimodule, then then map r ~-4 Ar
which associates to an element r E R the left multiplication-by-r map
in P is a ring mmomorphism A : R -> S. Since RP is faithful, A is
injective . Note that for every r E Rxy -1, 7ryA,ux = Ar : R(x) --> R(y) .

Let I = H(RP, P) . Clearly I = {n E S1aux = 0 for almost all x E X} .
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Lemma 3.1 . I is an S-R-bisubmodule of S and it is isomorphic to
SPR-

Proof: Let cp : P -> S be the additive homomorphism given by

W(ux (r))uy = u.A,xy_1

	

(r E R, x, y E X).

Note that for every x, y E X, u.,A,, y_ 1 = Arx y_ 1 uy .
Let a E S, r E R and x, y, z E X .

	

Then 7r yW(aux (r))uz =
7Fy( E Wuw7rwaux(r))uz = 7ryW(uy71yaux(r ))uz = ~1(7ryau~(r»yy-i' If

WEX
g E G, then rg E R(x)xg , therefore 7ry aux (rg) E R(y) xg . Thus
( 7ryaux(r))yz-1= r 7F Y c¿ux(rg)=7rycaux (rxz -1). Then 7r yW(aux(r))uz =

xg=z

Aary au~(r.~-1) = 7r yaux í\ryy .-1 = 7r ya(p(ux(r))uz . We conclude that for
every x E X, r E R and a E S, W(aux (r)) = acp(ux (r)) and hence cp is
S-linear .

Let now r, s E R, x, y E X. Then cp(ux (r)s)u y = W(ux (rs))uy =
uxA(rs)x _1 . I3ut (rs)xy-1 =

	

rxw-l3wx--1 . Thus ~o(ux (r)s)uy
y EX-¡

UXArx,1 Aswy-1 = ~ W(ux(r))u.Aswy_1 = W(ux(r)) r- Uwñswy_1 =
WEX
cp(ux (r)) r A,_,,-1 uy wcp(ux (r))Asuy . Therefore W(ux (r)s)

	

W(ux (r))s,
WEX

that is, cp is an homomorphism of right R-modules .
Let p = E ux(rx) be an element of Ker(W) . Then for all x, y E X, 0 =

XEX
7rxcp(P)uy = ux .\(r .) .y_1 . Thus rx = E (rx)xy-1 = 0 . We conclude that

yEX
cp is injective .

Let r E R and x E X . Then for every y E X, W(ux (r))u y = 0 unless
x E Supp(r)y . Therefore cp(P) C I .

Finally, let a E I . For every x E X let rx = E 7r xauy (1) . Since
yEX

uy (I) E R(y)y , 7rx cau y ( 1) E R(x) y and hence (rx)xy-1 = 7rxauy(1) . Let
p = r_ ux(rx) . Then, for every y E Y, W(p)u,(r')= E ux((rx)xy-1r')=

XEX

	

xcX
ux (7rxauy (1)r') = auy (r') . Thus ~o(p) = a . We conclude that

xeX
cp(P) = I . a

For every subset F of X let pF E S given by PF (m) = r_ ux 7rx (M) .
xEF

Plainly PFPF' = PFnF', for every two subset F and F of X. Therefore,
PF is an idempotent for every subset F of X . Moreover PF +PX-F = 1
for every F C X.
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For every x E X let px = p{x}(= ux 7r x ) . {p.,Ix E X} is a set of
orthogonal idempotents of S. For every subset F of X, PF E I if and
only if F is finite .

Lemma 3.2 .

	

(a) Let a E S, a E I if and only if there exists a finite
subset F ofX such that a = apF .

(b) I is idempotent .
(c) sI = ® Spx and Spx = Rpx for every x E X .

xEX

Proof.. Let a E I . There exists a finite subset F os X such that
aux = 0 for all x E X - F. Then a = apF . This proves (a) and (b) .
The sum E Spx is direct because {px lx E X} is a set of orthogonal

xEX
idempotents . Moreover, for every x E X and a E S, apx = Arpx where
r = 1: 7ryaux (1) . Indeed, let m E P, then apx(m) = au x 7rx (m) =

yEX

UY7Fy(aux(1))7rx(m) - ~, uy ryx-1 7r x m =

	

uyAryx-1 (7r x (m	-
yEX

	

yEX

	

yEX
Ar yx _lux7Fx(M) = Arpx(M) . " .

yEX

Given a left A-module M, then Gen(AM) denotes the full subcategory
of A-mod formed by the right A-modules generated by AM. Next Lemma
is obvious .

Lemma 3.3 . Let I be an idempotent left ideal of a ring A .

	

Then
Gen(AI) = {M E A-mod JIM = M} .

Theorem 3.4 . The pair of adjoint functors (G, X, R) - gr
F
AE

H(SF,-)
S-mod, defines an equivalente of categories between (G, X, R) - gr and
Gen(sI) .

n
Proof.. Let T = POR- and H = H(SP, -) . Let u be the unit of the

adjunction pair (T, H) and c the counit . Let us remark that u and c are
given by :

uM : M --> HT(M)

	

(M E (G,X, R) - gr)
[UM(m)](P) = E M. o,, p

	

(m E M, p E P)
xEX

cN : TH(N) ---> N

	

(N E mod- S)
clv(.f ®p) = .f (p)

	

(x E X, p E xP .f E H(Ps,N)x

For every M E (G, X, R) - gr, um is nothing but the composition of
n

the following canonical isomorphisms : M = ® P(x) ®RM (see Lemma
XEX
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A

	

A
1 .1) = IP ®R M = Hom(sI, P ®R M) = HT(M) . Therefore um is an
isomorphism .

Let now N E S-mod. Let WN : TH(N) ---> IN be the composition
A

of the following canonical isomorphisms:

	

cON : P ®R Hom(SI, N)
A

® R(x) ®R Hom(s I, N) - Hom(SI, N) = IN.

	

Then the following
XEX
diagram is commutative :

IN

where j is the inclusion map.

1
TH(N) -----> TH(N)

N

CN

Thus CN is an isomorphism if and only if N = IN . Now Lemma 3.3
applies.

Remark. Theorem 3.4 implies [CM, Theorem 2 .2] and [NRV, The-
orem 2.13] .

Recall that a ring A (not necessarily with unit) is said to have local
units if for every finite subset F of A there exists an idempotent e of A
such that F E eAe . We will say that a left ideal I of S has local units if
it has local units when it is considered as a ring without unit .

Lemma 3.5 . Let A be a ring and I a left ideal of A which has local
units . Let B a subring of A which contains I . The restriction of scalar
functor induces an equivalente between Gen(AI) and Gen(BI) .

Proof.. Let F : A-mod , B-mod be the restriction of scalars functor .
F is obviously faithful . Let M, N E Gen(AI) and f E HOMB(M, N) . Let
m E M and a E A. Let e be an idempotent in I such that em = m. Then
f(am) = f (aem) = aef(em) = af(m) . Therefore f E HOMA (M, N) and
hence F is full .

Let now M E Gen(BI) . For every m E M and a E A let am = (ae)m
where e is an idempotent in I such that m = em. This definition does
not depend on the choice of e because if em = m = e'm there exists
e" idempotent in I such that e, e' E e"Ae" . Thus (ae)m = (ae")em =
(ae")m = (ae")e'm = (ae')m . This gives a structure of left A-module
on M and F(M) = M. a
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n
Corollary 3.6 . For every subring A of S which contains I, P ®R -

(G, X, R) - gr ---> A-mod defines an equivalente of categories between
(G, X, R) -,gr and Gen(AI) .

Remark. Last corollary generalizes [A, Theorem 2.5] .
Let G, X, R, P and S as above . Let H be a group and assume that X

has an structure of G-H-set . Let END(PR)H = {a E End(PR)Ica(Px) C_

P,H for every x E X}. END(PR) is a subring of End(PR) .
For every h E H let END(PR)h = {a E End(PR)ia(P.) C Pxh-l

for every x E X}. For every h, h' E H, END(RP)h - END(RP)h' C
END(RP)hh' . Therefore END(RP)H = r END(RP)h is a subring of

hEH
END(RP) H .
Moreover for every h E H the homomorphism h : P - P given by

hu x = uxh-I(x E X) belongs to END(PR)h and hh' = hh' for every
h, h' E H. Therefore END(RP)H is an H-Clifford system .

Lemma 3.7 . The sum 1: END(RP)h is direct if and only if H acts
hEH

freely on X . In this case END(RP) is a skew group ring over H with
underground ring S .

Proof. Let h E H and 0 :7~ a E END(RP)h n r_ END(RP)h' . Let
h' s,!h

x E X such that aux qÉ 0. Then aux(1) ~, 0 . Let y E X such that
7ry caux(1) :~ 0 . Since ux (1) E P. , then 7r ycaux (1) E R(y)xh-- . Let
g E Supp(7rycaux (1)) . Then xh-1 =g- 'y . Let hl, h2, . . . , h,, E H - {h},
and al E END(RP)hl , a2 E END(RP)h2, . . . 'al E END(RP)h,, such

n
that a = Y' a¡ . Let i = 1, 2, . . . , n such that aiux (1) =A 0 . By repeating

4-1
the same argument, one has that xh2 1 = g - 1 y = xh-1 . Thus X is not
a free left H-set .

Conversely, assume, that the sum E END(RP)h is direct . Let x E X
hEH

and h E H such that xh = x. Then 0 :7~ Px E END(RP) e n END(PR)h-1
and hence h = e .

Let X be an G-H-set . Consider the following relation of equivalente
on X:

x-y~yExH.

Then X/H = {xHIx E X} is the set of equivalent classes of X by the
relation of equivalente - . G acts on X/H by g(xH) = gxH. The map
1 : x H xH is a homomorphism of right G-set .
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Let X be a set and I an ideal . By FMX(I) we will denote the set of
all square X-matrices over I having almost all entries equal to zero .

Theorem 3.8 . Let H and G be two groups, X an G-H-set and R
a G-graded ring . Let P = ® R(x) and U =

	

®

	

R(C) . Let A =
.EG CEXIH

END(PR )H , S = Endgr-(R,X1H,G)(U), J = {a E Ala(R(x)) = 0 for
almost all x E X} and I = {a E Sja(R(C)) = 0 for almost all C E
X/H} .

There exists an isomorphism -P : A -> FCMH(S) such that ~D(J) _
FMH(I) .

Proof. Let 1 : X - X/H be the map which associates to x E X the
class xH. Set Q =TI (P) .

Plainly Q = ® R(xH) = U(H) . Therefore there is a canonical
.EX

isomorphism <D : End(G,Xf,R)-gr(Q) - FCMH(End(G,Xf,R)-gr(U))
such that 4>(K) = FM(I) being K = {n E End(G,Xf,R)-gr(Q)luxa =
0 for almost all x E X} . The theorem follows by realizing that
End(G,XIH,R)-9,(Q) = END(RP) H and hence J = K.

Remark. Last theorem implies [CM, Theorem 3.5], [B2, Theorem
2.2] and [NRV, Corollary 2.2] .

Lemma 3.9 . Let A be a ring and X a set . Let B = MX (A) be the
finite row and column matrix ring over R indexed by X . Let x E X and
P, the X xX matrix having 1 at the (x, x) -th entry and zeros elsewhere .
The functor Hom(BBp x , -) defines an equivalente of categories between
Gen(BBpx ) and A-mod .

Proof. Let P = Bp,, . BP is finitely generated and projective and
End(BP) is isomorphic to A. It only remains to prove that BP generates
each of - its submodules and apply [F, Theorem 2 .6 and Lemma 2.2] .

Let M be a submodule of BP. For any y E X let My = {a (y, x) la E
M} . If y, z E X and a E M, then (e,z,ya)(z, x) = a(y, x), ez,y being the
X x X-matrix having 1 at the (z, y)-entry and zeros elsewhere . Therefore,
My = Mz, that is, N = My does not depend on y E X.

Let M'= {a E P¡a(y,x) E N for all y E X} . We claim that M = M'.
The inclusion M C_ M' is clear . Let a E M'. For every y E X there
exists ,Qy E M such that a(y, x) = 0y (y, x) . Then a =

	

p y ,úy E M.
a(y,x)540

For every a E N let á be the X x X matrix having a at the (x, x) - th
entry and zeros elsewhere. Let fa : P -> M be the right multiplication
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by á map . Then, for every a E M, a =

	

E

	

fa(y,.) (e(y .) ) . Therefore
a(y,X)5,~o

M is generated by BP.

Corollary 3 .10 . With the same hypothesis and notation than Theo-
rem 2.8, the categories Gen(AJ) and Gen(SI) are equivalent.

Proof. Let B = FCMH (S) and C = MH(S). Let P = Cpe being pe
the H x H-matrix having 1 E S at the (e, e)-position and zeros elsewhere .
By Lemma 3 .9, F = Hom(CP, -) : Gen(cP) -> S-mod is an equiva-

lence of categories . Let Q = FMX(J)p, Then F(Q) - I and hence F
induces an equivalence of categories between Gen(cQ) and Gen(sI).

Let K = FMH(I). K is isomorphic to Q(H) as a left C-module .
Therefore Gen(cK) = Gen(cQ) .
By Lemma 3.5 Gen(CK) is equivalent to Gen(BK) .
Now, by using the isomorphism D of Theorem 3.8, we have that

Gen(BK) is equivalent to Gen(AJ) .
We conclude that Gen(BJ) is equivalent to Gen(sI) .
We finish this section with a version of Cohen-Montgomery Duality

Theorem for actions .

Theorem 3.11 . Let R * G be a crossed product and H a subgroup
of G. Let P =

	

®

	

R(C) .

	

Then Endgr_(R,G/H)(P) is isomorphic to
CEG/H

FCMG/H (R * H) .

Proof- For every g E G there is a unit g in R * G of degree g .
Then, for every g E G and every C E G/H, left multiplication by g
is a graded isomorphism between R(C) and R(gC) . Therefore P
R(H)(G1H) in (G/H, R) -gr and hence Endgr_(R,G/H)(P) is isomorphic
to FCMG/H(Endgr_(R,G/H)(R(H)) . Finally, Endgr_(R,G/H)(R(H))
R * H, by Lemma 1 .5 .

4 . Separable functors

Separable functors have been introduced in [NVV] and studies in
[NVV] and [Ra] . Let us recall the definition .
Definition . Let F : C - D be a functor between two arbitrary

categories C and D. F is said to be separable if for any two objects
C, C' E C, there is a map cp = WC,C, : HomD(FC, FC) -> HomC(C, C)
such that :
SF1 . For all f E Homc (C, C'), cp(Ff ) = f .
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SF2 . For every commutative diagram in D of the type

h
FC FC2

F(f)
JJJ

	

JJJ
F(9)

k
FCi ; FCZ

the following diagram in C is also commutative

w(h)
C1 > C2

C

19

'2

In this section we first recall a fundamental theorem of Rafael [Ra] on
adjoint separable functors . Then we study conditions for the functors T*
and T* , defined in Section 1, to be separable . When R = R' and p is the
identity map on R, then T* is always separable while the separability
"test for T* can be simplified .

In [Ra] the authors give a complete characterization of separable ad-
joint functors in terms of the unit and counit of the adjunction . Explicitly
they obtain the following result :

Theorem 4.1 [Ra] . Let F : C --> D and G : D -> C be functors such
that F is left adjoint of G. Let u : le -> GF be the unit and c : FG - 1D
the counit of the adjunction .

(a) F is separable if and only if u splits (¡.e .

	

There exists a natural
transformation e : GF -> le such that ec o uc = lc for every
C E C) .

(b) G is separable if and only if c cosplits (i . e . There exists a natural
transformation p : 1D -> FG such that CD O PD = 1D for every
DED).

For the sake of completeness we give a proof different from the one
given in [Ra] .

Proo£ By duality it is enough to prove (a) .
Assume that F is separable . For every C, C E C let

W = WC,c, : HomE>(FC, FC') -+ Homc(C, C')

be a map satisfying SF1 and SF2 .
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For every C E C, set EC = W(CFC) E Homc(GF(C),C) .
First we prove that E : GF --> lc is a natural transformation . Indeed,

let f E Homc(C, C'), then the diagram
FGF(f)

FGFC

	

1
FGFC'

FC F(f) FC
is commutative, because c is a natural transformation . Therefore the
following diagram is also commutative :

GF(f)
GFC -) GFC

C f
C /

Now we prove that Ecuc = lc for every C E C . Indeed, the well
known formula CFC o F(uc) = 1F ,c implies the commutativity of the
following diagram

F(uc)FC -FGFC

F(1c)
FC 1 FC

and SF2 implies the commutativity of the following diagram :

C

	

U~ GFC

C
Conversely, let E : GF --> lc be a natural transformation satisfying

E o u = 1 . For any C, C' E C let co : HomD(FC, FC') -+ Homc(C, C)
given by W(f) = EC, o G(f) ° uc .

If f E Homc(C, C'), then W(Ff) = Ec,GF(f)uc = Ec,uc f = f .
On the other hand, if the following diagram in D is commutative

h
FC1 -	FC2

F(f) 1

	

yI F(9)
k

FCi - FC2
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then the diagram
w(h)

Cl CZ

f

W(k)
G1 % CZ

9

is also commutative because g o co(h) = g o EGZ o G(h) o uc, = ec2 o
GF(g)oG(h)ouc, =EC, oG(F(g)oh)ouc, = EC, oG(k)oGF(f)ouc, =2

	

2

EC, o G(k) o uGl o f = ~o(k) o f .

Theorem 4.1 can be used to give a simple criterion on when a right
adjoint functor of the form G : gr - (R,X, G) -> D is separable, for D an
additive category . Next proposition was inspired from Proposition 2.2 in
[Ra] .

Proposition 4.2 . Let C be a full subcategory of gr - (R, X, G) such
that R(x) E C for every x E X. Let G : C -> D be a right adjoint functor,
F a left adjoint of G and c : FG -+ lc the counit of the adjonction . The
following conditions are equivalent :

(a) G is separable.
(b) For any x E X there exists mx E FG(R(x))x satisfying the fol-

lowing two conditions :
(1) For any x E X, CR(x) (mx) = 1 .

(2) For any x E X, g E G and r E R9 , FG(A,)(mxg ) _
mxr (where A,- E Hom9,_(RX,G)(R(xg), R(x)) is the left
multiplication-by-r map) .

Proof. Assume first that G is separable . By Theorem 4.1, there exists
a natural transformation g, : le -> FG such that c o p, = 1 . By Lemma
1 .5 for every x E X there exists mx E FG(R(x)) such that pR(x) = Am. .
Then CR(x) (mx) _ (CR(x) 0PR(x))(1) = l . On the other hand, if r E R9 ,
then for every x E X the following diagram

R(xg)
wR'x9>,

FG(R(xg))

-
FG(a, )

R(x)

	

FG(R (x))
11R(x)

is commutative .

	

Therefore FG(A,)(mxg) = [FG(A,) o PR(xg)](1) _

[PR(x) o Ad (I) = mxr.
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Let now {mx E FG(x)) x Ix E X} be a system of elements satisfying
conditions (1) and (2) . For every N E gr - (R, X, G) define PN : N
FG(N) by PN(n) = FG(An)(mx) if n E Nx and extend PN to N by
linearity.
pm is R-linear because if n E Nx and r E Rg, then M(nr) _

FG(Anr)(mx9)=FG(An)FG(A,)(mx9) =FG(,\n)(mxr) =FG(,\nXmx)r=

hN(n)r .
Now we prove that ti is a natural transformation . Let fE Hon)g,_(Rx,G)

(N, N') and n E Nx. Then

[FG(f) o MN](n) = FG(f o An)(mx) = FG(Af (n))(rnx) =

= PN'(f(n)) = (PN' o f)(n) .

Finally, if N E C and n E Nx, then (CN o p,N)(n) = [CN o

FG(An)](mx) = [An O CR(x) 1(mx) = \n(1) = n.

Thus, applying Theorem 4.1 we conclude that G is separable .

For the rest of this section we consider the following situation : Let
T = (p, ~, y) where p : R -> R' is a ring homomorphism, ~ : X --> X'
is a map, y : G --> G' is a group homomorphism, R is a G-graded ring,
R' is a G'-graded ring, X is a right G-set, X' is a right G'-set and the
following conditions hold :

p(Rg) = Ry(s)

	

~(xg) = ~(x)y(g)

	

(g E G, x E X).

Let T* and T* be the functors defined in Section 1 . We are going to
study when T* and T* are separable .

Proposition 4.3 . Let T = (p, , y) as abone.

	

The following condi-
tions are equivalent:

(1) T* is separable.
(2) For every x E X there is Ex E Homgr_(R,x,G)(T*(R'(«x)), R(x))

such that.
(a) For every x E X, Ex (1') = 1 .
(b) For every x, y E X, g E G, r E Rg and r' E R'(~(xg))g(y),

Ex((p(r)r')y) = rEx9((r')y) .

Proof.. First let us note that the unit u of the adjunction pair (T*, T,,)
is given by:

uyl : M ---> T*T* (M)

	

(M Egr - (R, X, G))

m ~->E (m:,; (9 1)x (m E M):
xEX
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On the other hand the canonical isomorphism R' --> R OR R' induces
an isomorphism O x : R'(«x)) --> T*(R(x)) for every x E X.

(1) =~> (2) Assume that T* is separable . By Theorem 4.1 there exists a
natural transformation E : T*T* --> 1gr-(R,X,G) such that Em ouM =1m
for every M E gr - (R, X, G) .
For every x E X let Ex = ER(x ) oT* (0,,) . We are going to see that

{E,,Ix E X} satisfies conditions (a) and (b) .

ex (1,) = --R(.) « 1 (9 1)x) = [ER(x) o UR(x)1( 1 ) = 1 .

Let now g, h E G, r E Rg and r' E R'(~(xg)),(y) . Let A r : R -> R be
the left multiplication by r map and Ap(r) : R' -> R' left multiplication
by p(r) . By Lemma 1 .3, one has

Ar E Hom gr_(R,X,G)(R(xg),R(x))

Ap(r) E HOm gr_(R' X' G')(R'(«xg)), R'(~(x))) .

Furthermore the following diagram is commutative

T.(Wxg)

	

ER(xg)
T*(R'(«xg))) - T*T*(R(xg))

	

R(xg)

T, (w(,))1

	

1T.T' (a,-)

T*
(0 .) E R(x)

T*(R'(~(x)))

	

T*T*(R(x)) > R(x)

Therefore, Ex((p(r)r~)y) = [ER(x) o T*(Ox)]((Ap(r)(r'))y) = [ER(x) o

T*(Ox)1([Z*(AP(r))]((r')y) = [Ar o Exg]((r')9) = rExg((r')y) .

(2) =:> (1) Assume that for every x E X there exists Ex E
Hom(G,X,R)-gr(T*(R'(~(x))),R(x)) satisfying conditions (a) and (b) .
For every M E gr - (R, X, G) let EM : T*T* (M) -> M be the ho-
momorphism given by EM((m ® r')y) = mEx (r'y ) whenever m E Mx
and r' E R'(~(x)),(y) and extended by linearity. Note that Em
defined . Indeed, let m E Mx , r E Rg and r' E R'(«xg))j(y) .
EM(mr ® r') = mrExg(r`) = mex((p(r)r')y) = Em((m (9 rr')y) .

lt is an easy exercise to check that Em EHomgr-(R,X,G)(T*T * (M), M) .
Moreover, for every m E Mx, [emoum](m) = EM((m(91)x) = M,-X(1x) =
m. It only remains to prove that E is a natural transformation from T*T*
to lgr-(R,X,G) and apply Theorem 4.1 .

Let f E Hom gr-(R,X,G)(MIN), m E Mx and r' E R'(~(x)),(y) .
Then [EN o T*T*(f)]/(¡(m ® r')y ) = EN((f(m) ® r') y ) = f (m)E.(r'y) _

f(MEx(r'y)) = f(EM¡llm 0 r ' ) y )) = [f ° EM[¡¡l\m

	

r')y).

is well
Then
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Proposition 4.4 . Let T = (p, 1, -y) as abone.

	

The following condi-
tions are equivalent :

(a) T* is separable.
(2) There exists a system

_ {(a(x',i), b(x , ,i) , x(x , ,i)) E R9, , ,i) x

R(g~~ ,~>x
XIX, E X',

satisfying the following conditions .

i=1,2, . . .,mx,}

(1) For every x' E X' and i = 1, 2, . . . . mx,, x'g(x , i) = I(x(x"2)) .
my

(2) For every x' E X', ~a(x, i)b(x,,i) = 1 .

(3) For every r' E R9,, and every x' E X', the following equality
holds in T* (R'(x')) ®R R'.

mx ,

	

m x , 9 ,
Da(x, i))x(=',i) 0 (b(x, ,i))r = E (r'a(x'g' i))x(x's'~a) ® (b(g'x',i)) .

Proof. First let us remark that the counit c : T*T* -> 1 of the adjunc-
tion pair (T*, T* ) is given by :

cN :T* (N) ®R R' ------> N

	

(N E gr - (R', X', G'))
CN(nx ®r') = nr'

	

(r' E R', n E Nj(x)) .

(a) ==> (b) Assume that T* is separable . By Proposition 4.2, for every
x' E X' there existsKx, E (T.(R'(x')) ®R R')x, such that

(1) CR'(x')(K-') = 1-
(2) For any x' E X', g' E G' and r' E Rg,, T*T*(,\T)(Kx'g') = Kx'r .

nx
EachKx, can be expressed as

	

(a(x"i))x(=',i) (90~x,,i) where a(x,,i) and
i-1

,Q(x,,i) are homogeneous for every possible x' and i . For every possible x'
and i, let g(x, , i) be the degree of a(x , , i) and h(x , , i) the degree of ~3(x,,i) .
Then x'g(x ti) _ J(x(x,,?)) and «x(x,,i))h(x, á) = x' .

Let

	

_ {(a(x,,i)1 b(x,,i),
x(x,i))Ix' E X', i = 1, 2, . . . . mx} be the sys-

tem which results by eliminating in the system {(afx,,i) 5 P(x , , i) , x(x , ,i)) IX, E
X', i

	

=

	

1, 2. . . . nx, }

	

any

	

upla

	

{a(x , , i) , 0(x',i) , x(x,,i))

	

such

	

that

g(x,,i)h(x,i) :~ e. Plainly 5- satisfies (1) .
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Since 1 = cR,(x,)(Kx,) = L~a(x,,i)N(x,,i), then the homogeneous com-

ponent of degree e of this element is equal to 1 . But this homogeneous

component is just

	

a .., i) b1x , i) . Thus E satisfies (2) .
i=I

Consider G' as a right G-set by : g'g = g'y(g)(g E G, g' E G'). Con-
sider in M =T.(R'(x')) the following G'-grading : A typical element r'x
inT*(R'(x'% has degreeg' E G' ifr' E R9, . PlainlyM E gr-(R,G',G) .
Let S = (p,1c, , y) . Then S*(M) = M ®R R' E gr - (R', G', G') where
G' is considered as a right G'-set by regular action .

Given r' E R9, and x' E X', then A =

	

(a'x, i) )x (-' , i) ® ~(x,'i)r' _
i- I

n x , 9 ,
Kx,r = T*T*(r')Kx,g, _

	

(r'alx,g,,i))X(-'9''¡) ®,3(x,9,,i) . Consider A as
i-I

an element of S* (M). For every i = 1, 2, . . . . nx,

(r'a/x ' , )Xw1¡)

	

E S*(M) ,

	

,(i)

	

(~ ,z)

	

g g(x,,i)h(x"i)

(a' ,

	

)x(x'9'M

	

~3' , , r' E S*(M) ,

	

,(g"¡)x

	

®

	

(~ 9 ,i)

	

g(x,,,)h(x,,)g

E(ia(x,

	

x(x, i) ® b(ix , i )r i = A9 =	(ria(ix,g,

	

x(-Y i)
® aii))

	

~

	

i))

	

(x,g, i) .
i=1

	

i=1

This proves (3) for ~.
(b) ==> (a) Let

= i(a(x , ,i) , bl(x , ,i) , x(x',i)) E R9íx,,~) x R'(g,(x ,2)) _1 x XIX, E X',

i=1,2, . . .,nx,}

be a system satisfying (1), (2) and (3) .
mx ,

For all x' E X', let Kx, = 1: (ax,,i)xx',i ® bx,,i . Then CR,(x,)(KX,) _
i-I

mx,

	

mx , s ,
ax,,ib~,,i = 1 and for every r'ER9,, T*T*(AT,)(Kx,g,)=r_ (r'a' g,,i~='9' .i

i=1

	

i=1

)xx, a

	

'

	

'

	

, ia', i

	

ax, i

	

® ax, ir =Kx r .
i=1

By Proposition 4.2, we concluded that T* is separable.
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In the proof of last Proposition, we have considered G' as a right G-
set by g'g = g'y(g)(g E G, G' E G') . Actually we can consider G' as a
G-G-set by putting gg' = y(g)g' .
For every x' E X', the right R-module T* (R'(x')) becomes an object

of gr - (R, G', G) by assigning degree g' to r'x whenever r' E R', with
x,g, = «x) .
We can consider X as a left G-set by gx = xg-1 (g E G, x E X).

Similarly X' can be considered as a left G'-set .
Moreover y(g)~(x) = «gx) for every g E G and x E X. Therefore, we

can define two functors To = R' ®R - : (G, X, R) -gr -> (G', X', R') -gr
and To : (G', X', R') - gr --> (G, X, R) - gr which are the left hand
versions of T* and T* . By symmetry, for every x' E X', To((x')R') is an
object of (G, G', R) - gr by assigning degree g' to r'x whenever r' E R9,
with g'x' = «x).

Set S = (p, 1G', y) . For every x' E X', S*(T*(R'(x'))) = T*(R'(x'))®R
R' E gr-(R',G',G') =gr-R' and S'(To((x')R')) E (G',G',R')-gr =
R - gr .

Lemma 4.5 . For every x' E X' and every g' E G', S*(T*(R'(x')))g,
is isomorphic to 9,So(To((g'x')R')) .

Proof. Let ~D : S*(T*(R'(x')))9, -> g,So((g'x')(R')) the homomor-
phism given by -P (a` ® b') = a' ® b'x (x E X, a' E RQ,, b' E RT,, with
x'Q' = ~(x) and o,'T' = g') and extended by linearity.

is well defined . Indeed, let a' E Rá, b' E R.,,, r E Rg and assume
that u'y(g) ,r' = g' and x'v' = j(x) . Then P((a')xr(9b') = ~b((a'p(r))xg®
b') = a'p(r) ® (b')xg = a l ® r(bl )s -'x = a' o (p(r)b')x = -D(a' x ® p(r)b) .
And ib is obviously an isomorphism .

Proposition 4.6 . Let T = (p, ~, y) as above . T* is separable if and
only if To is separable .

Proof. By left-right symmetry, To is separable if and only if there
exists a system

{(alx , ,i), b(x , , j) , x(x , ,Z)) E R(h~x,,~>)-1 x Rh (x,ti) x XIX' E X' ,

i=1,2, . . .,mx,}

satisfying the following conditions .
(1') For every x' E X' and i = 1, 2, . . . , mx,, h(x , i) x' _

	

(x(x,,i)) .
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m"
(2') For every x' E X',

	

a('x, a.) b'(,a_1

	

~ i) = 1 .

(3') For every r' E R' , and every y' E X', the following equality holds
in R' OR To((x')R')

M h ' y ,

	

my ,

®b'

	

')X(h/b',ti)

	

1 1

	

® (b~

	

)xvi,ia(h,y, i)

	

(

	

(h, y, i)r

	

=

	

r a(y',i)

	

(y',i)

	

'
--I

	

i-I

Assume that T* is separable . Then there exists a system

_ {(a(x , ,i) , b's , ,i,) , x(x',i)) E R9 (, ., , i)
x R'9(5

.~))_1
x XIX' E X',

i=1,2, . . .,mx,}

satisfying conditions (1), (2) and (3) of Proposition 4.4 . For every x' E
X' and every i = 1, 2, . . . , mx, let h(x,,i) _ (g'x,,i))-1 . Then

_ {(a(x" i) , b l(x , ,i,) , x(x , ,i)) E R(h(.,,ti»-1 x Rh~ - , ,ti) x XIX' E X',

i=1,2, . .,mx,}

satisfies conditions (1') and (2') . On the other hand, let r' E Rh, and
y' E X. Set g' = h'-1 and x' = h'y' . By assumption the following
equality holds in T.(R(x')) OR R' .

M.,

	

7ri y , h,
a(x, i,)

	

(x, i) r

	

ra(x'(x'h',i)
i=1

	

i-1

and this element has degree h' when we view T* (R(x')) OR R' as
S*(T*(R(x'))) . Therefore, by using the isomorphism of Lemma 4.5, the
following equality holds in R' (9RTo((y')R')

a(

	

® bl

	

')x(h'y',ti)

	

' l

	

® (b'

	

)x
h'y',i)

	

( (h'y,,i)r

	

= ~r a y',i)

	

(y',i)
i=l

	

i=1

We conclude that To is separable .

Let us consider now the particular case when R = R' and p is the
identity map of R. By Lemma 1.8, in order to study T* and T* we can
assume that G = G' and ,y is the identity map of G. In that case T* = T~
and T* = 51 .



522

	

A. DEL Río

Corollary 4.7 . Let R be a G-graded ring and

	

: X -> X' a morphism
of right G-sets . The functor TI is separable .

Proof. For every x E X let Ex : SI(R(l;(x)) --~ R(x) given by Ex(r y ) =
ry (where the y - th component of r is computed in R(x)) . Plainly Ex
satisfies condition (a) of Proposition 4.3 . On the other hand, if x, y C-
X, g E G, r E Rg and r' E R(j(x))e(y), then E.,((rr')y) = (rr')y =

(rr')h =

	

r(r')g-lh = r r_ rh = rExg(r'y ) . Now Proposition
xh=y xh=y xgh=y
4.3 applies .

Corollary 4 .8 . Let T = (p, 1, y) as abone. If R is a direct summand
of R' as R-R-bimodules, then T* is separable .

Proof- Consider the following commutative diagram of functors
T-

gr - (R, X, G)

	

~; gr - (R', X', G')

UR 1

	

1 UR,
-®RR'

mod -R

	

->

	

mod -R'
where UR and UR , are the functor which forget the grading . Let Y be
a singleton and Consider G acting en Y. Let cp : X -> Y be the only
possible map. Then mod-R = gr - (R, Y, G) and UR = T. . Therefore
UR is separable .
By Proposition 1 .3 of [NVV], - OR R' is separable . Thus UR, o T* _

(-ORR')oUR is separable and hence T* is separable (see [NVV, Lemma
1 .11.a

Corollary 4.9 . Let R be a G-graded ring and t` : X --> X' a morphism
of right G-sets . The following conditions are equivalent :

(a) SI is separable .
(b) For every x E X there exists ax E Re such that :

(SS1) For every x' E X', the set {x E ~-1 (x')Iax 7~ 0} is finite and

(SS2) For every r E Rg and X E X, axr = raxg .

Proof.. (a) => (b) Assume that SI is separable . Let

{(a(x',j), b(x',i), x(x',i)) E Rs(-,,¡) x R(g(x,,,»_1 x Xix' E X',

i=1,2, . . .,mx}
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be a system satisfying conditions (1), (2) and (3) of Proposition 4.4(b) .
For any x E X let

If we fix an x' E X', then for every x E ~-1(x'), ax = 0, unless
x E {x (x ,j) (g(x,,z))-1 l i = 1,2, . . ., m y , } . Therefore, a'= 0 for almost all
x E I-1 (x') .

mx ,
Moreover, for a fixed x' E X',

	

r_

	

ax =

	

a(.,,¡) b(x,,Z) = 1 . Note
1(x)=x' á=1

that this implies that ~ has to be surjective .
On the other hand, if we identify T* (R(x')) OR R with T* (R(x')) by

the canonical isomorphism, then for every r E R9)

ax = j:{a(j(x),i)b(j(x),i) la = 1, 2, . . . , mj(x) , x(j(x),2) = xg(x,,j)} .

R

The left hand term in the previous expression is

m x , s
C =

	

(ra(x , i))
x (x ,gMb(x ,g i)

i=1
m x , s

mx ,

ra(x'g,i))x( x' 9,i) b(x, g i) _ Y'(a(x , á))x(x',a)b(x, i)r .
z=1

i
(ra(x,g,i)b(x,g,2))x(x's,i)(g(x's,i)) =

i=1

	

1(x)=x,g

Arguing in a similar way we obtain the following expression for the
right hand term in (*) .

',á) xx',i sx',ir =

	

1: (ax )xr =

	

(axr)xg .

2=1

	

«x)=x' 1(x)=x'

Therefore (raxg)xg = Cxg = Rxg = (axr)x9 and hence raxg = axr for
every x E X .

(b) => (a) Let {axla E A} be a system satisfying conditions (SS 1) and
(SS2) of (b) . For every x' E X' and any x E j-1 (x'), let a( x , x) = ax

and b(x, ,x ) = 1 .

	

Then the system {(a(x, x), b(x , ,x), x)jx' E X', x E
j-1 (x'), ax

	

0} satisfies conditions (1), (2) and (3) of Proposition
4.4(b) . Indeed, conditions (1) and (2) are obvious . Let now 0 :7~ r E Rg .
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(a(.,,2))2 ® b(.,,x)r =

	

1:

	

a' 'r

	

a'r xg
aE1 -1 (x')

	

XE1-1 (x') aEC-1 (a')

=

	

1:

	

(raxg)xg =

	

E

	

(ray)y =
XE1-1 (X') YE1- '(X'g)

(ra(x,g,s))x ® b(x,g,x) .
XE1-1 (x'9)

Proposition 4.4 applies to finish the proof.

Definition. Let ~ : X -4 X' be a morphism of right G-sets . A ~-
separability system in a G-graded ring R is a system {axlx E X} of
elements in Re satisfying conditions (SS1) and (SS2) of Corollary 4.9 .
Remarks . (1) Note that if X =-G, X' is a singleton and

	

: G -~-> X'
is the unique possible map, then R has a I-separability system if and
only if R has a separability system in the sense of [Ra] .

(2) Let

	

: X I X' be a morphism of right G-sets and R a G-graded
ring .

(a) If SI is separable (or equivalently, if R has a I-separability sys-
tem), then ~ is epic .

(b) If 1 is epic and for every x' E X', ~-1 (x') is finite with order
invertible in R, then ax = 1~-1(1(x))1-1 is a ~-separability system
whenever l~~-1(x')1 is constant in each orbit of X' .

(c) Assume that ~ is epic . For every orbit Y in X let ~Y : Y -; ~(Y)
be the restriction of ~ to Y . R has a ~-separability system if and
only if it has a ~Y-separability system for every orbit Y of X.
Namely, if for every orbit Y in X, {ay ¡y E Y} is a ~Y-separability
system for R, then {afx E X} is a ~-separability system for R .

5 . Weak dimension

Let G be a group, H a subgroup of G and R a G-graded ring .
Let G/H be the -set of left H-cosets and cOH : G ---> G/H the canonical

projection . In order to simplify the notation let us denote by TH and SH
the functors T,,H : R - gr ~ (R, G/H) - gr and S'PH : (G/H, R) - gr -~
R - gr respectively.

For a (graded) ring (gr.)w . dim(R) will denote the (graded) weak di-
mension of R . Similarly, for a R-module, f.d.(M) will denote the flat
dimension of M. Recall that, for a graded module RM, the graded flat
dimension coincides with the flat dimension (see e.g . [NV1]) .
Next theorem extends Theorem 7 in [Ríl] and gives an approach to

answer Question 2 in the same paper .
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Theorem 5 .1 . Let R be a G-graded ring . Assume that for every
finitely generated subgroup H of G the functor SH is separable. Then
gr.w . dim(R) =w. dim(R) .

Remark. Note that if Si, is separable, then the H-graded ring R(H) =
® Rh has a separability system (in the sense of [Ra]) . Indeed, SH is

ghEH
separable if and only if R has a ~OH-separability system . But if {xg l g E
G} is a WH-separability system, then {xh jh E H} is a separability system
for R(H) .
The converse is not true in general as the following example shows.
Example. Let K be a field of characteristic 2. Let G= Z2 x Z2 and

H the subgroup of G generated by (1,1) . Consider the ring R of the

R(H) . But R has not a WH-separability system . Indeed, if {ag Ig E G} is
0 1 0
0

	

0

	

0) a(0,0)
0 0 0

0 1
0 0
0 0

0 0 1
0 0 0 ) a(0'0) .
0 0 0

a WH-separability system, then a(1,0)

0 0 1
and a(0,1)

	

0

	

0

	

0

(0 0 0
a(0,1) and 1 = a(0,1) + a(1,0) = 2a( 1,0 ) = 0.

0
0
0

Therefore a( 1,0 ) = a(0,0) _

Lemma 5.2 . Let RP be a projective - left R-module and M

	

E
Gen(RP) .

	

Then RM is projective if and only if it is projective in the
category Gen(RP) .

Proof- Let f : K, L be a homomorphism in the category Gen(RP) .
If f is surjective, then f is an epimorphism in the category Gen(RP) .

matrices of the form

given by :

a
0
0

b
a
0

c
0 1 with entries in K. R has a G-grading
a

a 0 0

R(0,0) =

(0

0 a 0 la E K =, R(1,1) 0
0 a

0 K 0 0 0 K

R(1,0) =

(0

0 0 0 , R(0,1) = (0 0 0
)

0 0 0 0 0

1 0 0
Then {a(0,0) = 0 1 0 1 =, a(I,1) 0} is a separability system for

0 0 1
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Conversely, if f is an epimorphism in the category Gen(RP) and C is
the cokernel of f, then the canonical projection p : L --> C is also a
homomorphism in Gen(RP) such that p o f = 0 . Thus C = 0, this
implies that f is surjective .

Since RM E Gen(RP), then there exists an epimorphism f : P(') -> M
which is an epimorphism both in Gen(RP) and R-mod. Thus RM is
simultaneously projective in R-mod and Gen(RP) .

Let C be a Grothendieck category. Recall that an object F in C is
said to be flat if for every finitely presented object M in C and every
epimorphism f : N --> F, the correspondent homomorphism of abelian
groups Homc(M, f) : Homc(M,N) ---> HomD(M,F) is an epimorphism
(see e.g. [Po]) .
When I is an idempotent left ideal of a ring R, then Gen(RI) is a

Grothendieck category (see e.g. [W]) because it is closed under submod-
ules . Of course, a left ideal with local units is an idempotent ideal .

Proposition 5 .3 . Let I be a left ideal of R with local units .

	

Then,
an object F in Gen(RI) is flat in this category if and only if it is flat as
a left R-module .

Proof- Since Gen(RI) is closed under subobjects, the finitely gener-
ated (resp. finitely presented) objects of Gen(RI) are just the finitely
generated (resp. finitely presented) left R-modules generated by RI .
Moreover, as we have remarked in the proof of the previous lemma the
epimorphisms in Gen(RI) are the epimorphisms in R-mod between ob-
jects in Gen(RI) . Therefore the necessary condition is obvious .

Let now F be a flat object in Gen(RI) . First we will see that for
every idempotent e E I, eF is flat as a left eRe-module . Consider Re as
an R - eRe-bimodule and the functors H = Hom(RRe, -) : R-mod
eRe-mod and T = eR ®eRe - : eRe-mod - R-Mod. Let ¡t : IeRe-mod -~
HT and e : TII

	

1R-mod be the unit and the counit of the adjoint pair
(T, H) .

Let M be a finitely presented left eRe-module and f : M --> eF a
homomorphism of left eRe-modules, then T(M) is a finitely presented
left R-module in Gen(RI) . Let p : I(X) - F be an epimorphism . By
flatness of F in Gen(RI) there exists g : T(M) -> I(X) such that p og =
EF, o T(f) . Since Re ®,R, M is finitely generated, there exists Y C_ X
finite such that Im(g) C_ I(Y) and hence there exist g' : T(M) -> I(Y)
and p' : I(Y) ---> F such that p' of = EF oT(f) . Applying the functor
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H, one has a commutative diagram

f

-1 HT(M)

HT(f) 1
H(9,) . H(I(Y)) - (eR)(Y)

1 H(p)
Fe

	

l¿Fe
) HTH(F)

	

H(F
)

)

	

H(F)

but pX is an isomorphism for every X E eRe-mod . On the other hand
H(--F) - PH(F) = 1H(F) . Thus f factors throught eR,(Re)(Y) which is
projective and finitely generated and hence f factors throughout a finite
product of copies of eRe . This proof that eReeF is fiat .
Now we prove that RF is fiat . Let J be a right ideal of R and assume

n
that r_ rlml = 0 for ml, m2, . . -,M, E F and rl, r2, . . . . r n E J .

	

Let
i=1

e be an idempotent in I such that eml = ml for every i = 1, 2, . . . . n .
n

	

n

	

n

	

n
Then

	

rl ®ml =

	

rl ® eml =

	

rle® eml . Therefore

	

rle (9 eml
i=1 i=1

	

i=1

	

i=1
belongs to the kernel of the canonical Je ®eRe eF - eRe, which is
injective . Therefore it is 0 in Je (DeRe eF and hence it is 0 in J OR F.

Lemma 5.4 . Let ~ : X --> X' be a morphism of left G-sets and assume
that G aets freely on X . For every x' E X', Sj ((x')R) is ásomorphic to
®

	

(x)R . Therefore SI preserves projectivity.
I(x)=x'

Proof.. For every x E j-1(x') set fx : (x)R , S£((x')R) given by :
fx (r) = ry if r E y (x)R . Note that if r E R9 and gx = y then gx' =
j(y) and hence r E ¿(y)(x')R . If r E Rg and s E Rh, then fx (rs) =
(rs)ghx = r(s)hx = rfx (s) . Thus fx is a homomorphism of left R-
modules and it is obviously graded . Therefore there is an homomorphism
f :

	

®

	

(x)R ---> Sj ((x')R) such that f restricted to (x)R is equal to

fx for every x E -1 (x') .

Now we show that f is bijective . Let E rx E Ker(f) where rx E (x)R .
xEX

Since f is a graded homomorphism, then E y (rx) E Ker(f) for any
xEX

y E X. If g E Supp(y(rx)) (1 Supp(y(rx», then gx = y = gx', therefore
x = x' . Thus 0 = f( E y(rx)) = ( E y(rx))y and hence y (rx) = 0 for

xEX xEX
every x, y E X. This proof that f is injective . On the other hand, if
ry E S,((x')R)y, then r E g( y)(x')R . Therefore, gx' = «y) for every
g E Supp(r) . For every g E G, let xg = g-l y . Then rg E y (x9)R and
fxy (rg) = (rs)y . thus f(

	

rx9 ) = ry .
9EG
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Now if P E (G, X', R) - gr is projective, then it is a direct summand
of copies of modules of the form (x')R for some x' E X' . Since SI
preserves direct sums, SI(P) is isomorphic to a direct summand of a
direct sum of modules of the form (x)R for some x E X. Therefore
SI(P) is projective .

Let R be a G-graded ring . Let P = r_ R(g) . For every g E G let
gEG

U9 : R(g) - P

the canonical monomorphism . Consider P as an G x G-graded R-R-
bimodule as in Section 2 . For every subgroup H of G, we will consider
G as an G-H-set . We will use the following notation :
AH = END(PR)H
JH = {a E AH 1aux = 0 for almost all g E G}
UH =

	

®

	

R(C) considered as an G/H x G/H-graded bimodule as
CEG/H

in Section 2 .
SH = End gr_(R ,G/H) (U)
IH = {a E SH lauc = 0 for almost all C E G/H}.

Lemma 5 .5 . JH is projective as a left AH-module .

Proof. Actually JH = ® AHPg.
gEG

Proof of Theorem 5.1 :
First it is well known that gr.w . dim(R) < w. dim(R) (see e.g . [NV1]) .
Assume that gr.w . dim(R) <_ n . Let H be a finitely generated sub-

group of G and M E (G/H, R) - gr . Let

. . .~P2~p,-~PO~

be a projective resolution in (G/II, R) - gr. Then by Lemma 5 .4

. . . .~ Srr(P2) SH~f2>
11 S~> Po

SH( .fo)>

is a projective resolution in R - gr . Therefore, Ker(SH(f�,_1)) is flat
(being f_1 = 0 : M - 0) . But Ker(SH(fn_ z )) = SH(Ker(f,,_1)) and
SH is separable, therefore Ker(f,,_ 1 ) is fiat . Thus for every M E
(G/H, R) - gr, fd(M) < n.
Let B = END(RP)H . Then JH = {ca E Bjuga = 0 for almost all

g E G]} . By Theorem 3.4 (G/H, R) - gr is equivalent to Gen(SH (IH)) .



CATEGORICAL METHODS IN GRADED RING THEORY

	

529

By Corollary 3 .10, Gen(B(JH)) is equivalent to Gen(sH (IH)) . Finally, by
Lemma 3.5 Gen(B(JH)) is equivalent to Gen(AH (JH)) . Thus fd(M) < n
for all ME Gen(AH (JH)) .

For every subgroup H of G, IG is isomorphic to (IH)(G1H) as a right
AH-module . Thus Gen(AH (IG)AH ) = Gen(AH(IH)) .

Let M E Gen(AG (JG)) and

. . . -, P2- f2
--> p,-

fl > Pa fo > M---,0

a projective resolution ofM such that P,,, E Gen(AG (JG)) for every n >
0 . Note that such a projective resolution exists because Gen(AG (JG))
is closed under submodules and A,,(JG) is projective (see Lemma 5.5) .
Since AH (AG) is projective and restriction of scalars sends modules in
Gen(AG (JG)) to modules in Gen(AH (JG)), then AH Ker(f�,-1) is fiat .
But AG is the direct limit of the AH's where H runs on the finitely
generated subgroups of G . Therefore AH Ker(f,,_1) is fíat and hence
fd(AGM) < n for every M E Gen(A,(JG)) .
Now by using the equivalente Gen(AG (JG) AG) = Gen(BG J) of Lemma

3.5 one has that fd(BGM) < n for every M E Gen(BG (JG)) . And using
the equivalente Gen(BG (JG)) = Gen(SG IG) = R-mod of Corollary 3.10
for G = X = H one has that w . dim(R) < n.
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