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Abstract

NOTES ON A CLASS OF SIMPLE
C*-ALGEBRAS WITH REAL RANK ZERO

K. R. GOODEARL

Dedicat a la memória d'en Pere Menal,
un bon amic i un bon matemátic

A construction method is presented for a class of simple C*-
algebras whose basic properties -including their real ranks- can
be computed relatively easily, using linear algebra. A numerical
invariant attached to the construction determines whether a given
algebra has real rank 0 or 1 . Moreover, these algebras all have
stable rank 1, and each nonzero hereditary sub-C*-algebra con-
tains a nonzero projection, yet theie are examples in which the
linear span of the projections is not dense. (This phenomenon
was first exhibited by Blackadar and Kumjian.) The construction
also produces easy examples of simple C*-algebras with real rank
0 and stable rank 1 for which Ko fails to be unperforated .

Introduction

The concept of real rank for complex C*-algebras was introduced by
Brown and Pedersen [7] to provide an algebraic invariant that agrees
with the topological dimension of the spectrum in the commutative case
- unlike the stable rank, which in the commutative case equals one plus
the integer part of half the dimension of the spectrum . In general, C*-
algebras with real rank zero (that is, with the property that the set
of invertible self-adjoint elements in the algebra is dense in the set of
all self-adjoint elements) have interesting parallels with zero-dimensional
topological spaces. Somewhat suprisingly, many C*-algebras constructed
from higher-dimensional building blocks turn out to have real rank zero .

This research was partially supported by a grant from the National Science
Foundation
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In particular, simple C*-inductive limits of homogeneous C*-algebras
of arbitrarily large dimension "often" have real rank zero (and stable
rank one), as proved in work of Blackadar, Bratteli, Elliott, Kumjian [4],
Blackadar, Dádárlat, Rordam [5],and Dadárfat, `Nágy, Némethi, Pasnicu
[8] . .,For example, the main results of [5}, show that if a simple unital
C*-algebra A can be written as the C*-inductive limit of a sequence of
homogeneous C*-algebras M%(C(Xk)) with "slow dimension growth"
(meaning that the Xk are connected and limk-, >,) nk1 dim Xk = 0), then
A has stable rank one (that is, the set of invertible elements is dense in
the algebra), and A has real rank zero if and only if these are enough
projections in A to sepáráte the tracial states . These results are based
on substantial topological arguments .

Our aim here is to make available a class of examples of C*-algebras
with low real rank, whose structure is more transparent than that of the
examples mentioned aboye, and thus more open to further investigation .
Namely, we construct a class of simple unital C*-algebras whose basic
properties - including their real ranks - can be computed relatively eas-
ily, using linear algebra rather than topological methods . A numerical
invariant attached to the construction determines whether a given alge-
bra has real rank 0 or 1 . Moreover, these algebras all have stable rank
1, and each nonzero hereditary sub-C*-algebra contains a nonzero pro-
jection . In some of these algebras the linear span of the projections is
not dense, providing new instantes of a phenomenon first exhibited by
Blackadar and Kumjian in [6] . For all the algebras A constructed, the
partially ordered abelian group KO(A) is weakly unperforated, yet these
are examples (with real rank 0) for which it fails to be unperforated .

The basic C*-algebra background that we shall need can be found
in many introductory books, such as [111 . For some basic K-theoretic
concepts, we refer the reader to [3], and for the basic theory . of partially
ordered abelian groups we, refer to [12] . Further ; we adopt some of the
notation from [3] ; in particular, given a C*-algebra A, we write M,,(A)
for the non-unital algebraic direct limit of the matrix algebras Mn(A)
with connecting homomorphisms a H ( o o ) , and we view M,,, (A) as a
directed únion of the algebras M�,(A) . Finally, we denote the órthogonal
sum of m copies of a projection p E M~(A) by m.p . In case p E M,, (A),
we view m.p as a block diagonal mn x mn matrix with m blocks equal
top .

We thank Bruce Blackadar for his extensive comments on early drafts
of this paper .
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1 . Ingredients

We fix the following notation and assumptions on which our class of
examples is based . Let X be a nonempty separable compact Hausdorff
space (not necessarily connected), and choose elements XI,X2, . - - E X
such that {xn , xn+1 . . . . } is dense in X for each n . For all positive integers
n and k, let

Sn : Mk(C(X)) - Mk(C) C Mk (C(X))

be the C*-homomorphism given by evaluation at xn . Moreover, let
v(1), v(2), . . . be positive integers such that v(n) 1 v(n + 1) for all n,
and set An = M,(,) (C(X)) for each n . Next choose unital block diago-
nal homomorphisms Wn : An --> An+i of the form

diag(identity, . . . . identity, Sn, . . . , ón),

that is, On(a)

	

= diag(a, . . . , a, S-ra(a), . . . , Sn(a)) for a E

	

An.

	

Let an.
denote the number of identity maps used in the definition of wn, and
set Ws,n = 0s-10s-2 . . . Wn : An - A,5 for s > n .

	

Finally, let A be the
C*-inductive limit of the sequence

A l
01
A2-A3- . . .

and for each n let ?7n : An -4 A be the natural map from An to the
inductive limit .
Key Assumption. In each of the maps Wn, at least one identity map

and at least one bn occurs . In other words, 0 < Can < v(n + 1)/v(n) .
The multiplicity pattern of the homomorphisms in these examples (if

we just count totals of identity maps plus evaluation maps) is that of
a UHF algebra in whose Bratteli diagram all the multiplicities are at
least 2 . Similar examples can be constructed based on any simple infinite-
dimensional AF C*-algebra, as indicated in Section 7, Remark 3.

Because of our key assumption, given an element a E An, both a and
6,(a) appear as blocks in the block diagonal form of 0,,(a) . Both Wn(a)
and Sn+i0n(a) appear in turn as blocks in wrr.+l0n(a) ; hence, 0n+10,,(a)
is a block diagonal sum of blocks of the forms a, S,(a), Sn+I(a), and so
on . Thus for s > n, the matriz 0,,n(a) is a block diagonal sum of blocks
of the forms a, 5n (a), . . ., 6,s _1(a), and each of these blocks appears at
least once .
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Lemma 1 . A is a simple unital C*-algebra .

Proof. Obviously A is unital . To prove simplicity, it suffices to show
that the algebraic direct limit of this system is simple (see e.g . [1, Lemma
4.5]) . Thus given any nonzero element a E A�,, we need to show that
A.,O,,n, (a)A,, = AS for some s > n .

	

Since {xn , x,,,+1, . . . } is dense in
X, there is some s > n for which 6,- j (a) :~ 0 . This nonzero constant
matrix appears as a diagonal block in W,,n(a), from which we conclude
that A,,O,,n(a)A,, = As as desired .

2 . Stable rank one

We show that A has stable rank 1, using a method of Rordam [18],
which is based on the observation that all nilpotent elements in a unital
C*-algebra B lie in the closure of GL(B) (cf . [18, (4.1)]) .

Lemma 2. Let a E An and e > 0. If a is not invertible, there ex-
ist a' E An and unitaries v, w E M,(,) (C) for some s > n such that
¡la' - al¡ < e and vO,,,n(a')w is nilpotent .

Proof. Since a is not invertible, a(x) is a singular matrix for some
x E X . Moreover, since {xn, xn+1, . . . } is dense in X, there exists j >_ n
such that Ija(xj)-a(x)11 < e . Set a' = a+a(x)-a(xj) ; then ¡la'-al¡ < e
and Sj (a') = a(x) is singular .
Let v = v(n) . Since 6j(a) is singular, there exist unitary matrices

UDu2 E M� (C) such that u15j (a')u2 is a block diagonal matrix with a
1 x 1 zero block and a second (v - 1) x (v - 1) block .
Let b = Oj+l,n(a') and observe that b is block diagonal with blocks

v x v or smaller . Moreover, b has at least one block equal to 5i (a') .
Thus there exist unitaries u3, u4 E M� ( j+1 ) (C) such that u3bu4 is block
diagonal with at least one 1 x 1 zero block and all blocks at most v x v .
Next set s = j+l+v and c = O5j+1(u3bu4), and observe that c is block

diagonal with at least 2" blocks being 1 x 1 zero blocks and all blocks
being at most v x v . Conjugation of c by an appropriate permutation
matrix can move v of the zero blocks into adjacent positions on the
diagonal . Thus there is a unitary u5 E M� ( , ) (C) such that u5cu5 is
block diagonal with a v x v zero block in the upper left corner and all
blocks at most v x v .
Now u5cu5 can be multiplied on the left by a permutation matrix

that moves the first v rows to the bottom and shifts the remaining rows
up, resulting in a strictly upper triangular matrix . Thus there exists a
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unitary us E M� (,5 ) (C) such that ususcu5 is strictly upper triangular,
hence nilpotent .
We complete the proof by setting v = usus0,s,j+l(u3) and

w = 0,sj+1(u4)u5-

Theorem 3.

	

The stable rank of A is 1 .

Proof.- We show that GL(A) is dense in A. For this, it suffices to show
that 71n(An) is contained in GL(A)- for each n.

Consider a E An. If a is invertible, then rln(a) E GL(A). If not, let
e > 0 and use Lemma 2 to find aE E An and unitaries v, w E M� (,) (C)
for some s > n such that ¡la, -al¡ < E and VO,,n(aE)w is nilpotent . Then
rls(v)rln(aE)rls(w) is a nilpotent element of A, whence rls(v)?1n(aE)rls(w) E
GL(A)- , and consequently rln(aE) E GL(A)- . Since jjrlv,,(ae) - rln(a)ll <
c, we conclude that 97n(a) E GL(A)- .

In case dim X < oo, Theorem 3 follows immediately from [8, Theorem
3.6] . (Cf . also [5, Theorem 1] .) Even if dimX = oo, it is still possible
to apply [5, Theorem 1] in the following manner, as pointed out by
Blackadar . First use [16, Theorem VII .3] to write X as an inverse limit
of finite CW-complexes Xn . By repeating some X,,,'s if necessary, we
may assume that dimX, < v(n)/n for all n. Now A is isomorphic to
the C*-inductive limit of a sequence of the form

X(1)(C(Xl)) - Mv(2)(C(X2)) -Mv(3)(C(X3)) - . . .

and this sequence satisfies the slow dimension growth hypothesis of [5,
Theorem 1] .

3 . Projections in hereditary subalgebras

We next show that A has a large supply of projections - in particular,
every nonzero hereditary sub-C*-algebra of A contains a nonzero pro-
jection . This property was labelled (SP) in [2] and was investigated in
[6] and [17] . Blackadar [private communication] has observed that (SP)
holds in any C*-inductive limit satisfying the slow dimension growth
condition .

Lemma 4. If b E A, is self-adjoint with libil > 1, there exists a posi-
tive element c E AS for some s > n such that ~Icil < 1 and 0s,n(b)cOs,n(b)
is a nonzero projection.

Proof.. Since ¡lb¡¡ > 1, there exists j > n such that ~jbj (b)jj > 1 . Since
6j(b) is a self-adjoint matrix, 6j (b) = Alpl+ . - - +,\mpm for some nonzero
orthogonal projections pi E M�(n) (C) and some Ai E R with 1A11 > 1 .
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Set b' = Oj+l,n(b), and note that b' is block diagonal with at least one
block equal to Sj (b) . Thus there is a nonzero projection q E Aj+1 such
that qb' = b'q = Alq . Then c 2q is a positive element of Aj+1 such
that ¡cil _ JA11-2 < 1 and b'cb' 2 b'gb' = q .

Theorem 5 . Each nonzero hereditary sub-C*-algebra of A contains
a nonzero projection .

Proof.. It suffices to show that for any positive element a E A with
liali = 1, there is a nonzero projection in (aAa) - . Choose a positive
element bo E An for some n such that llgn(bo) - al¡ < 128 . Then i28 <

bol¡ < 128 , and since bo >_ 0 we see that the element b = bo + 128
satisfies 1 < ¡lb¡¡ < s . Hence, b is a positive element of An such that
II?7n(b) - all < 1
By Lemma 4, there exists a positive element c E AS for some s > n

such that llcll < 1 and 0s,n(b)cOs,n(b) is a nonzero projection . Thus
p = 71n(b)rls(c)rln(b) is a nonzero projection in A, and d = aris (c)a is a
positive element of aAa such that

Ild -pil < ¡¡al¡ 'licil . lla-r7n(b)II+IIa- ?1n(b)II'llcll'llbll < 64 + 1.64 64 < 16

Consequently, ¡id¡¡ > 1/2 and

¡id2- di¡ < ildli . Ild - pll+Ild - pil'jipi¡+lip- dil < 16 . 16 + 16 + 16 < 4

Therefore there exists a nonzero projection in the C*-algebra (aAa) -
(see e.g . [11, Lemma 19.8]) .

In this section, we show that the linear span of the projections in
A need not be dense in A, that is, A need not satisfy (LP), in the
terminology of [2], [17] . It follows that A can have real rank 1 .

For s > n, note that Ws,n is a block diagonal map consisting of
cenan+1 . . . as-1 identity maps together with maps from the list bn, . . . ,
5,-, . Set

v(n)
Ws,n = cenan+l " . . as-1

v(s)

.

we might call this number the weighted identity ratio for 0s,n . Observe
that

4 . The linear span of the projections

Ws+l,n = Ws,nas v(S(+)1)
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and that 0 < asv(s)/v(s + 1) < 1, whence 0 < Cds+l,n < ws,n . Thus
there exists a limit for the sequence {ws,n} as s -> oo .
Use tr a to denote the trace of a v x v matrix a, and recall that I tr al

vIIaII-

Theorem 6 . Assume that lim t_,,,,wt ,1 = c > 0, and that X is not
totally disconnected . Then the linear span of the projections in A is not
dense, and A has real rank 1 .

Propf. Since A has stable rank 1, its real rank is at most 1 [7, Propo-
sition 1 .2] . In a C*-algebra of real rank 0, the self-adjoint elements can
be approximated by real linear combinations of orthogonal projections
[7, Theorem 2 .6], and so the complex linear span of the projections is
dense in the algebra . Hence, the second conclusion of the theorem will
follow from the first .

Since X is not totally disconnected, there exist distinct y, z E X which
cannot be separated by clopen sets . By Urysohn's Lemma, there exists
f E C(X) such that f(y) = 0 and f(z) = 1 . Let a = diag(f, f, . . . , f) E
Al.
Suppose there exists b E A such that b is a linear combination of

projections and IIb - q, (a)¡¡ < E/4 . Then there exists c E AS for some
s > 1 such that c is a linear combination of projections and Ilrl s(c)-b~~ <
c/4 . Thus ¡le - 0s,i(a)¡¡ < c/2 .
Now ws,i > lim t_.. wt,i = E, and so 0,,j(a) is a diagonal matrix with

more than Ev(s) diagonal entries equal to f, while the remaining diagonal
entries are constant . Evaluating at y and z and subtracting, we find that
0.,, (a)(z) - 0,, (a) (y) is a diagonal matrix with more than ev(s) diagonal
entries equal to 1, while the remaining entries are zero . Thus

tr(O.,i(a)(z) - 0s,i(a)(y)) > Ev(s) .

For any projection p E M,(s)(C(X)), the function x ~--> trp(x) is a
continuous map from X to Z, and so tr p(y) = trp(z) . This equality must
hold for linear combinations of projections as well, and hence tr c(y) _
tr c(z) .

Finally, we have

1 tr c(x) - tr 0s,i (a) (x) I :~ v(s) II c(x) - 0s,i (a) (x) II < v(s)c/2

for all x E X. However, since tr c(y) = tr c(z), this implies that

1tr0s,1(a)(z) - tr0s,i(a)(y)I < v(s) c,
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contradicting our previous estimate .
Therefore rh (a) cannot be approximated to within c/4 by a linear

combination of projections .

In case X is connected, Theorem 6 can be obtained from [4, Theorem
1 .3] . (Cf. also [5, Theorem 2] . If dim X = oc, the argument at the end of
Section 2 is needed .) However, to use [4, Theorem 1.3] requires verifying
that the projections in A do not separate the tracial states, which is
about as labor-intensive as proving Theorem 6 .
When the hypotheses of Theorem 6 are satisfied, A provides an ex-

ample of a simple unital C*-algebra satisfying (SP) but not (LP). The
first examples of this phenomenon were constructed by Blackadar and
Kumjian [6, Example 1.6, Corollary 1 .10] . An explicit example in our
format may be constructed as follows .

Example 7. A simple unital C*-algebra A with stable rank 1 and real
rank 1 such that each nonzero hereditary sub-C*-algebra of A contains a
nonzero projection, but such thot the linear span of the projections is not
dense in A .

Proof. Choose integers ml, m2, - - - > 2 such that

00
l mk-1 >0 .
k=1 mk

Construct A as above, where X is not totally disconnected, v(1) = 1 and
v(n + 1) = mlm2 . . . mn, and an = mn - 1 . Then

t-1v(1)

	

mk - 1
wt 1 = a1012 . . . at-1

	

_

for t > 1, whence limt-,,. wt,l > 0 . The desired properties of A follow
from Theorems 3, 5, 6 .

5 . Real rank zero

We now determine exactly when A has real rank 0 . First we record an
easy observation that appears, for instante, in the proof of [8, Lemma
3.31 .
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Lemma 8. Let q be a projection in a unital C*-algebra B such that
q ;:5 1 - q, and let b be a self-adjoint element of qBq . Then b is a limit
of invertible self-adjoint elements from B.

Proof. Let e > 0 . Write 1 - q as an orthogonal sum of projections q',
q" with q' - q. If x is an invertible self-adjoint element of (q+q')B(q+q')
such that lIx-bil < e, then x+eq" is an invertible self-adjoint element of
B such that lix + eq" - bil < e . Thus without loss of generality, q - 1- q .
Hence, we may identify B with a matrix algebra M2(C), where C is a

unital C*-algebra (isomorphic to qBq), and b = ( o ó ) for some self-

adjoint element c E C.

	

Then a = (E o) is an invertible self-adjoint
element of B such that ¡la - bil < e .

Theorem 9. A has real rank 0 if and only if either lim t,. wt,l = 0
or X is totally disconnected .

Proof. If the given limit is positive and X is not totally disconnected,
then A has real rank 1 by Theorem 6 . If X is totally disconnected,
then dim X = 0 and so A has real rank 0 by [7, Propositions 1 .1, 3 .1,
Theorem 2.10] . Now assume that the given limit is zero . Since wt ,l =
Wt,na1a2 . . . an_l v(1)/v(n) for t > n, we also have

lira wt,n = 0t OC)

To show that A has real rank 0, it suffices to show that for any self-
adjoint element a E An and any e > 0, there is an invertible self-adjoint
element z E A such that 11 z - r%n(a) I I < e .
We are done if a is invertible, so assume not .

	

Then det a vanishes
somewhere on X, and so there exists s > n such that 1 det 6, (a) 1 <
(e/2),(n) . Now 6s (a) is a v(n) x v(n) matrix, and the product of its
eigenvalues (with multiplicities) equals det 6, (a), so 6,(a) must have an
eigenvalue A with ¡Al < e/2 .

Consider the element b = Os+l,n (a) E AS+1 . Then b is block diagonal
with blocks of the form a or 6j (a), and at least one block equal to 6, (a) .
Set a = anan+1 * - as ; then b has a blocks equal to a .

Since lim t_. wt ,s+i = 0, there exists t > s + 1 such that wt ,,s+1 <
1/(av(n) + 1) . Set c = Ot,n(a) E At , and note that c is block diagonal
with "big blocks" of the form b or Sj (b) . Each of there big blocks is itself
block diagonal with "small blocks" of the form a or bk(a) .
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Now as+las+2 . . . at-1V(8 + 1)/v(t) = wt,,s+1 < 1/(av(n) + 1), and
hence

av(n)a,,+las+2 . . . at-1 <

	

v(t)
v(s + 1) - as+las+2

	

. . at-1-

The right hand side of this inequality is the number of big blocks of the
form 6j (b) in c. Each b-block contains only a small blocks equal to a,
while each b;(b)-block contains at least one small block equal to bs(a) .
Therefore in the small block decomposition of c, we see that v(n) times
the number of a-blocks is less than the number of bs (a)-blocks .
We next break up each of the small blocks in c into three pieces as

follows . Diagonalize 6, (a), and write 6, (a) = 0 + Aqa + a' for some rank
1 projection qa and some a' in (1 - ga)Mv(,,)(C)(1 - qa) . Write each of
the other bj (a)-blocks as 0 + 0 + bj (a) . Finally, write each a-block as
a+0+0 .

Collecting and summing the projections corresponding to three de-
compositions, we obtain orthogonal projections q1, q2, q3 in M,(t) (C)
such that

q1+q2+q3=1 ;

q1, q2, q3 all commute with c;
q,c is a block diagonal sum of a-blocks ;

q2c = Aq2 ;
q3c is a constant matrix .

The matrix size of q2 equals the number of bs (a)-blocks in c, which we
have arranged to be greater than v(n) times the number of a-blocks in
c, hence greater than the matrix size of q1 . Thus q1 ;:S q2 .
By Lemma 8, there is an invertible self-adjoint element x in

(q1 + g2)At(q1 + q2) such that ~Ix - q,cll < c/2 . Since ~Al < e/2, we
get ~Ix - (q1 + g2)c11 < c . Finally, q3 c lies in a finite-dimensional sub-
C*-algebra of g3Atg3, and so there is an invertible self-adjoint element
y E g3A t g3 such that lly - g3CI1 < e . Hence, x + y is an invertible self-
adjoint element of At such that ~Ix + y - c¡¡ < e .

Therefore 71t (x + y) is an invertible self-adjoint element of A that lies
within e of 77,,(a) .

In case X is connected and dimX < oo, Theorem 9 can be obtained
from [5, Theorem 2] ; if dim X <_ 2, it can also be obtained from [4, The-
orem 1 .3] . (Cf. the comments following Theorem 6.) It is also possible to
apply [5, Theorem 2] in the general case by writing A as a C*-inductive
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limit of a different sequence of homogeneous C*-algebras, as discussed
at the end of Section 2 .

It is easy to Choose the parameters v(n) and oín such that the algebra
A has real rank 0 . For example, if v(n) = 2' and an = 1 for all n, then
wt,i = 1/2` for all t, and thus A has real rank 0 by Theorem 9 .

6 . Perforation in Ko

In this section, we show that perforation occurs in Ko(A) only if this
group has torsion . We also provide an explicit calculation of Ko(A) in the
case that X is connected . Note that because A is simple, every nonzero
projection in M,,,,(A) is full . Consequently, every nonzero element of
Ko(A) + is an order-unit, Le ., KO(A) is a simple ordered group .

Recall that a simple partially ordered abelian group G is weakly un-
perforated provided that whenever m E N and x E G satisfy mx > 0,
it follows that x > 0 . Thus G is unperforated, that is, mx > 0 im-
plies x >_ 0, precisely if G is both weakly unperforated and torsionfree .
See [20, Section 8] for a discussion of weak unperforation in non-simple
ordered groups .)
We write p ~ q for projections p, q E M,,.(A) to mean that p ;:5 q while

p>,~ q.

Theorem 10. Ko(A) is weakly unperforated .

Proof. Since A has stable rank 1, it has cancellation of projections,
and so we just need to show that if p, q are projections in M,, (A) with
m.p ~ m.q for some integer m >_ 2, then p ~ q. There is a nonzero
projection r E M~(A) such that m.p ® r - m.q .

After replacing p, q, r by equivalent projections, we may assume that
there are projections e, f, g in Mk(An) for some k, n such that 77n (e) = p,

gn(f) = q, ?7n (g) = r. After increasingn if necessary, we may also assume .
that m.e®g -m.f. Note that g :,A 0, and that m.5j (e) (D5j (g) -m.6j (f)
for all j . Thus 6j (e) ;:5 Sj (f), and 6j (e) ~ 6j (f ) if S; (g) :7~ 0.

Choose s > n such that 6,_1(g) 7~ 0 . Set e' = 0,,n(e) and f = ws,n(f)
in Mk(AS) . Then e' is block diagonal with blocks of the form e or Si (e) .
Hence, we can write e' = el ® e2 where el is block diagonal with all
blocks of the form e while e2 is block diagonal with all blocks of the
form 6j (e) . Write f = fl ® f2 in the same manner . Then m.el ~ m.fl
and e2 -< f2 . More precisely, e2 and f2 are constant projections, and
rank f2 > rank e2 .
Choose t > s such that 2t-S > mkv(n), and set e" = Ot,n(e) and f" _

Y't,n(f) in Mk(At ) . Write e" = e3 ® e4 where e3 is block diagonal with
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all blocks of the form e while e4 is block diagonal with all blocks of the
form Sj (e) . Write f" = f3 ®f4 in the same manner . Then m.e3 ~ m. f3,
while e4 and f4 are constant projections with rank f4 > 2t-S -1- rank e4 .

If a = cenan+1 . . . at-1, then e3 is block diagonal with exactly a blocks
equal to e, and so e3 - a .e . Similarly, f3 - a .f. Write a = m~3 + y for
some nonnegative integers 3, y with y < m. Since m.e ~ m. f, we get
mo.e ~ ml.f. On the other hand, ykv(n) < mkv(n) < 2t-s , and so

rank f4 > ykv(n) + rank e4.

Since e is equivalent to a projection in Mkv(n) (C(X)), it is subequivalent
to a constant projection of rank kv(n) . Hence, e4 ® y.e ~ f4, and thus

e3 ® e4 - m~3.e ®y.e ® e4 ~ MO.f G f4 ~ a-f ® f4 - f3 ® f4-

Therefore e" ~ f", and consequently p ~ q, as desired .
Theorem 10 can also be obtained from trace arguments, namely

by proving that if p and q are any projections in M,,,) (A) such that
T(p) < r(q) for all tracial states T, then p ;~5 q. The latter result
follows immediately from [15, Theorem 3 .7] in case X is connected
and dim X < oo; in general, it follows after modifying the sequence
A1 -> AZ --> . . . in the manner described at the end of Section 2.

Given a partially ordered abelian group G with an order-unit u, we
write S(G, u) for the set of states on (G, u), that is, the positive real-
valued group homomorphisms s on G satisfying s(u) = 1 .
The following corollary can also be obtained from the argument at

the end of Section 2 together with the arguments in [9, Lemma 2 .1 .10,
Proposition 2 .2 .3, Corollary 2.2 .4] .

Corollary 11 . The partial ordering on Ko(A) equals the striet order-
ing inherited from the states, that is,

KO(A)+ = {0} U {x E Ko(A) 1 s(x) > 0 for all s E S(Ko(A), [lA])} .

Proof. If x is a nonzero element of KO(A)+ , then x = [p] for some
nonzero projection p E M,.(A) . Since A is simple, p is full, and so there
exists a positive integer k such that lA ;Z k.p . Then [1A] <_ kx in KO(A),
and hence s(x) > 1/k for all s E S(Ko(A), [1A]).
On the other hand, if y is an element of Ko(A) such that s(y) > 0

for all s in S(Ko(A), [lA]), it follows from [12, Theorem 4.12] that there
exists a positive integer m such that my > 0 . Therefore y > 0 by
Theorem 10 .
The proof of the following example can be streamlined in case the

space X is connected, by appealing to Theorem 13 . However, we prefer
to exhibit the easy direct argument .
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Example 12 . A simple unital C*-algebra A, with stable rank 1 and
real rank 0, such that KO(A) is weakly unperforated but not unperforated .

Proof. Choose X so that Ko(C(X)) has 2-torsion ; for example, X =
RPn for any n >_ 2 [14, IV.6 .47] . Then there exist projections p, q, r' E
M~(C(X)) such that 2.p ® r' - 2.q ® r' while p ® r -/- q ® r for all
projections r E M,,. (C(X)) . After replacing p and q by p®r' and q®r',
we may assume that 2.p - 2.q .
Now construct A as above with v(n) = 2n and CYn = 1 for all n . Then

A has stable rank 1 by Theorem 3 and Ko(A) is weakly unperforated by
Theorem 10 . Since wt,l = 21-t for all t > 1, we also have limty,,, wt,I =
0, and so A has real rank 0 by Theorem 9 .

We may view p and q as projections in MZn(C(X)) = An for some n.
Then qn(p) and 77n(q) are projections in A such that 2-?7n(P) - 2.71n(q)
and so 2[r7n(p)] = 2[77.(« in KO(A) .
Suppose that [?1n(p)] = [rh,,(q)] . Then ?1n(p) - 71n(q) because A has

stable rank 1 . Hence, there is some s > n such that 0,,n(P) - 0s,n(q) .
Also, 2.0,,n (P) - 2-0,,n (q) . Observe that 0,,,, (p) = p E) p' and 0,,n (q)
q ® q' where p' and q' are constant projections . Then

2.p ® 2.p' - 2.q ® 2 .q',

whence 2 .61(p) ® 2.p' - 2.51(q) ® 2 .q' . Since 2.p - 2.q implies that
2.61(p) - 2.b1(q), we conclude that p' - q' . However, we also have

P ®p = W.,n(P) - Os,n(q) = q ® q',

contradicting our assumption that p ® r -A q ® r for all projections r E
M. (C(X)) .
Thus [rl n (p)] SA [77n(q)], and consequently [?7n(p)] - [r/n(q)] is a nonzero

torsion element in Ko(A). Therefore Ko(A) is not unperforated .

Blackadar has pointed out another example with the properties of the
one just constructed, namely the tensor product of the CAR algebra
with the simple C*-algebra B given in [3, Exercise 10.11 .2] .
We conclude this section by computing Ko(A) in terms of Ko(C(X))

when X is connected . Recall that in this case there is a unique state
on (Ko(C(X)), [1C(x)]) (see [3, Exercise 6.10.3]) . This state is obtained
by taking ranks of projections, and so it is integer-valued . The kernel of
thhis state is called the reduced Ko group of C(X); it is usually denoted

Ko(C(X)), _andit is naturally isomorphic to the corresponding reduced
Ko-group of the space X, denoted K'(X) .

Since the computation of K, (A) in terms of KI (C(X )) is quite easy
(whether or not X is connected), we include this as a companion to our
computation of KO(A).
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Theorem 13.

	

Let

	

U

	

Uñ1 Zv(n) -1	C_

	

Q

	

and

	

V =
Un=1 Z(ala2 . . . an)_1

	

_
C: Q .

(a) K1 (A)=V®K1 (C(X» .
(b) Now assume that X is connected.

	

Set (G, u) = (Ko(C(X)),
[1C(x)]),

	

let

	

t

	

be

	

the

	

unique

	

state

	

on

	

(G, u),

	

and

	

let
W = U®(V (9 ker t) .

	

Set w = (1, 0) E W, and give W the
strict ordering from the component U, that is, make W into a
partially ordered abelian group with positive cope

W+ = {(0, 0)} U {(a, b) E W 1 a > 0} .

Then (Ko(A), [IA]) = (W w) as partially ordered abelian groups
with order-unit .

Proof. Set ao = 1, and set On = v(n + 1)v(n)-1 - an for n > 1 .
(a) Let G1 = K,(C(X)), and identify K, (A,,) with G1 for all n . Let

us use additive notation for these abelian groups . For any unitary matrix
u E U�(n)(C(X)), the induced map K,(On) : G1 -> G1 sends the class
[u] to the class a,,[u]+~3n[6,(u)] . Since the unitary group of M�(n+1) (C)
is connected, the class of Sn(u) vanishes in K1(C), and hence it also
vanishes in G1 . Thus K1(On) ([u]) = an[u] . In other words, the ho-
momorphism K,(On) is just multiplication by an . Since the funotor K1
preserves direct limits (e.g ., [3, p . 68]), K1 (A) is isomorphic to the direct
limit, in the category of abelian groups, of the sequence

G1 ál -> G1 ~ce2 _, Gi
0%

. . . .

Therefore we conclude that K1 (A) = V ® G1 .
(b) We may identify (Ko(A,), [1An ]) with (G, v(n)u) for all n . Set

fn = Ko(O.) : (G, v(n)u) ----> (G, v(n + 1)u) .

For any projection p E Moo(An), observe that 0n(p) is a block diag-
onal matrix consisting Of CYn blocks equal to p followed by fin blocks
equal to a constant projection of the same rank as p . Thus On(p) -
an.p ® jn(rankp) .1C(x), and consequently fn([p]) = an [p] + Pnt([p])u .
Therefore

fn(x) = Crnx + ~3nt(x)u

forallxEC.
Next let (H, v) be the direct limit, in the category of partially ordered

abelian groups with order-unit, of the sequence

(G, v(1)u) ~ (G, v(2)u)

	

f2

-> (G, v(3)u)
f3,

	

,
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with natural maps g,z : (G, v(n)u) -> (H, v) .

	

Since the functor Ko
preserves direct limits (e.g . [11, Theorem 19 .9]), we have (Ko(A), [ 1A])
(H, v) .
Let K = ker t . Since t is a group homomorphism from G to Z and

t(u) = l, there is a direct sum decomposition G = Zu® K (as abelian
groups, not necessarily as ordered groups) . F~om the form of the maps
f, we see that fn(Zu) C Zu and fn (K) C_ K for all n . Hence, as an
abelian group H is the direct sum of the direct limits of the sequences

The direct limit of the first sequence is just U, with natural maps Zu -> U
sending u to v(n) -1 . The direct limit of the second sequence is V®K,
with natural maps K -> V (DK sending x to (a1a2 . . . an_1) -1 ® x .
Consequently, there is an abelian group isomorphism h : H - W such
that hgn (u) = (v(n) -1 , 0) and hgn(x) = (0, (ala2 . . . a,-J -1 ® x) for
all n and all x E K. Thus

hgn(y) = (v(n)-1t(y), (ala2 . . . an_1)-1 ® (y - t(y)u))

forallnandallyEG .

f> f2

	

fl f2
Zu-->Zu--> . . . and K-K---- .

Any nonzero element x E G+ satisfies t (x) > 0 by Corollary 11, whence
hgn (x) > 0 for each n . Thus hgn(G+) C W+ for all n . Since H+ =
U°°-1 gn (G+), it follows that h(H+) C_ W+ . Note also that h(v) =
hgl(v(1)u) = w.
The projection t' : W -> U C_ R is a state on (W, w), and since h is a

positive homomorphism sending v to w, it follows that t'h is a state on
(H, v) . There is just one state on (G, v(n)u) for each n, and so t'h must
be the only state on (H, v) . By Corollary 11,

and thus h(H+) = W+.

H+ = {0} U {x E H 1 t'h(x) > 0},

Therefore h : (H, v) -> (W w) is an isomorphism of partially ordered
abelian groups with order-unit .

Observe that the partially ordered abelian group W given in Theorem
13 satisfies the Riesz interpolation property, and hence also the equiva-
lent Riesz decomposition property [12, Proposition 2.1] . In fact, Ko(A)
satisfies Riesz decomposition whether or not X is connected, as follows
from Theorem 10 and [13, Corollary 4.7] .
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7. Concluding remarks

1. Gong and Lin have proved that when A has real rank zero, its
exponential rank is at most 1 + e [10, Theorem 1.3], that is, the set of
exponential unitaries in A is dense in the connected component of the
identity of the unitary group of A .
2 . Blackadar has raised the interesting question of how extensive the

class of C*-algebras constructed here might be . More precisely, if B is a
simple unital C*-inductive limit of a sequence of C*-algebras of the form
M�,, (C(Xk)) (with arbitrary unital connecting homomorphisms), is B
isomorphic to one of the algebras A above? In particular, does this hold
when B has real rank zero, or when B is obtained from a C*-inductive
limit with slow dimension growth in the sense of [5]? Of course if B is
to be isomorphic to an algebra A constructed using a connected space
X, then KO(B) and K, (B) must necessarily have the forms described in
Theorem 13 .
Thomsen has observed that for simple C*-inductive limits with real

rank 1, the question above has a negative answer, as follows . On the one
hand, given any metrizable Choquet simplex S, there exists a simple C*-
algebra B, obtained as the C*-inductive limit of a sequence of algebras of
the form M�,, (C([0,1])), such that the tracial state space T(B) is affinely
homeomorphic to S [19, Theorem 3 .9] . As long as S contains more than
one point, it follows from [19, Theorem 1 .4] and [7, Proposition 1.2]
that B has real rank l . On the other hand, when an algebra A as
constructed above has real rank 1, it can be shown that T(A) is affinely
homeomorphic to the Bauer simplex Mi (X) of all probability measures
on X ; in particular, the extreme boundary of T(A) is compact . Thus if
the simplex S is chosen with non-compact extreme boundary, the algebra
B cannot be isomorphic to any of the algebras A above.
3 . As mentioned earlier, we can also carry out our construction follow-

ing the pattern of any simple infinite-dimensional AF C*-algebra . (These
are precisely the AF C*-algebras that can be obtained from Bratteli di-
agrams in which all the multiplicities are at least 2 .) The algebras An,
would then have the form

M,(n,l)(C(X)) X . . . X X(n,T("))(C(X)),

and the homomorphisms 0 �, would be tuples of block diagonal sums of
homomorphisms

M,(.,¡)(C(X)) -i M" (C(X))

of the form diag(identity, . . . . identity, S� , . . . . 6n ) with at least one iden-
tity map and at least one 8,z . The resulting C*-inductive limits enjoy the
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same properties as the examples discussed above, provided the weighted
identity ratios ws , n, for s > n are redefined as follows .

First, write 0s,n as a -r(s)-tuple of homomorphisms An->M�(s,j)(C(X)),
and write the jth component of Ws,n as a block diagonal sum of homo-
morphisms

MU(n,z)(C(X)) - M" (C(X))-

Let cxs;ñ be the number of identity maps used in ~;ñ, and define

'

	

TnáJC{

	

CX s,n v(S
.i) I j

	

1. . . . . . (s)} .

Finally, the condition "lim t,. wt,I = e > 0" in Theorem 6 should be
changed to the condition "limt-,,,, wt,n = e > 0 for some n", and the
statement of Theorem 9 should be changed similarly.
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