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NOTES ON A CLASS OF SIMPLE
C*-ALGEBRAS WITH REAL RANK ZERO

K. R. GOODEARL

Dedicat a la memdria d’en Pere Menal,
un bon amic i un bon matemdtic

Abstract

A construction method is presented for a class of simple C*-
algebras whose basic properties -including their real ranks- can
be computed relatively easily, using linear algebra. A numerical
invariant attached to the construction determines whether a given
algebra has real rank 0 or 1. Moreover, these ailgebras ali have
stable rank 1, and each nonzerc hereditary sub-C™-algebra con-
tains a nonzero projection, yet there are examples in which the
linear span of the projections is not dense. (This phenomenon
was first exhibited by Blackadar and Kumjian.) The construction
alao produces easy examples of simple C*-algebras with real rank
0 and stable rank 1 for which Ky fails to be unperiorated.

Introduction

The concept of real rank for complex C*-algebras was introduced by
Brown and Pedersen |7 to provide an algebraic invariant that agrees
with the topological dimension of the spectrum in the commutative case
— unlike the stable rank, which in the commutative case equals one plus
the integer part of half the dimension of the spectrum. In general, C”-
algebras with real rank zero (that is, with the property that the set
of invertible scif-adjoint elements in the algebra is dense in the set of
all seif-adjoint elements) have intercsting parallels with zero-dimensional
topological spaces. Somewhat suprisingly, many C*-algebras constructed
from higher-dimensional building blocks turn cut to have real rank zerc.

This research was partially supported by a grant {rom the National Science
Foundation
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In particular, simple C*-inductive limits of homogeneocus C*-algebras
of arbitrarily large dimension “often” have real rank zero (and stable
rank one), as proved in work of Blackadar, Bratteli, Elliott, Kumjian [4],
Blackadar, Dadirlat, Rgrdam (5], and Dadarlat, Nagy, Némethi, Pasnicu
[8]. .For example, the main results of {5] show that if a simple unital
{™*-algebra A can be written as the C*-inductive limit of 2 sequence of
homogeneous C*-algebras M, (C{X)) with “slow dimension growth”
{meaning that the X}, are connected and limg o0 n;l dim X, = 0), then
A has stable rank one (that is, the st of invertible elements is dense in
the algebra), and A has real rank zero if and only if there are encugh
projections in A to separate the tracial states. These results are based
on substantial topological arguments.

Qur aim here is to make available a class of examples of C*-algebras
with low real rahk, whose structure is more transparent than that of the
examples mentioned above, and thus more open to further investigation.
Namely, we construct a class of simple unital C*-algebras whose basic
properties — including their real ranks — can be computed relatively eas-
ily, using linear algebra rather than topological methods. A numerical
invariant attached to the construction determines whether a given alge-
bra has real rank 0 or 1. Moreover, these algebras all have stable rank
1, and each nonzero hereditary sub-C*-algebra contains a nonzero pro-
jection. In some of these algebras the linear span of the projections is
not dense, providing new instances of a phenomenon first exhibited by
Blackadar and Kumjian in [6]. For all the algebras A constructed, the
partially ordered abelian group Kp{A) is weakly unperforated, yet there
are examples {with real rank 0} for which it fails to be unperforated.

The basic C*-algebra background that we shall need can be found
in many introductory books, such as [11]. For some basic K-theoretic
concepts, we refer the reader to [3], and for the basic theory of partially
ordered abelian groups we refer to [12]. Further, we adopt some of the
notation from [8]; in particular, given a C*-algebra A, we write Mo,(A4)

for the non-unital algebraic direct limit of the matrix algebras M,(A4)
-]
00

directed union of the algebras #,{A)}. Finally, we denote the orthogonal
sum of m copies of a projection p € My.{(A) by m.p. In case p € M, (A),
we view m.p as a block diagonal mn x mn matrix with m blocks equal
to p. '

with connecting homomorphisms o — ( ), and we view M (A) as a

We thank Bruce Blackadar for his extensive comments on early drafis
of this paper.
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1. Ingredients

We fix the following notation and assumptions on which our class of
examples is based. Let X be a nonempty separable compact Hausdorff
space (not necessarily connected), and choose elements &;,%s, -+ € X
such that {Zn, Zs+1,. .- } isdense in X for each n. For all positive integers
n and k, let

8, Mp(C(X)) — Mi{C) C M (C(X))

be the C*-homomorphism given by evaluation at z,. Moreover, let
v(1),(2),... be positive integers such that v(n) | v{n + 1) for all n,
and set A, = M, (»){C(X)} for each n. Next choose unital block diago-
nal homomorphisms ¢, : 4, — Ar4: of the form

diag(identity, ..., identity, &,,.. ., 0, },

that is, ¢.(a) = diag(a,...,a,8x(a),...,6n(0)) for ¢ € A,. Let on
denote the number of identity maps unsed in the definition of ¢,, and
set Gon = Gs_1Ps—2 - Pn : Ap — Ag for s > n. Finally, let A be the
C*-inductive limit of the sequence

1 2 3

AI—DAQ—}A3—"'-‘

and for each n let 0, : A, — A be the natural map from A, to the
inductive limit.

Key Assumption. In each of the maps ¢,, at least one identity map
and at least one §,, occurs. In other words, 0 < a, < v(n+ 1}/v(n}.

The multiplicity pattern of the homomorphisms in these examples (if
we just count totals of identity maps plus evaluation maps) is that of
a UHF algebra in whose Bratteli diagram all the multiplicities are at
least 2. Similar examples can be constructed based on any simple infinite-
dimensional AF C*-algebra, as indicated in Section 7, Remark 3.

Because of cur key assumption, given an element @ € Ay, both a and
§,(a) appear as blocks in the block diagonal form of ¢,(a). Both ¢.(a}
and 8,41 ¢.(a) appear in turn as blocks in ¢n410-(a); hence, ¢ny1¢nla)
is a block diagonal sum of blocks of the forms a, 8,{a)}, én11(a), and so
on. Thus for s > n, the matrix ¢, »(a) is a block diagonal sum of blocks
of the forms a, n{a), ..., 8;_1{a), and each of these blocks appears at
least once.
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Lemma 1. A is a simple unital C*-algebra.

Proof: Obviously A 1s unital. To prove simplicity, it suffices to show
that the algebraic direct limit of this system Is simple (see ¢.g. (1, Lemma
4.5]). Thus given any nonzero element a € A, we need to show that
Asts n(a)A, = A, for some s > n. Since {Tn,ZTn41,...} is dense in
X, there is some s > n for which §,_,(a) # 0. This nonzero constant
matrix appears as a diagonal block in ¢; (¢}, from which we conclude
that A;¢s n{a)A; = A, as desired. W

2. Stable rank one

We show that A has stable rank I, using a method of Rgrdam [18],
which is based on the observation that all nilpotent elements in a unital
C*-algebra B lie in the closure of GL{B) (cf. [18, (4.1)]}.

Lemma 2. Let a € A, and € > 0. If a is not invertible, there ex-
ist &' € Ap ond unilartes v,w € M,(){C) for some s > n such that
lle’ — all < € and ve. .(a"Yw is nilpotent.

Proof: Since a is not invertible, a(z)} is a singular matrix for some
z € X. Moreover, since {&g, Tn41,-.- } is dense in X, there exists j > n
such that j|la(z;) —alz)|| < €. Set o' = a+afz) —a(z;); then ||¢' —o| < €
and &;{a’) = a(z} is singular.

Let v = v(n). Since §;{a") is singular, there exist unitary matrices
U1, up € M,(C) such that u16;{a")us is & block diagonal matrix with a
1 x 1 zero block and a second {¢ — 1) x (i — 1) block.

Let b = ¢;41,.(a’} and observe thai b is block diagonal with blocks
v x v or smaller. Moreover, b has at least one block equal to §;(a’}).
Thus there exist unitaries uz, ug € M, (;41y(C) such that uzbuy is block
diagonal with at least one 1 x 1 zero block and all blocks at most v x v.

Next set s = j+1+v and ¢ = ¢ ;41 (u3bus), and observe that c is block
diagonal with at least 2 blocks being 1 x 1 zerc blocks and all blocks
being at most v x v. Conjugation of ¢ by an appropriate permutation
matrix can move v of the zero blocks into adjacent positions on the
diagonal. Thus there is a unitary us € M,5){C) such that uscus is
block diagonal with a v x v zero block in the upper left corner and all
blocks at most ¥ x v.

Now ugcuy can be multiplied on the left by a permutation matrix

that moves the first v rows to the bottom and shifts the remaining rows
up, resulting in a strictly upper friangular matrix. Thus there cxists a
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unitary us € M,(y(C) such that uguscug is strictly upper triangular,
hence nilpotent.

We complete the proof by setting v = wgusés ,;+1{us) and
w = ¢5‘J-+1(u4)u;. |

Theorem 3. The stable rank of A @5 1.

Proof: We show that GL{A) is dense in A. For this, it suffices to show
that n,{A.) is contained in GL{A)~ for each n.

Consider & € A,. If a is invertible, then n,{a) € GL(A}). If not, let
¢ > 0 and use Lemma 2 to find a. € A4, and unitaries v, w € M, 5(C)
for some s > n such that ||a, — a|| < € and ve, n{a.)w is pilpotent. Then
7s{VINn{ae s (w) is a nilpotent element of A, whence n,(v)n.{a.)ns:{w} €
GL(A)™, and consequently n,(a.) € GL{A)™. Since {n.{as) — ()]l <
¢, we conclude that n,(a) € GL{A}". &

In case dim X < oo, Theorem 3 follows immediately from [8, Theorem
3.6]. (CL also [5, Theorem 1].} Even if dim X = oo, it is still possible
to apply (5, Theorem 1] in the following manner, as pointed out by
Blackadar. First use [16, Theorem VIL.3] to write X as an inverse limit
of finite C'W-complexes X,,. By repeating some X,’s if necessary, we
may assume that dim X,, € v{n)/n for all n. Now A is isomorpbic to
the C*-inductive limit of a sequence of the form

M,y (C(X1)) — M) (C(X2)) — My{C{X3)) — -+,

and this sequence satisfies the slow dimension growth hypothesis of [,
Theorem 1].

3. Projections in hereditary subalgebras

We next show that A has a large supply of projections — in particular,
every nonzero hereditary sub-C*-algebra of A contains & nonzero pro-
jection. This property was labelled (5P} in (2] and was investigated in
(6] and {17]. Blackadar [private communication] has observed that (SP)
holds in any C*-inductive limit satisfying the slow dimension growth
condition.

Lemma 4. Ifbe A, is self-adjoint with ||b]| > 1, there exists a posi-
tive element £ € A, for some s > n such that ||c|| < 1 and ¢, »[bcds n(8)
1§ @ monzero projection.

Proof: Since ||5|| > 1, there exists j > n such that ||§;{b)]] > 1. Since
8;{b} is a self-adjoint matrix, §;(b) = Aypr+- - -+ AmPwm for some nonzero
orthogenal projections p; € M, (,)(C) and some X; € R with |A;| > 1.
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Set b’ = ¢;41..(b), and note that ¥’ is block diagonal with at least one
block equal to &;(b). "Thus there is a nonzero projection ¢ € Aj4; such
that gb’ = ¥g = Aiq. Then ¢ = A} g is a positive element of 4,4, such
that |lf| = |Ai[72 < L and bleb’ = A]%0 b = q. B

Theorem 5. Each nonzero hereditary sub-C*-algebra of A conteins
a nonzero projection.

Proof: It suffices to show that for any positive clement @ € A with

[lell = 1, there is a nonzero projection in {ada)™. Choose a positive
elernent by € A, for some n such that |7 (bg) — ¢|| < 128 Then %g <

Boll < 32, and since by > O we see that the element b = by + 33
satisfies 1 < [|5]| < £. Hence, b is a positive element of A, such that
ll7(8) — all < g

By Lemma 4, there exists a positive element ¢ € A, for some s > n
such that flo|] < 1 and ¢, ,(b}cds () is @ nonzero projection. Thus
7 = 1 (B)ns{c)mm(b) is a nonzero projection in A, and d = an,(¢)a is a
positive element of aAa such that

I 1 65 1

_pl| < . e — _ . . e
ld=p) < llall-lell la—n ()l +ha— (8- el 6] < o+ =22 < ==

Consequently, ||d| > 1/2 and

17 1 1 1 1
2 _ 4l < Ad — —nll - — S I
62 ~d| < lldl-ld—pl + =l ol + lp—dll < £+ 3c 20 < 1.

Therefore there exists a nonzero projection in the C*-algebra (ada)”
(see e.g. (11, Lemma 18.8]). W

4. The linear span of the projections

In this section, we show that the linear span of the projections in
A need not be dense in A, that is, 4 need not satisfy (LP), in the
terminotogy of [2], [17]. It follows that A can have real rank 1.

For s > n, note that ¢s,n 15 & block diagonal map consisting of
Gplinig - Gs_q identity maps together with maps from the list 4,, ...,
65_1‘ Set

v(n) .

v{s}’
we might call this number the weighted identity ratio for (ps n. Observe
that

v{s}

vis+ 13

Wep = Hplnpy Qg

Werln = Ws nls
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and that 0 < a.{s}/v{s + 1} < 1, whenee 0 < w1 < Wen- Thus
there exists a limit for the sequence {w; .} as s — oco.

Use tra to denote the trace of a v X v matrix a, and recall that [tra| £
V|lall-

Theorem 6. Assume thaet limy .cwy) = € > 0, and that X is not
totally disconnected. Then the lineor span of the projections in A is not
dense, and A has real rank 1.

Proof: Since A has stable rank 1, its real rank is at most 1 [7, Propo-
sition 1.2]. In a C*-algebra of real rank 0, the self-adjoint clements can
be approximated by real linear combinations of orthogonal projections
[T, Theorem 2.6], and so the complex linear span of the projections is
dense in the algebra. Hence, the second conclusion of the thecrem will
follow from the first.

Since X is not totally disconnected, there exist distinct ¢, 2 € X which
cannot be separated by clopen sets. By Urysohn’s Lemma, there exists
f € C(X) such that f{y} =0and f(2) = 1. Let a = diag(f, f,..., f) €
Ay

Suppose there exists & € A such that b is a linear combination of
projections and [|b — mia)|| < ¢/4. Then there exists ¢ € A, for some
s > 1 such that ¢ is a linear combination of projections and |jn,(e} —b|| <
efd. Thus ||c — ¢s1{a}]| < €/2.

Now w; 1 > limy_oc wy) = €, and 30 ¢ 1{a) is a diagonal matrix with
more than ev(s) diagonal cntrics equal to f, while the remaining diagonal
entries are constant. Evaluating at y and z and subtracting, we find that
$s1(a)(2)—¢s1(a)(y) is a diagonal matrix with more than ev{s) diagonal
entries equal to 1, while the remaining entries are zero. Thus

tr (¢ 1(a)(2) — ¢s,1{a}(y)) > ev{s).

For any projection p € M,5(C(X)), the function z — trp{z) is 2
continuous map from X to Z, and so tr p{y) = trp(z}. This equality must
hold for linear combinations of projections as well, and hence tre(y) =
trez).

Finally, we have

[ tre(z) — s (a)(z)] < vis)lle(z) — dsa{a) (@)l < v(s)e/2
for all £ € X. However, since trefy) = trefz), this implies that

| tr ds,1(a)(2) — tr @1 (ad(y)] < w(s)e,
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contradicting our previous estimate.

Therefore 7 {a) cannot be approximated to within ¢/4 by a linear
combination of projections. B

In case X is connected, Theorem 6 can be obtained from [4, Theorem
1.3]. {Cf. also [5, Theorem 2]. If dim X = o, the argument at the end of
Section 2 is needed.} However, to use |4, Theorem 1.3] requires verifying
that the projections in A do not separate the tracial states, which is
about as labor-intensive as proving Theorem 6.

When the hypotheses of Theorem 6 are satisfied, A provides an ex-
ample of a simple unital C*-algebra satisfying (SP) but not (LP). The
first examples of this phenomenon were constructed by Blackadar and
Kumjian [6, Example 1.6, Corollary 1.10]. An explicit example in our
format may be constructed as follows, :

Example 7. A simple unital C*-aigebra A with stable rank I and real
rank 1 such that each nonzero hereditary sub-C*-algebra of A contains a
nonzero projection, but such that the linear span of the projections is not
dense i A.

Proof: Choose integers my,mg, - > 2 such that

= omy — 1
[[ =—>0
Py Ty

Construct A as above, where X is not totally disconnected, (1) = 1 and
vin+ 1) = mymg - -my,, and o, = my, — 1. Then

Wi 1 = Qd1Gz-- G

v(l):ﬁmk—l

m
k=1 k

for t > 1, whence lims oo wy 1 > 0. The desired properties of 4 follow

from Theorems 3, 5, 6. A

5. Real rank zero

We now determine exactly when A has real rank 0. First we record an

easy observation that appears, for instance, in the proof of [8, Lemma
3.3).
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Lemma 8. Let g be a projection in g ynital C*-algebre B such that
g < 1—g, and let b be a self-adjoint element of gBq. Then b is a limit
of invertible self-adjoint elements from B.

Proof: Let € > 0. Write 1 — ¢ as an erthogonal sum of projections ¢’,
¢ with ¢’ ~ q. If z is an invertible seif-adjoint element of (g+¢')B{g+¢)
such that ||z —b|| < €, then x+¢g” is an invertible self-adjoint element of
B such that ||z + ¢¢” — b|| < e. Thus without loss of generality, ¢ ~ 1 ~g¢.

Hence, we may identify B with a matrix algebra M2(C), where C is a
¢
00

adjoint element ¢ € €. Then a = (Eg) is an invertible self-adjoint
element of B such that |la — b < ¢ ®

unital C*-algebra {isomorphic to ¢Bg}, and b = ( ) for some self-

Theorem 9. A has real rank 0 if and only if either im; ooy =0
or X is tetally disconnected.

Proof- If the given limit is positive and X is not totally disconnected,
then A has real rank 1 by Theorem 6. If X is totally disconnected,
then dim X = 0 and so A has real rank 0 by [7, Propositions 1.1, 3.1,
Theorem 2.10]. Now assume that the given limit is zero. Since wy1 =
Wy 003 -+ ap_12(1}/v{n) for t > n, we also have

lim wr, =0
f—oo ’

for all n.

To show that A has real rank 0, it suffices to show that for any self-
adjoint clement o € A, and any € > 0, there is an invertible self-adjoint
element z € A such that ||z — n.{a}|| < e

We are done if a is invertible, so assume not. Then deta vanishes
somewhere on X, and so there exists 5 > n such that |detd:(a)| <
{e/2)*"). Now 6,(a) is a v(n) x v(n) matrix, and the product of its
eigenvalues (with multiplicities) equals det &,{a), so é;{e) must have an
eigenvalue A with |A| < e/2

Cousider the element b = ¢, 41 n(a) € A;41. Then b is block diagonal
with blocks of the form a or §;(a), and at least one block equal to 65(a}.
Set o = Oy - - g, then b has o blocks equal to a.

Since lim,_,eqwy s+1 = 0, there exists ¢ > s + 1 such that w11 <
1/(cw(n) +1). Set ¢ = ¢ »(a) € A¢, and note that ¢ is block diagonal
with “big blocks” of the form b or §;(b). Each of these big blocks is itself
block diagonal with “small blocks” of the form a or dx(a}.
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Now asp10540--ap_1v(s + 1}/vt) = wy oy < 1/{ov(n) + 1), and
hence :

v{t)

— — o RN ¢ R I
U(8+1) a1 42 i—1

av{njos 10,1 <

The right hand side of this ineguality is the mumber of big blocks of the
form é;(b) in c. BEach b-block contains only & small blocks equal to a,
while each §;(b)-block contains at least one small block equal to 8,{a).
Therefore in the small block decomposition of ¢, we sce that v{n) times
the number of a-blocks is less than the npumber of §;(a)-blocks.

We next break up each of the small blocks in ¢ into three pieces as
foliows. Diagonalize §:(a), and write 8;(a) = 0+ Ag, + @’ for some rank
1 projection g, and some a’ in (1 — g0 )M, () (C){1 — g, ). Write each of
the other 6;(a}-blocks as 0 + 0 + §;(a). Finally, write each a-block as
a+04+0. ’

Collecting and summing the projections corresponding o these de-
compositions, we obtain orthogonal projections 1, g2, g3 in M, (;)(C)
such that

G+g@tag=1

41, 2. g3 all commute with ¢;

qie is a block diagonal sum of a-blocks;
gaC = Aga;

gsc is g constant matrix.

The matrix size of gz equals the number of §;(a)-blocks in ¢, which we
have arranged to be greater than v{n) times the number of a-blocks in
¢, hence greater than the matrix size of ¢;. Thus ¢; < ¢a.

By Lemma 8, there is an invertible self-adjoint element z in
(g1 + g2)4:{m + g2) such that ||z — qic)l < ¢/2. Since || < ¢/2, we
get ||z ~ {g1 + @)l < ¢ Finally, gzc lies in a finite-dimensional sub-
C*-algebra of g3 g3, and so there is an invertible self-adjoint element
y € g3Ag3 such that ||y — g3¢)) < e. Hence, x + y is an invertible self-
adjoint element of A; such that ||z +y —¢|| < e

Therefore m(x + y) is an invertible self-adjoint element of 4 that lies
within € of n,(a). M

In case X is connected and dim X < oo, Theorem 8 can be obtained
from [5, Theorem 2|; if dim X < 2, it can also be obtained from [4, The-
orem 1.3]. {Cf. the comments following Thearem 6.} 1t is also possible to
apply [5, Theorem 2] in the general case by writing A as a C*-inductive
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limit of a different sequence of homogeneous C*-algebras, as discussed
at the end of Section 2.

It is easy to choose the parameters v(n) and @, such that the algebra
A has real rank 9. For example, if v{n) = 2" and a, = 1 for all n, then
wyy = 1/2471 for all ¢, and thus A has real rank 0 by Theorem 9.

6. Perforation in K,

In this section, we show that perforation occurs in Ky{A) only if this
group has torsion. We also provide an explicit calculation of Kg(A) in the
case that X is connected. Note that becausc A is simple, every nonzero
projection in A(4) is full. Consequently, every nonzero clement of
Ko(A)" is an order-unit, i.c., Kp(A) is a simple ordered group.

Recall that a simple partially ordered abelian group G is weakly un-
perforated provided that whenever m € N and z € G satisfy mz > 0,
it follows that z > 0. Thus G is unperforated, that is, mz > 0 im-
plies z > 0, precisely if G is both weakly unperforated and torsioniree.
See 20, Section 8] for a discussion of weak unperforation in non-simple
ordered groups.)

We write p < g for projections p, ¢ € M..{A) to mean that p < g while
P*g.

Theorem 10. Kg{A4) is weakly unperforated.

Proof: Since A has stable rank 1, it has cancellation of projections,
and so we just necd to show that if p, g are projections in Meo(A) with
m.p < m.g for some integer m > 2, then p < g. There is a nonzero
projection r € My {A) such that mp&r ~m.q.

After replacing p, ¢, r by equivalent projections, we may assume that
there arc projections ¢, f, g in Mi{A,) for some k, n such that 7,(e) = p,
a(f) = q, nm(g) = r. After increasing n if necessary, we may also assume.
that m.e@®g ~ m.f. Note that g # 0, and that m.§;(e)®6;(g) ~ m.6;(f)
for all j. Thus 6;(e) < 6;(f), and &;(e) < 8;(f) if 6;(g) #0.

Choose s > n such that §;_1{g) # 0. Set &’ = ¢, (e} and [’ = ¢ n{f)
in My (A,). Then €' is block diagonal with blocks of the form e or §;(e).
Hence, we can write ¢ = e; @ ep; where e; is block diagonal with all
blocks of the form e while ey is block diagonal with all blocks of the
form §,(e). Write f' = fi @ f2 in the same manner. Then m.e; < m.fi
and ey < fo. More precisely, e and f» are constant projections, and
rank fo > rankes.

Choose t > s such that 275 > mkv(n), and set e’ = ¢ n{e) and f” =
®:1.(f) in Mi(A,). Write e” = e3 @ e where e3 is block diagonal with
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all blocks of the form e while e, is block diagonal with all blocks of the
form 8;(e). Write f” = f2 & f4 in the same manner. Then m.ez < m.f3,
while 4 and f; are constant projechions with rank f5 > 2'~° + rank eq.
If & = qacneq - - -y, then es is block diagonal with exactly o blocks
equal to e, and so e3 ~ a.e. Similatly, f3 ~ «.f. Write o = m3 + v for
some nonnegative integers 3, v with v < m. Since m.e < m.f, we get
mf.e <mfB.f. On the other hand, vhku{n) < mkr{n) < 2*%, and so

rank fy > ykv{n) + rankey.

Since ¢ is equivalent to a projection in My, ) {C(X)}, it is subequivalent
to a constant projection of rank kv{n). Hence, e; & v.e < f;, and thus

e3bes~mBedvebes <mBfOfi<af®fa~fdfu
Therefore € < f', and consequently p < g, as desired. W

Theorem 10 can also be obtained from trace arguments, namely
by proving that if p and ¢ are any projections in M (A} such that
7(p) < 7{g) for all tracial states 7, then p £ ¢. The latter result
follows immediately from (15, Theorem 3.7] in case X is connected
and dim X < og; in general, it follows after modifying the sequence
Ai — Ay — ... n the manner described at the end of Section 2.

Given a partially ordered abcelian group G with an order-unit u, we
write S{G,u) for the set of states on (G, ), that is, the positive real-
valued group homomorphisms s on G satisfying s(u) = 1.

The following corollary can also be obtained from the argument at
the end of Section 2 together with the arguments in [9, Lemma 2.1.10,
Proposition 2.2.3, Corollary 2.2.4].

Corollary 11. The partial ordering on Ko(A) equals the strict order-
ing inhertted from the states, that is,

Ko(AYr = {0} U {z € Ko(A) | s(z) > 0 for all s € S(Ko{A), [14])}-

Proof: If z is a nonzero element of K(A)*, then z = [p] for some
nonzero projection p € My.{A). Since A is simple, p is full, and so there
exists a positive integer k such that 14 < k.p. Then [14] < kz in Kg(A),
and hence s(z) > 1/k for all s € S(Kg(4),[14]).

On the other hand, if y is an element of Ky(A4) such that s(y) > 0
for all s in S{Kp{A), [14]), it follows from [12, Theorem 4.12] that there
exists a positive integer m such that my > 0. Therefore y > 0 by
Theorem 10. B

The proof of the following example can be streamlined in case the
space X is connected, by appealing to Theorem 13. However, we prefer
to exhibit the easy direct argument.
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Example 12. A simple unital C*-algebra A, with steble rank 1 end
real rank 0, such that Ko{A) is weakly unperforated but not unperforated.

Proof: Cheose X so that Kg{C{X)) has 2-torsion; for example, X =
RP,, for any n > 2 [14, IV.6.47]. Then there exist projections p,q,r’ €
Moo (C{X)) such that 2p@® 7' ~ 2.g®+ while p@r » g r for all
projections r € My {C{X)). After replacing p and ¢ by p@&r' and g® 7',
we may assume that 2.p ~ 2.q.

Now construct A as above with v(n) = 2" and a, = 1 for all n. Then
A has stable rank 1 by Theorem 3 and Ko{A) is weakly unperforated by
Theorem 1. Since wyy = 21-¢ for all £ > 1, we also have lmy_go w1 =
0, and s0 A has real rank 0 by Theorem 9.

We may view p and g as projections in M- (C(X}) = A, for some n.
Then 1,(p} and n,{g) are projections in 4 such that 2.7,(p) ~ 2.9.(¢)
and 50 2[n{p)] = 2[mm(g)] in Ko(A).

Suppose that [7.(p)] = [7.(q)]. Then n.(p) ~ n.(g) because A has
stable rank 1. Hence, there is some s > n such that ¢, (P} ~ ¢sn(q).
Also, 2.9, o(p) ~ 2.¢5.n(g). Observe that ¢,,.(p) =p®p' and ¢, .(q) =
¢ @ ¢ where p’ and ¢’ are constant projections. Then

2.p@®2.p ~249® 2.4,

whence 2.6,(p) ® 207 ~ 2.5)(¢) ® 2.¢". Since 2.p ~ 2.g implies that
2.81(p) ~ 2.8:(g), we conclude that p’ ~ ¢'. However, we also have

PBY = sn(p) ~Esn(g) =007,
contradicting our assumption that p@r + g @ r for all projections r €
Mo (C(X)).

Thus [17,(p)} # [7=(g)], and consequently [1.(p)] — [7.(g}] is a nonzero
torsion element in Kg{A). Therefore Ky(A4) is not unperforated. ®

Blackadar has pointed cut another example with the properties of the
one just constructed, namely the tensor product of the CAR algebra
with the simple C*-algebra B given in [3, Exercise 10.11.2].

‘We conclude this section by computing Ko{A) in terms of Kp{C(X)}
when X is connected. Recall that in this casc there is a unique state
on {Ko{C(X )}, [Lepx)]) (see {3, Exercise 6.10.3]). This state is obtained
by taking ranks of projections, and so it is integer-valued. The kernel of
this state is called the reduced Ky group of C{X); it is usually denoted
Ko{C(X)), and it is naturally isomorphic to the corresponding reduced
KO-group of the space X, denoted K%(X).

Since the computation of K;(A) in terms of K1{C(X}} is quite easy
(whether or not X is connected), we include this as a companion to our
computation of Kg(A). '
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Theorem 13. Let U = ;L Zvin)™! C Q and V =
Unei Z{anen - an) ™ € Q.

(8) Ki(A) ¥ V@ K (C(X)).

(b} Now assume that X is connected. Set {G,u} = (K (C(X})},
[toexyl), let & be the unique state on (G,u), and let
W = UPV&kert). Set w = (1,0) € W, and give W the
strict ordering from the component U, that is, meke W inio @
partially ordered abelian group with positive cone

W+ = {(0,0)} U {(a,b) € W | a > O}

Then (Ko(A), [14]) & (W,w) as partially ordered abelian groups
with order-unil.

Proof: Set ag =1, and set B, = v(n+ Dv{n) ! —o, forn > 1.

{(a) Let Gy = K 1(C{X}), and identify K;(A,) with G, for all n. Let
us use additive notation for these abelian groups. For any unitary matrix
u € Uyn)(C(X)), the induced map Ki(¢n) : Gi — G sends the class
[u] to the class an[u]+ 8,0 (x)]. Since the unitary group of My, 41)(C)
is connected, the class of &,{u) vanishes in K{C}, and hence it also
vanishes in Gh. Thus Ki{¢x)}{[u]} = an[u]. In other words, the ho-
momorphism K,{¢,) is just multiplication by «,,. Since the functor K,
preserves direct limits (e.g., 3, p. 68]), K1{A) is isomorphic to the direct
limit, in the category of abelian groups, of the sequence

G, e e 2
Therefore we conclude that K 1(A4) =2 VR Gy.
(b) We may identify (Ko An),[1a.]) with {G,»(n)u) for all n. Set

n = Ko(@n) (G v(n)u) — (G,vin + Lu).

For any projection p € M. {A,), observe that ¢,(p) is a block diag-
onal matrix consisting of o, blocks equal to p followed by 5, blocks
equal to a constant projection of the same rank as p. Thus ¢r(p) ~

tn-p ® Brlrank p).1oixy, and consequently fo{[p]) = anlp] + Gat{[p]u.
Therefore

falz) = anz + Gut(z)u
forallze G,

Next let {H,v) be the direct limit, in the category of partially ordered
abelian groups with order-unit, of the scquence

(@, v(Lyw) 25 (€, vy T (@
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with natural maps g, : {G,v(n)u) — (H,v). Since the functor Kp
preserves direct limits (e.g. [11, Theorem 19.9]), we have (Ko{4), [14]) &
(H,v}.

Let K = kert. Since ¢ is a group homomorphism from G to Z and
t(u) = 1, there is a direct sum decomposition G = Zu D K {as abelian
groups, not necessarily as ordered groups). From the form of the maps
fn, we see that f,(Zu) C Zu and f,(K) C K for all n. Hence, as an
abelian group H is the direct sum of the direct limits of the sequences

3 2 i fa
Zu lzu 2 and K g D

The direct limit of the first sequence is just I/, with natural maps Za — U
sending u to v{(n)~!. The direct limit of the second sequence is V & K,
with natural maps K — V QK sending z to (auog - ap_1)”! @ 2.
Consequently, there is an abelian group isomorphism h : H — W such
that hg,(u) = (v{n)™1,0) and hg.(z) = (0,{ar0z - an_1)"! @ z) for
all n and all z € K. Thus

hgn(y) = ((n) 2(y), (aqe -+ 0met) T @ (y — Hy)w))

foralinandally e G.

Any nonzero element z € G7 satisfies ¢{z) > 0 by Corollary 11, whence
hgn{z) > 0 for each n. Thus hg,(GF) C W for all n. Since H* =
1SS, gn{G™*), it follows that h{(H*) C W*. Note also that A(v)
hg (v{)u) = w.

The projection t' : W — U C R is a state on (W, w)}, and since R is 2
positive homomorphism sending » to w, it follows that t'h is a state on
(H,v). There is just one state on {G, v{n)u) for each n, and so t'h must
be the only state on (H,v). By Corollary 11,

HY = {8tui{xc H|t'h(z) >0},

and thus A{H*) = Wt.
Therefore h : (H,v) — (W, w) is an isomorphism of partially ordered
abelian groups with order-unit. B

Observe that the partially ordered abelian group W given in Theorem
13 satisfies the Riesz interpolation property, and hence also the equiva-
lent Riesz decomposition property [12, Proposition 2.1). In fact, K¢{A)
satisfies Riesz decomposition whether or not X is connected, as follows
from Theorem 10 and [13, Corollary 4.7].
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7. Concluding remarks

1. Gong and Lin have proved that when A has real rank zero, its
exponential rank is at most 1 + ¢ [10, Theorem 1.3], that is, the set of
exponential unitaries in A is dense in the connected component of the
identity of the unitary group of A.

2. Blackadar has raised the interesting question of how extensive the
class of C*-algebras constructed here might be. More precisely, if B is a
simple unital C”*-inductive limit of a sequence of C*-algebras of the form
Mo (C(Xy)) {with arbitrary unital connecting homomorphisms), is B
isomorphic to one of the algebras A above? In particular, does this hold
when B has real rank zero, or when B is obtained from a C*-inductive
limit with slow dimension growth in the sense of [5]? Of course if B is
to be isomorphic to an algebra A constructed using a connected space
X, then Ko(B) and K, (B} must necessarily have the forms described in
Theorem 13.

Thomsen has observed that for simple (™-inductive limits with real
rank 1, the question above has & negative answer, as follows. On the one
hand, given any metrizable Choguet simplex &, there exists a simple C*-
algebra B, obtained as the C*-inductive limit of a sequence of algebras of
the form M, {C{[0, 1]}}, such that the tracial state space T(B) is affinely
homeomorphic to § [19, Theorem 3.9]. As long as § containg more than
one point, it follows from [18, Theorem 1.4] and (7, Proposition 1.2]
that B has real rank 1. On the other hand, when an algebra A as
constructed above has real rank 1, it can be shown that T(4) is affincly
homeomorphic to the Bauer simplex M (X) of all probability measures
on X; in particular, the extreme boundary of T(A) is compact. Thus if
the simplex § is chosen with non-compact extreme boundary, the algebra
B cannot be isomorphic to any of the algebras A above.

3. As mentioned earlier, we can also carry out our construction follow-
ing the pattern of any simple infinite-dimensional AF’ C*-algebra. (These
are precisely the AF C*-algebras that can be obtained from Bratteli di-
agrams in which all the multiplicities are at least 2.} The algebras 4,
would then have the form

MV(R,I)(C(X)) XX Mv(ﬂ.T(n})(C(X)):

and the homomorphisms ¢, would be tuples of block diagonal sums of
homomorphisms

Mu(ﬂ,i)(C(X)) — M.(C(X))

of the form diag(identity, ... identity,§,,...,8,) with at least one iden-
tity map and at least one §,. The resulting C*-inductive limits enjoy the
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same properties as the examples discussed above, provided the weighted
identity ratios w;, for s > n are redefined as follows.

First, write ¢ » as a 7(s}-tuple of homomorphisms A,— M, (s ;C(X},
and write the j** component of ¢; . as a block diagonal sum of homo-

morphisms .
$L% 1 My(n ) (CLX)) — M (C(X)).

Let al%, be the number of identity maps used in ¢17,, and define

(n)
We,n = max{ Z all
=1

vin,i)

mw&ﬁ|j:L”qﬂﬁ}

Finally, the condition “lim;_,wy1 = € > 0" in Theorem 6 should be
changed to the condition “lim; oo win = € > O for some n”, and the
statement of Theorem ¢ should be changed similarly.
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