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EXACT SEQUENCES FOR MIXED
COPRODUCT/TENSOR-PRODUCT

RING CONSTRUCTION S

WARREN DICKS AND I . J . LEARY

Abstract
To a commutative ring K, and a family of K-algebras indexed by
the vertex set of a graph, we associate a K-algebra obtained by a
mixture of coproduct and tensor product constructions . For this ,
and related constructions, we give exact sequences and deduc e
homological properties.

1 . Int roduct ion

1 .1 . Notation . Throughout, let K be a ring (associative, with 1) .
The symbols ~ and ~ with no subscript are understood to mean ~K
and

	

respectively.

Throughout, let X be a set, and A Ç X x X a symmetric antireflexive
relation on X, that is, (x, y) E A implies (y, x) E A, and no (x, x) lies in
A . This corresponds to a (nonoriented) graph XA with vertex set X : we
define XA to have an edge connecting two elements x and y if and only
if (x, y) E A.

If Y is any subset of X, the full subgraph YAn (Y x Y ) of XA will be
abbreviated YA .

Recall that a graph is complete if each pair of vertices is connected by
an edge . Thus the complete subgraphs of XA correspond to the subset s
Y of X such that any two elements of Y are connected by an edge in
XA .

In this article we shall be studying a general situation described in
Hypothesis 3.1, below; it is well- illustrated by the following special case .
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1 .2 . Construction. Suppose that K is commutative, and that we
are given, for each x E X, a K -algebra R(x) (associative with 1) . Form
the coproduct II R(x) as K-algebras, and factor out the ideal generated

xEx
by {ab — ba a E R(x), b E R(y), (x, y) E A} . Let R(XA ) denote the
resulting K-algebra . This construction is a mixture of the coproduct and
tensor-product constructions on K -algebras .

For example, if XA is a complete graph then R(XA ) = ~ R(x) .
sEX

Our objective is to obtain homological information about R(XA), fo r
example, estimates for the left global dimension . From a homological
point of view the formation of tensor products of K-algebras is not gen-
erally well-behaved, so if we are to obtain any information at all on
R(XA ), we should have prior knowledge of, say, the R(YA ), for the com-
plete subgraphs YA of XA . Thus we take certain such information as
given, and try to extend it to all of R(XA ) . By constructing an exact
sequence motivated in section 2, described in section 3, and verified in
section 4, we are able to obtain a practical upper bound for the left global
dimension of R(XA ), in terms of XA and the left global dimensions of
rings of the form R(YA ), where YA is a complete subgraph of XA . In
section 5, we show how the left global dimension estimate can be refined .
In section 6 we give G. M . Bergman's hitherto unpublished descriptio n
of K-bases of R(XA ) constructed from K--bases of the R(x) .

Consider the following group-theoretic situation .

1 .3 . Construction. Suppose that we are given a family of groups
(G(x) x E X) . The XA-product of the family is the group G(XA )
formed by taking the free product * G(x) as groups, and factoring out

xEX
the normal subgroup generated by

{aba'b' i a E G(x), b E G(y), (x, y) E A} .

This construction is a mixture of the coproduct and restricted direct
product constructions on groups .

For example, if XA is a finite complete graph then G(XA ) = x G(x) ;
x EX

and, for infinite complete graphs, we get the restricted direct product ,
generated by the G(x) .

For another example, if each G(x) has arder 2, then G(XA ) is a right-
angled Coxeter group .

Our results will give homological information on the group ring
R(XA ) = K[G(XA )] in terms of the group rings K[G(YA )], for certain
complete subgraphs YA of XA .
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As was the case with [10], many of the results in this article are
inspired by, and, in some cases, even copied from, the preprint [3] of

G . M. Bergman, and must be considered joint work of the three of us .

Due to other commitments, Bergman reluctantly abandoned the project ,

and declined all offers to be listed as a co-author on either paper . Since
there now appears to be an incipient interest in Construction 1 .3, cf
[1], [6], [11], we have decided to go ahead and publish, with Bergman's
approval .

2. Motivating examples

Throughout this section we consider the following .

2.1 . Hypothesis . Suppose K is commutative, and that we have

a family of faithfully flat K-algebras (R(x) x E X), indexed by the
vertex set of the graph XA . For any subset Y of X, we can apply
Construction 1 .2 and form the K-algebra R(YA) . We set R = R(XA) .

As we shall see in Proposition 3.4, R is flat as right R(YA)-module, for

every subset Y of X .

The following examples illustrate what we might hope to be able to
say about 1 . gl . dim . R.

2 .2 . Example . Let XA be the graph

a

	

b

	

c

	

d

so R = (R(a)0R(b)) j (R(b)0R(c)) Ij (R(c)0R(d)) . By [9, Theorem 2 ]
R(b)

	

R(c)
there is an exact sequence of R-bimodules

o —> ROR(b) R ROR ( c) R

--+ ROR(a)OR(b) R ROR(b)0R(c) R ROR(c}OR(d) R
_} R ~ O ,

and, as in the proof of [9, Corollary 7], since R is flat as right module

over R(b), R(c), R(a)0R(b) , R(b)0R(e) and R(c)0R(d) , we have

1 . gl . dim . R

c max{1 + 1 . gl . dim. R(x), 1 . gl . dim . R(y)0R(z) x E Xo, yz E X I } ,

where Xo = {b, c} and X1 = {ab, bc, cd } .
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2.3 . Example . Let XA be the graph

a ,	 b

d

	

c

Then R = (R(a) ~ R(c)) ~ (R(bM R(d)) . Consider the following sub-
graphs of XA :

YA

	

YÁ

	

ZA

	

ZÁ

a

	

b

	

c

	

a

	

b

	

b

	

b

	

c
a	 ■	 •

	

.	 •

	

a

Since ROYA} = R (YÁ) II R(Z'Á) , by [9, Theorem 2], there is a short
R(ZA )

exact sequences of R(YA )-bimodules

o —> R (YA)0R(ZA) R(YA )

~ R(YA)®R (Y) R(YA) R ( YA )®R(ZÁ } R(YA )

—> R(YA ) —> O .

This is a sequence of flat right R(YA )-modules, and R is flat as right
R(YA)-module, so the sequence remains exact under ROR(YA }—OR(YA}R.
This gives us a short exact sequence of R-bimodules which, in an obviou s
notation, can be abbreviated to

o—> b—> ab+bc~abc~o .

In a similar manner we can obtain other short exact sequences o f
R-bimodules which, in the saure notation, are expressed as follows :

o —> ac --+ abc + acd --~ abcd --> o ,
o---}~—> a + c---.-~ac—> p ,

0 ---4 d —> da + cd -> acd --4 0 .

92
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These four exact sequences can be combined to give a new exact sequence
of R-bimodule s

o —+ ---} a+ b +c + d —> ab + bc + cd +da ----* abcd --> O .

This sequence has the desirable property that the final term is R, and
the other terms are induced from the rings associated with the complet e
subgraphs of XA , which we have agreed to accept as our building blocks .
As in the proof of [9, Corollary 7], we deduce that

1 . gl .dim . R Ç max{2 + 1 . gl . dim . K, 1 + 1 . gl.dim.R(x) ,

1 . gl . dim . R(yz) x E Xo, yz E X1} ,

where Xo = {a,b,c,d} and X1 = {ab, bc, cd, da} .
To see that the term 2 + 1 . gl . dim . K cannot be omitted from our

estimate, take the case where, for each x E X ,

R(x) K[e x i=e x]ÑK xK.

Then, for all yz E X1 ,

R(yz) = R(y)0R(z) ~ KxKx K xK.

But, from [2, Examples 12 .2-12.3 (i)] , it is known that R(a) ~ R(c) is
free of rank 4 as a module over its center, a polynomial ring K[s] in one
indeterminate . Thus R is free of rank 16 as a module over its center, a
polynomial ring K [s, t] in two indeterminates . It foliows that

1 . gl . dim . R = 1 . gl . dim . K [s, t] = 2 + 1 . gl . dim . K.

The next example illustrates one sort of complication that can aris e
as we go about constructing our exact sequences .

2 .4 . Example . Let XA be the graph

a

	

f
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As in Example 2 .3, we can construct short exact sequences of R-bimod-
ules and combine them to construct an exact sequence of R-bimodule s
whose final term is R, and whose other terms are induced from the rings
associated with the complete subgraphs of XA . For instance, we can
forra the short exact sequences

o ---} ade -4 abcde + adef —} abcdef —> O, .

O~cd —> abcd+cde---~abcde--> o ,

o ---} ef —> def + aef --> adef ~ O ,

0 ->

	

a + de ----~ ade --} 0 ,

O—> b—> abc+bd -+ abcd~O ,

o --}e ---} ce+ de —> cde—> o ,

0—>~-> c +d --4 cd—> O ,

0—> f—> a,f + ef ~ ae f -4 o ,

and combine these in stages, finally arriving at an exact sequence o f
R-bimodules

O ---} O+O—> a +b +c+d+e+ f +de+ef

—> af +bd+ ce+de +ef +abc+def —> abcdef --} O .

This exact sequence contains a redundancy, in that the component
de + e f —> de + e f is an isomorphism which can be eliminated ; the
process is explained in detail in section 5 . We are then left with an exact
sequence of R-bimodule s

0 -4

	

a+ b+c+d+e+ f—> a f -}-bd+ce+ abc+ de f—> abcde f—> 0 ,

and we see that here the only subgraphs that arise are the interseccions of
maximal complete subgraphs! The associated global dimension formul a
is

l .gl .dim .R Ç max{2 + 1 . gl . dim . K, 1 +1.gl .dim.R(x) ,

1 .gl .dim.R(Y) ~ xEXo, YEXI } ,

where Xo = {a, b, c, d, e, f} and X~ = {af, bd, ce, abc, den.
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The concluding example illustrates the sensitivity to the choice of K .

2 .5 . Example . Let XA be the graph

3

where h, i, j, k, and the associated edges, have been repeated, in order
to achieve a planar representation. Thus XA arises as the 1-skeleton of a
triangulation of the pro j ective plane, which has 11 vertices, 30 edges, and
20 triangles . The triangulation is full, in the sense that every complete
subgraph of the 1-skeleton, XA , is the vertex set of a simplex . To simplify
notation somewhat, let us write

Xo = X = {a,b,c,d,e,f,g,h,i,j,k} ,

X~ = {ab,af,ag,ah,ak,aj,bc,bg,bh,bi,bk,cd,cg,ci,cj ,

de, dk, dj, dg, e f, eg, eh, ei, ek, f g, fi, f j, hi, hk, jk } ,

X2 = {abg, abk, a fg, ah, ajk, bcg, bci, bhi, bhk, cdg ,

cdj, cij, deg, dek, djk, e f g, e f i, ehi, ehk, f j i } .

By considering the circuit given by the full subgraph on {a, b, c, d, e, f } ,
and proceeding as in Example 2 .3, we get the following exact sequenc e
of R-bimodules :

0 —> 0 —> a+b+c +d+ e+ f

—> ab + bc + cd + de + e f + fa --} abcdef —> O .

By considering R(— U {g}) in place of R(—), we get a similar exact
sequence :

0 —>g —>ag + bg + cg + dg + eg +fg
--} abg + bcg + cdg + deg + efg + fag ~ abcdefg ---} 0 .
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Continuing as before, we build up sequences :

0--> be —> abcdefg +beh--}abcdefgh—> O ,

O—>b +e --4 be--4 O ,

0—> h----> bh -f- eh —> óeh~o,
0 -4 fehbc ~ abcdefgh + fehbci —> abcdefghi ~ O ,

0---4 e+h+ b----~ fe + eh+ hb + bc~ fehbc—> O ,

0 —> ei+hi +bi ~ fei + ehi + hbi + bci —> fehbci —> 0 ,

0 ~ dcifa - -} abcdefghi + dcifaj —> abcdefghij--} O ,

o-> c+i+ f -4 dc+ci+if + fa —> dcifa —> O ,

0--~ cj +i.7 +fj -- > dej + ci.7+ if.7+faj —> dcifaj —> 0 y
0 —> abhedj —> abcde fghi j + abhedjk ---} abcdefghij k --> O ,

0--›sçb—>b+ h+e+d+j+ a

—) ab + bh + he + ed + dj + ja ~ abhedj —> O ,

--} k—>bk+hk+ek+dk+jk+ak

—> abk + bhk + hek + edk + djk + jak —> abhedjk —> O .

These then combine to give an exact sequence

0 -4-4 O+b+e+h+ E x

xEXq

—> b+e+h +bh+eh+ E xy
xyEX 1

--> bh + eh + E xyz —> abcdefghij k —> 0 .
xyzEX2

Here we have three components b+ e+ h ~ b+ e + h, bh + eh —> bh + eh ,
and ~ --4 0, which we might hope to eliminate . It turns out that the first
two are isomorphisms, and can be eliminated, but the third is given by
multiplication by 2, which is an isomorphism if and only if 2 is invertibl e
in R, which is equivalent to 2 being invertible in K, by the faithful
flatness assumptions .

Thus, in general, we have an exact sequenc e

0—>—)~+ E x---} E xy---}

	

xyz -4 abcdefghijk --}O .
xEX Q

	

xyEX i

	

xyzEX 2

There is an underlying exact sequence obtained by taking all the R(x )
to be Z, and it is the augmented chain complex of a contractible three-
dimensional CW-complex with 20 vertices, 30 edges, 12 polygonal faces ,

o
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and 1 three-cell . The CW-complex arises by taking the dual of the give n
tessellation of the pro j ective plane, adding on a polygonal disk to kill
the fundamental group, which here coincides with the homology group
in dimension 1, and adding on a three-cell to kill the resulting homolog y
in dimension 2 . It was not obvious at the outset that the relatively
unsophisticated algebraic process of forming exact sequences, and then
refining them, had to yield such a relatively sophisticated topologica l
ob ject, although it was encouraged in that direction by the original choice
of a full triangulation of the projective plano .

One consequence is that

1 .gl .dim.R Ç max{3+ 1 . gl .dim.K,

2 + 1 . gl .dim.R(x) , 1 + 1 . gl .dim. R(xy) ,

1 . gl . dim. R(xyz) ~ x E Xo,xy E X1 , xyz E X2 } .

If 2 E K, then we also have an exact sequence

o-> E x E xy-->

	

xyz---+ abcdefghzjk —}o ,
xEXo

	

xyEX 1

	

xy .zEX 2

so that here the term 3 + 1 . gl . dim . K can be omitted from our previous
estimate .

To see that the term 3 + 1 . gl . dim . K cannot be omitted in general ,
take K to be a field, and, for each x E X, take

R(x) =K[ex ~ el =ex]KXK.

Let 1 = E Rex, so 1 is a two-sided ideal of R such that R= KEBI . Let Ke
xEX

denote the R-bimodule R/1 . Then it is not difficult to use the resolution
to show that ExtR (KE , R) KE /2KE , as R-bimodules. Hence if K
has characteristic 2 then1. gl . dim . R > 3, while if K has characteristic
different from 2 then 1 . gl . dim . R Ç 2 . In fact equality holds in both
cases, the reverse inequalities coming from our estimate, and from a
surjective map ExtR(KE , R) --3 K~, respectively.

This example is closely related to one of the right -angled Coxeter
groups which have virtual cohomological dimension 2 over Q, and 3 over
Z, described by M . Bestvina [5, Remark (3)I •

What general pattern emerges from these examples? It is clear that
for any graph XA (even infinite) this procedure, of combining exact se-
quences and eliminating redundancies, will always give an exact sequenc e
that gives information about R(XA) in terms of the rings associated with
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the complete subgraphs. What is not immediately clear is to what extent
the sequence is unique (depending as it does on a prechosen vertex-by -
vertex build up of XA), which complete subgraphs will occur, and what
general conclusions can be drawn about R(XA) . In the next section we
shall see more clearly what is happening .

3. Description of the ob jectiv e

The general situation which we shall be considering is the following .

3.1 . Hypothesis . (i) Let XA be a graph.
(u) Let (R(Y) 1 Y Ç X) be a directed system of rings indexed by the

subsets of X .
We write K = R(0), R = R(X), and, for each x E X, R(x) = R({x}) .
(iii) Suppose that, for each Y Ç X, R(Y) is generated by the union

of the images of the R(y), y E Y .
(iv) Suppose that, for each non-empty finite subset Y of X, and each

element w of Y, for Z = link yA(w) , the induced ring homomorphism ,
from R(Y —{w}) ~ R(ZU{w}) to R(Y), is an isomorphism .

R(Z )
(y ) Suppose that, for all w E X, and all finite Z Ç link xA (w), the

ring R(ZU{w}) is faithfully flat as right R(Z)-module .
(vi) Fix a ring k which is a subring of ~ or a prime field, and suc h

that k maps to K.

We offer the following commentary to try to make clear what we mean
here .

3 .2 . Notes . (i) We shall see in Proposition 3 .4 that the directe d
system of rings (R(Y) 1 Y C X) can be viewed as a directed system of
subrings of R, as all the maps are inclusions .

(u) By link yA(w) we mean the set of vertices of YA joined by an edge
to w; in particular, w 1 link yA(w) .

(iii) In 3.1 (y), that R(Z U {w } ) is faithfully flat as right R(Z)-module ,
means that the given map from R(Z) to R(Z U {w}) is injective, and the
cokernel is flat as right R(Z)-module . Notice that 3 .1 (y) is implied by
the pair of conditions :

(Q) for all w E X , R(w) is faithfully flat as right K-module ;
(b) for all w E X, and all Z Ç link XA (w), the induced right

R(Z)-module map from R(w)®R(Z) to R(Z U {w}) is an iso-
morphism .

In this event, R can be built up from the R(x) using ring coproducts ,
tensor-products over K with unspecified ring structure, and directe d
unions .
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(iv) In section 5 we shall describe the role we want k to play in sim-
plifying an exact sequence . We could allow k to be any (commutative )
principal ideal domain which maps to the intersection of K with the cen-
tre of R. The most natural choice for k is Z, but Example 2 .5 indicates
the importance of allowing more general k .

3 .3 . Examples . (i) Let K be a commutative ring, and

(R(x) x E X )

a family of faithfully flat K -algebras . For any subset Y of X, we can
form the K-algebra R(Y) = R(YA ), as in Construction 1 .2 . This give s
a directed system, and one readily verifies that Hypothesis 3.1 holds .
Here, the conditions (a), (b) of 3 .2 (iii ) hold, since both terms in (b )
can be identified with the K-algebra R(w)0R(Z) .

Even in this case it is not immediately obvious that all the maps
involved are injective .

(u) Consider a family of group rings (R(Y) = K [G (YA )] Y Ç X } ,
with groups G(YA) arising as in Construction 1 .3 . Again it is readily
verified that Hypothesis 3 .1 holds .

3.4. Proposition . If Hypothesis 3.1 holds, then R(X) is faithfully
fiat as right R(Y)-module, for every subset Y of X .

Proof: By 3.1 (iii), it suffices to show that R(X) is faithfully flat a s
right R(Y')-module, for every finite subset Y' of Y. Thus we may as-
sume that Y is finite . Also by 3 .1 (iii), it suffices to show that for
any finite subset X' of X containing Y, R(X' } is faithfully flat as right
R(Y)-module. Thus we may asssume that X is finite, and proceed by
induction on IXL If X is empty, the statement of the proposition holds ,
so we may suppose that X is nonempty, and that the statement holds
whenever X is replaced by any proper subset of X. Let w E X, and
let Z = link xA(w) . By 3 .1 (iv), R(X) = R(X —{w}) ~ R(Z U {w}) .

R(Z )
By the induction hypothesis, R(X — {w}) is faithfully flat as right
R(Z)-module . By 3.1 (y ), R(Z U {w}) is faithfully flat as right
R(Z)-module. Now by a theorem of Cohn [7, Theorem 4.4], the co-
product, R(X), is faithfully flat as right R(X—{w})-module . By transi-
tivity of faithful flatness, R(X) is faithfully flat as right R(Y)-module for
any subset Y of X nat containing w . Since w was arbitrary, the resul t
follows . ■

In section 6 we give a result of Bergman's, which shows how "faithfully
flat" can be replaced with " free on a basis containing 1", and gives an
explicit description of the resulting basis .
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3.5 . Definitions . By an augmented simplicial complex C * we mean
a non-empty set of finite subsets of some (possibly empty) set S, such
that every subset of an element of C * is again in C* , that is, C. is closed
under taking subsets .

Let us write N for the set of non-negative integers, and N — 1 for th e
set of integers greater than, or equal to, -1 .

For each n E N — 1, we let en denote the set consisting of those set s
in C. which have exactly n + 1 elements . The elements of Cn are called
the n-simplices, and are said to have dimension n . The 0-simplices are
called the vertices of C* . The dimension of C * , denoted dim C* , is the
supremum of the dimensions of the simplices ; this is either oa, or an
element of N -- 1 .

If we delete the simplex of dimension -1 from C,,, we get a simplicial
complex, denoted C*+ .

In practice, we usually think of C* as a subset of the free exterio r
monoid on S, and, in particular, blur the distinction between a o-simplex
and an element of S . It is customary to identify, loosely, S = Co .

For any poset (Po, there is an associated augmented simplicial com-
plex, P,,, which is the augmented simplicial complex whose vertex set i s
Po, and whose simplices are the finite subsets {Po, . . . ,pn } of Po, such
that n E N — 1, and po ~ • • • --< pn.

3.6 . Definitions . We write COXA to denote the set of vertex sets of
complete subgraphs of XA , and FoX A to denote the set of vertex set s
of finite complete subgraphs of XA, and M oXA to denote the set of
vertex sets of maximal complete subgraphs of XA , and ZoXA to denote
the set of vertex sets of those subgraphs of XA which are intersections
of finitely many maximal complete subgraphs of XA .

Thus M OXA Ç Zo XA C COXA FOXA s and, if XA is finite, then
.FoXA = C O XA .

Here CO XA is a poset, with the partial order being given by inclusion ,
and ZO XA , FoXA are sub-posets. Let C*XA , Z* XA , and .F* XA denot e
the augmented simplicial complexes associated with the posets CO XA ,
ZO XA , and .J 'oX A , respectively. Let .N[ *XA be the set of all finite subsets
of MO XA ; if we want to view this as the augmented simplicial complex
associated with a poset, we have to choose a total ordering of .M O XA .

We say that XA is a finite-dimensional graph if Z*XA is finite-dimen-
sional ; that is, there is a finite bound d = dim I,,XA on the set of integers
n such that there exists a chain Xo c • • • c Xn in ZO XA .

Let Y E ZoXA .
Let 10 (Y, XA) denote the sub-poset {Z E ZpXA Z D Y} of ZO XA ,

and let Z* (Y, XA ) denote the associated augmented simplicial complex ;
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thus

Z* (Y, XA) = {{X 0 , . . . , Xn} Ç 10XA ~ n E In — 1,Y C Xo c . . . C Xn } .

The Z* (Y, XA) contain much information of interest to us .
The depth of Y with respect to XA , denoted d(Y, XA), is defined to be

dimZ* (Y,XA ) + 1 .
Let k be a principal ideal domain. The homology group of Z* (Y, XA)

with coefficients in k is denoted H* (Z* (Y, XA) , k) . The homological depth
over k of Y with respect to XA , denoted hdk (Y,XA ), is defined to be
the infimum of the integers n such that is a free
(possibly trivial) k-module, and, for all m ~ n, Hm(z* (Y, XA), k) = o .
Since k is a principal ideal domain, it is not difficult to see that
hd k (Y, XA ) ç d (Y, XA) . For example, hd k (Y, XA ) = —oo if Z* (Y, XA )
is contractible ; hd k (Y, XA ) = o if and only if Z* (Y, XA ) = O, that is ,
Y E ,ÍIiÍ oXA .

In Theorem 4.6 we shall prove that, if Hypothesis 3 .1 holds, then ther e
is an exact sequence of R-bimodule s

El)

	

R®R(xo, . . .,xn) R ---> . .
{xa, . . ., Xn}EZ,zX A

—+( 1 )

~

	

R®R(x a) R —> R —> O ,
X oE ZoXA

r~

	

n
with Vn given by (a®R(x0	 X)b)an = E (—l)ia OR(xo, . . .Xi . . .,xn} b ,

~ i=0
where Xi means that the term Xi is omitted, and R(Xo, . . . , Xn) denotes
R(Xo n • • • nXn) , which is just R(Xo) , since Xo C • • • c Xn , by convention .

In Corollary 4.8 we deduce that, when Hypothesis 3 .1 holds ,

(2) 1 . gl . dim . R sup{d(Y, X,y) + 1 . gl . dim . R(Y) 1 Y E ZoXA } .

As in Examples 2 .4 and 2.5, there can be redundancies in the resolu-
tion (1) . In section 5, assuming XA finite-dimensional, we show how to
use the fact that k is a principal ideal domain to eliminate redundan-
cies to obtain, in Theorem 5.6, an exact sequence of R-bimodules wit h
canonical terms, but not canonical maps. Corollary 5 .7 shows that, if
Hypothesis 3 .1 holds and XA is finite-dimensional, then

(3) 1 . gl . dim. R < sup{hdk (Y, XA) + 1 . gl . dim . R(Y) 1 Y E ZoXA } .

As a general bound, (2) is quite satisfactory. It gives precisely the
estimates obtained in Examples 2 .2, 2 .3 and 2.5 . But, for Example 2.4
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(resp. Example 2 .5 with 2 E K), (2) adds in an unnecessary term of
2+1 . g l . dim . K (resp . 3+1 . gl . dim . K) . This can be remedied by using (3 )
with k = Z (resp . k = Z[1]), but the bound in (3) has the disadvantage
of being difficult to compute, and it is not valid for arbitrary (infinit e -
dimensional) graphs, cf . Example 5 .8 .

If we have a family (C(x) x E X) of groups, and we form G = G(XA )
as in Construction 1 .3, then, for the cohomological dimension of G with
respect to K, we get the estímate

cdK G(XA) < sup{d(Y, X,y) + cdK G(YA ) Y E ZoXA} ,

in terms of the groups arising from finite intersections of maximal com-
plete subgraphs of XA . If XA is finite-dimensional, then

cdK G(XA ) < sup{hd k (Y, XA ) + cdK G(YA ) 1 Y E ZoXA } .

4. Various resolutions

Throughout this section, suppose that Hypothesis 3 .1 holds .

4 .1 . Notation. Let Y be a subset of X .

Let R(C * Y) denote the R-bimodule presented on a generating set con-
sisting of all expression s

(Xo, . . . , Xn) , such that n E N — 1, and Xo C . . . C Xn in C®YA ,

and relations saying that each (XO , . . . , Xn) is centralized by

R(Xo, . . . , Xn) _
r R(Xo) if n E I`N ,

R(Y) n

and vanishes if two of the Xi are equal. Thus

R(C * Y)

	

(R®R(x0 X) R in E N — 1, Xo c . . . C Xn in C O YA ) .

We grade R(C* Y) by declaring that each nonzero (X0, . . . , X) is ho-
mogeneous of degree n .

There is an R-bimodule differential o~* : R(C* Y) ---+ R(C* Y) defined on
n

	

"generators by (X4 , . . . , Xn)an = E (—1)(X0 , . . . Xi . . . , Xn) , where the
i= o

empty sum is O . It is readily verified that c~* is well-defined . Thus
R(C.* Y) is a differential graded R-bimodule . Its homology group is a
graded R-bimodule ; it will be denoted .H,k (R(C*Y}) .
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4.2 . Notation. Let Y be a subset of X.
We write R(Z* Y) (resp . R(.F* Y} ) to denote the R-sub-bimodule of

R(C*Y) generated by those (X0 , . . . , Xn), n E N — 1, for which the Xi
lie in ZoYA (resp . ,1 'o YA ) ; thus R(IX) looks like (1) . The homology
R-bimodule will be denoted H* (R~z*Y)) (resp . H* (R(P* Y)}} .

4 .3 . Notation. Let Y be a subset of X .
We write R(MY) to denote the R-bimodule presented on a generat-

ing set consisting of all expression s

(Y0, . . .,Y), where n E N — 1, Yo, . . . , Yn E M oYA ,

and relations saying that each (Yo, . . . , Yn ) is centralized by

R(Yor1--•r1Yn ) ifnEN,
R(Yo, . . . , Yn ) –

R(Y)

	

if n = -1 ,

and vanishes if two of the Yi are equal, and, for any permutation 7r

of {0, . . . , n}, we have (Y, (o) , . . . , Yr(n)) = sign 7r (Yo, . . . , Yn) . It is nat
difficult to see that, for any total order -< on .IV[oYA, we have

R( .IV[ * Y} e(ROR(Yo, . . .,Yn} Rin E N— 1, Yo -< ••• -< Yn in Jlf[oXA } .

We grade R(M *Y) by declaring that each nonzero (Yo, . . . , Yn ) is homo-
geneous of degree n .

There is an R-bimodule differential :

	

Y} --> R(M * Y) defined
n ~

on generators by (Yo, . . . , Yn)an = E (—1)(Y0 , . . . Yi . . . , Yn) , where th e
i=o

empty sum is o . It is readily verified that a* is well-defined. Thus
R(MY) is a differential graded R-bimodule . The homology R-bimodule
will be denoted H* (R( .N[ * Y} } .

We will show that all these augmented chain complexes are acyclic,
that is, their homology groups are all 0 . We start with the simplest case .

4 .4 . Theorem. If Hypothesis 3.1 holds, then, for any subset Y of X,
R ( ..F* Y ) is acyclic .

Proof: We consider first the case where Y is finite, and argue by in-
duction on 1Y { .

If

	

= 0 then R ( .F* Y) is generated by (Y) and (

	

which centraliz e
R(Y) = R( ), and we see H* (R(,F* Y) } = o .

Now assume that IYI > 1, and that H* (R(.F* Y')} = o for all proper
subsets Y' of Y .
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If YA is complete then there is a well-defined, degree +1, R-bimodule
endomorphism s* of R (F* Y) which is given on generators by

(X0, . . .,Xm)8m(_1)m+l(XO, . . .,Xm,y) .

It is readily verified that s * is well-defined, and that s*o~* + a* s* acts as
the identity on R(F* Y) . Thus

Ker o~* = (Ker a* )(s* a* + c7* s * ) = (Ker O* )(s * a* ) Ç Im c7* ,

so H* (R(,F* Y)} = 0, in this case .

Thus we may assume that YA is not complete, so there exist two
vertices v, w of YA which are not joined by an edge . Let Z = link yA (w) ,
let W = ZU{w}, and let U = Y—{w} .

Since Z c W Ç Y -- {v}, we see that Z, W, and U are proper subset s
of Y . So, by the induction hypothesis, H* (R(.f'* Z)), H,k (R(F*W)}, and
H* (R(.F* U)} are all o .

Clearly UA n WA = ZA and UA U WA = YA .

Notice that we have .F* UA n .F* V[TA = .F* ZA in ,F*YA .

We claim that .F* UA U.F* WA = F* YA . Consider any element z E Y*̀YA
so z = {Xo, . . . , Xn } C FD YA , where XD c • • • c Xn. If Xn does not
contain w, then Xn Ç U, so z E On the other hand, if Xn does
contain w, then, since Xn is complete, Xn Ç link y,(w) U {w} = W .

Thus z E .F* V[lA . This proves .F* YA Ç .~* UA U .F* WA , and the reverse

inclusion is obvious .

It now follows easily that the natural sequence of differential graded

R-bimodule s

(4) 0 —> R(F*Z)
(+ +)

R(.F* W) # R(F*U)
(+) R( .T*Y) 0

is exact in all non-negative degrees . The degree -1 part of (4) has the

form

(5) 0 —> ROR(z) R (~~ RORw) R ROR(w)
R(+)

R®R(Y) R —+ 0 ,

and we now show this is exact . By 3 .1 (iv), R(Y) = R(U)

	

R(W), so ,
R(Z )

by [9, Theorem 2], there is a short exact sequence of R(Y)-bimodules

0 —' R(Y)OR(Z)R(Y )
(~)

R(Y)OR(u)R(Y) R E Y) •-•R(w)R(Y)

R(Y) —. 0 .
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By Proposition 3 .4, this is a resolution of o by (faithfully) flat right
R(Y)-modules, so remains exact under —OR(Y)R, since the resulting ho-

mology is TorR ( Y ) (o, R) = O. Again by Proposition 3 .4, R is flat as right
R(Y)-module, so the resulting sequence remains exact under RO R(Y) — ,
giving the exact sequence (5) . Thus (4) is a short exact sequence of dif-
ferential graded R-bimodules . Applying the homology functor, we get a
natural exact triangle

H),(R( .F,,W))ED .H*(R(F.U) )

11.(R(,F*Z)) <

	

II.(R(.F*Y)) ,

where S has degree -1 . Since we have verified that the groups at two
vertices of the triangle are zero, it follows immediately that the thir d
group,

	

is also 0, as desired .

Thus, we have proved by induction that H* ~R~.~ *̀Y}} = 0, if Y is
finite .

Hence, for arbitrary Y, we have prove d

(6)

	

H* (R(,F.Y' } } = o for all finite subsets Y ' of Y.

If Y' Ç Y" are finite subsets of Y, then there is a natural map

RGF* Y ' ) —} R( .F*Y" )

of differential graded R-bimodules, which is actually an embedding in al l
non-negative degrees . Hence we get a directed system

(R(FY' ) ~ Y' a finite subset of Y)

of differential graded R-bimodules . We claim that

(7)

	

lim

	

R(,T'*Y ' ) — R(.F*Y ) .
finite Y' C Y

By 3.1 (iii), R(Y) is generated by the R(y), y E Y, so

l

	

ROR(Y,) R -== ROR(Y) R ,

finite Y'CY

so the degree -1 part of (7) holds .
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Since every element of .F* YA lies in .F. YÁ for some finite subset Y ' of

Y, we have

	

lim

	

= .F'*YA , and (7) follows. Now
finite Y'CY

H* (R(,F*Y ) } = H* (

	

lim

	

R( .F* Y' ) }, by (7) ,
finite Y' CY

--

	

lim

	

H * (R( .T.*Y' )} = o, by (s) .
finte Y'C Y

This completes the proof. ■

We now want to show that all the other complexes defined aboye are

acyclic . We shall make use of the following well-known fact .

4.5 . Lemma. Suppose . . . —> C~ 2 —> C* a
1 ~ C*,O ._-> C*,_ 1 —+ 0 is

an exact sequence of differential (N — 1)-graded R-bimodules, such that ,

for all j E N, C*, ~ is acyclic . Then C*, _1 is acyclic .

Proof: Let j E N — 1 .

Let Z*, ~ denote the image of C*,i+ 1 in C*,j ; notice that Z*, _ 1 =
By the exactness of the given sequence, there is a short exact sequence
of chain complexes 0 —> —> C*,i+1 —> Z *,i —> 0, and, since
C*,j + 1 is acyclic, the resulting exact triangle for homology gives iden-
tifications Hz ( Z*,i ) = Hi_ 1 (Z*,i +1 ), for all i E Z . Let n E N — 1, and
apply the foregoing with (i,j) = (n, --1), (n — 1, 0), . . . , (—1,n), to ob-
tain Hn (Z*,_1) = Hn_1(Z*,o) = . . = H_2(Z*,n+1) . The final term ,
H__ 2 ( Z*,n+1 ) , is 0, since the complexes are N — 1 graded. Thus the firs t
term, Hn (Z*, _ 1 ) , is 0, for all n E N — 1 . Hence Z*,_1 is acyclic, that is ,

C,_ 1 is acyclic . ■

We can now prove our main result .

4 .6 . Theorem. If Hypothesis 3.1 holds, and Y is a subset ofX, then

R(JV[ *Y}, R(z*Y), and R(C*Y), are all acyclic .

Proof: Choose a total _weZl ordering ~ of .IW[oYA . There is a map

CoXA —> M o XA , Xo 1—> Xo , where Xo is the least element of M oXA,
with respect to -<, which contains Xo .

Consider any m, n E N — 1 .

Let I(m, n) denote the set of all rn+ n-tuples (Xo , . . . , Yo, . . . , Yn)
such that the Y~ lie in MOYA with Yo ~ • • • -~ Yn, and the Xi lie in COYA
with XoC . . CXm CYo rl . . r1 Yn .
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Let Cm,n denote the R-bimodule

ROR(Xo, . . .,X,n,yo, . . .,Yr,,) R,
(X0 , . . ., X r,.,, ,Yo, . . .,Yn )E I(m,n )

	

R(Xo)

	

if m E N ,

R(Yon•••nYn) ifm=—1,nEi`N ,

	

1 R(Y)

	

if m =—1,n =—1 .

we ábbreviate aOR(xo, . . .,xm,Yo, . . .,Y,) b to a(Xo, . . . , Xm ; Yo, . . . , Yn)b .

There is then a bi-graded R-bimodule C*,* = e) EB1 C,.TZ,n . We
m>—In>— 1

think of the indices (m, n) as lying in the m-n plane, largely in the first
quadrant, and will speak of m indexing the columns, and n indexing th e
rows .

There are two commuting R-bimodule differentials

	

ay : C*,* —} C*, *
given by

where

R(Xo, .,Xm,Ya, . . .,Yn) =

(a(Xo, ., Xm ;
m

=

	

(—1)a(Xo,	 X ; Y0 , . . . , Yn)b ,
iTa

(a(Xo, . . . , Xm ; Yo, . . . , Yn)b)ay
n „

= E(-- 1)ja(Xa, . . ., Xmy Yo, . . . Yj . . ., Yn)b.
j=o

It is straightforward to check that Os2 = o, and = ay as . We
think of as as acting on the m-co-ordinate, horizontally to the left, and
ay as acting on the n-co-ordinate, vertically downwards . In summary ,
we have a large commuting diagram .

Notice that the row with index n = -1 agrees with R(C * Y) . Defin e

C*,+ =

	

El) C,.n}n, and let ss : C*,+ ~ C*,+ be given by
m7--1 n>0

(a(Xo, . . . ,Xm;Yo, . . . , Yn»)ss

= (_1)m+la(Xo, . . . , X, Yo n . . . nYn;Yo, . . .,Yn)b ,

where the result is understood to be o whenever Xm = Yo n • - - n Yn . It
is readily verified that ss is well-defined, and that s~r~~ + o~~sx acts as
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the identity on C,, ,+ . It follows that H* (C*,+ ) = O, which means that ,
for all n E N, the nth row is acyclic .

Notice that the column with index m = -1 agrees with R(M *Y) .
Define C+,* = E) EE1 Cm,n , and let s y :C+, . ~ C+, * be given by

m>Q rz>- 1

(a(Xo, . . .,Xm ;Yo, . . .,Yn)b)sy = a(XO, . . .,Xm;Xm,Yo, . . . ,Yn)b ,

where the result is understood to be o whenever X m = Yo . It is readily
verified that s s is well-defined, and that syay + ~y sy acts as the identity
on C+, * . It follows that, far all m E N, the mth column- is acyclic .

We can interchange m and n, and apply Lemma 4.5, to deduce that ,
if R(M * Y ) is acyclic, then R(C*Y) is acyclic also .

If we consider the commuting sub-diagram obtained by reducing COYA
to ZoYA (or, indeed, to any set between ZO .YA and COYA ) throughout ,
then the maps ss and s y act on the sub-diagram, and we again deduce
that if R (M *Y ) is acyclic, then R(Z* Y) is acyclic .

Now consider the commuting sub-diagram obtained by reducing C OYA
to ,J 'o YA throughout . Here sy acts on t he sub-diagram, so t he columns
with non-negative index are acyclic . If any element of NIoYA is infinite ,
then sx does not act on the sub-diagram. However, the rows in the
sub-diagram are easily seen to consist of direct sums of copies of the
complexes R(.F* W), where W ranges over the family consisting of Y
and sets of the form Yo n • • • n Yn , with Yo -< • • • -< Yn in

M
OYA . We

proved, in Theorem 4 .4, that all such complexes R(F*W) are acyclic .
Thus all the rows of the sub-diagram are acyclic, so, by Lemma 4.5 ,
R(M * Y) is acyclic . Now, by the two preceding paragraphs, we see tha t
R(C*Y) and R(Z*Y) are acyclic also . ■

4.7 . Remarks . There is a certain topological flavour to the above
proof, and it is interesting to identify the sources .

(i) The essence of the argument used in proving Theorem 4 .6 may be
viewed as an extension to non-constant coefficient systems of a theorem
in simplicial homology proved by A . Weil [12], who also attributes a
similar result to Leray.

If an augmented simplicial complex S* is a union of subcomplexes
the nerve of this covering is the simplicial complex with vertices the S ,Iz } ,

and simplices the finite collections with non-empty intersection .

The main result of section 3 of [12] is that, if each non-empty intersec-

tion of the is acyclic, then the homology (with constant coefficients )
of the nerve of the covering is isomorphic to the homology of S* .
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To state the generalization of this to non-constant coefficients, it is
more convenient to use (non-augmented) simplicial complexes, becaus e
it is no longer clear what coefficient obj ect should be assigned to the
simplex of dimension -1 .

Given a poset (Po, -<), and a functor F from Po to an abelian category,
one may define a chain complex with F-coefficients for the complex P*+ ,
where the simplex {po , . . . , pn } , with po ~ - - • ~ pn , is assigned coefficient
obj ect F (po ) . The homology of this chain complex, denoted H* (P*+ , F) ,
is called the homology of 7~*+ with coefficients in F . If F is a constant
functor, then this is just the ordinary homology of P . If (Po,

	

is a

union of sub-posets (Pr, ~ ) , such that every chain in Po is contained

in one of the Poi} , then the simplicial complex ~*+ is equal to the union

of the subcomplexes PZ? . If each non -empty intersection of the posets

is F-acyclic (in the sense that if (Qo, is such an intersection ,
then Hi (Q.+ , F) = o for i ~ O), then an argument similar to that given
by Weil shows that, even in this generality, the homology of P*+ with
coefficients in F may be calculated as the homology of a chain complex
associated to the nerve of the covering . This chain complex associates

to each non -empty intersection (Qo,

	

of the (Pr, ~}, the coefficient
object Ho(Q *+ , F) .
- We shall not prove the aboye result in its full generality here, because
we do not use it, and also because three special cases of it appear in our
proof of Theorem 4.6 . We may define a functor from Co YA (resp . F0YA ,
ZoYA) to R-bimodules, which sends the subset Z to R OR(Z) R. The cor-
responding chain complex is then R(C*+Y) (resp . R(F*+Y) , R(Z,k + Y ) } .

Any chain in C OYA (resp . .FOYA , ZOYA) is contained in CO ZA (resp . .FOZA ,

ZO ZA) for some Z E .Jt/tgYA . Thus we may view ,1V1 *+YA as the nerve of
t he covering of C*+ YA (resp . .F*+YA , Z*+YA ) by its subcomplexes which
come from maximal complete subgraphs. Since an intersection of com-
plete graphs is a complete graph, we may apply the generalization of
Weil 's theorem, once we have proved that for any complete graph Y
the chain complex R(C*+Y) (resp . R(.1'*+Y), R(Z*+Y ) } is acyclic . For
the case of R(,F*+Y) this was done in the proof of Theorem 4 .4 . The
proof of the claim for R(C*+Y) and R(Z*+Y ) is contained in the proof
of Theorem 4.6 .

The latter proof generalizes to arbitrary functors F as follows . If Po
is any poset with a greatest element p, and F is any functor from Po to
an abelian category, then it is easily verified that

Hn(p*+,F)

	

0F(p) if r~ = o ,

ifrt~o.
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On the other hand, the proof of acyclicity of R(.F*Y) refies on the faci

that R( .T* —) preserves direct limits, so does not generalize to arbitrary
functors F.

(ji) M.W. Davis used finitely generated Coxeter groups in [8] to con-
struct interesting contractible CW-complexes . The barycentric subdi-
visions of his complexes give acyclic augmented chain complexes which
are closely related to the acyclic complexes of the form R(C*X) ; the two
complexes are basically the same in the case of integral group rings of
finitely generated right-angled Coxeter groups .

We now deduce consequences about projective dimensions.

4.8 . Corollary . Suppose that Hypothesis 3 .1 holds . Then, for any
left R.-module M, there is an exact sequence of left R-module s

(8) . . . ---+

	

ROR(xo) M ~ . .
XoC•••CXn in Zo(XA)

. . . -4

	

e RoR(xo) m m —> a,

XaETo(XA )

so prof . dim . R M G sup{d(Y, XA ) +proj . dim . R(Y) M iY E ZoXA } . Thus
1 . gl . dim . R < sup{d(Y, XA) + 1 . gl . dim . R(Y) 1 Y E ZoX A} .

Here pro j . dim . R(y) M denotes the minimum of the lengths of projec-
tive R(Y)-resolutions of M, and 1 . gl . dim . R(Y) denotes the supremum
of the projective dimensions of left R(Y) -modules .

Proof: We have the resolution (1), by Theorem 4 .6 . All the terms
of (1) are flat as right R-modules, so (1) remains exact under — OR M,
giving us the exact sequence (8) .

Consider any Xo E ZO XA . Since R is flat as right R(Xo)-module, any
projective R(Xo)-resolution of M lifts, under R*R(xo) —, to a projective
R-resolution of R ►+.R(Xo ) M .

Thus we get certain pro jective R-resolutions of all the terms of the
sequence (8), and these can be used to construct a double complex .
The corresponding total complex is then a pro jective R-resolution of M ,
whose length i s

sup{n + proj . dim . R(x4) M ~ Xo c • • • c X~ in ZOXA } ,

and this gives the desired bounds . ■

The main motivation for our work was the result of Bergman [3], that ,
if Hypothesis 3 .1 holds and XA is finite, then

1 . gl . dim . R Ç sup{IY ' — Y i +1 . gl . dim. R(Y) 1 Y C Y' in COXA } ;
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this implication follows from Corollary 4 .8, or even from Theorem 4 . 4
together with the argument used in the proof of Corollary 4 .8 .

Let us record some of the consequences for the special case of graph
products of groups .

4.9 . Corollary. Let (G(x) x E X) be a family of groups indexed
by X, and let G = G(XA ) . Then there there is an exact sequence of left
KG-module s

. . ~

	

. .

	

K [G/G(Xo}] -- ~ . . .
XpC . . . CX,7, in Za(XA )

. .
—>

	

K[G/G(Xo) ] --> K ----> o .
XaETo ()C A }

Hence cd K G(XA) sup{d(Y, XA ) + cdK G(YA ) Y E ZoXA } .

Proof: This is the case of Corollary 4 .8 where R(x) = K[G(x)], for all

x E X, and M = K~, where KE denotes the left K-module K made into
a left K[G(XA )]-module with trivial G(XA )-action . ■

5. Refining resolutions

This section is devoted to describing how the resolution (1) given by
Theorem 4.6 can be refined, by choosing a useful sub-resolution wit h
split exact quotient .

Throughout this section, let us suppose that Hypothesis 3 .1 holds, so
k is the principal ideal domain chosen in 3 .1 (vi) .

5 .1 . Definition. Let D. be a differential graded R-bimodule with

differential a* .
Suppose we have a decomposition of differential graded R-bimodule s

= D *,1 D*,2 , and that D*,1 is split, which means that there exist s

a graded R-bimodule endomorphism s* of D*,1 of degree -}-1, such that

s * a* + a*s* = 1 on D*,1 ; we have already used Ç such maps to good

advantage, in the proofs of Theorems 4.4 and 4.6 .

Here s* a* s * a* = s*a* ( 1 — a*s*) = S* a* --- s*a*a*s* = s* a* + o = s*a* .

Thus s* a* is idempotent, and so is a* s * = 1 — *9 .0 . . In particular, s *a*
and a* s * commute, and have product o, so (s8s)2 = O .

Now 1 = s* a* +a.S. = s*a*S*(~*+a*s*a*S* = ( .9 * a.s . ) a. + (s*0.s.) .

Thus we can replace s* with s * a* s * , and so assume that s* a* s * = s* ,

and that s* = o .
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Let us extend s* to all of D* by specifying that D*,2s* = O . Then s*
is an R-bimodule endomorphism of D* , of degree +1, such that s* = 0 ,
s * a* s * = s * , D,k,1 = D* (s*a* + a*s * ), and D*,2 = D * ( 1

An endomorphism s* of degree +1 of a differential graded R-bimodule
such that s* = 0 and s*a*s * = s* will be called a component-contracting
homo top y. In this event, e = s * o~* + c7* s * is idempotent, and, as differen -
tial graded R-bimodule, D * decomposes as D. e ~ D*(1 — e), such that
D * e is split, with contracting homotopy s* .

5 .2 . Definition . Let M be a k-module . The rank of M over k ,
denoted rk k M, is the minimum of the cardinals of the k-generating sets
of M . The relation rank of M over k, denoted rel-rk k M, is the minimum
of the ranks of kernels of surjective k- linear maps from free k-modules
to M. By a minimal presentation of M we mean a short exact sequence
of k-modules, 0 —> G ~ F —> M -+ 0, with F, G free, such that
rel -rk k M = rk k G . In this event it is easy to see that rkk M = rkk F.

The foliowing is well-known .

5.3 . Lemma. Let k be a principal ideal domain. For any exact
sequence of k-modules 0—> G---} F--> M-4 0, such that G Ç F are
free k-modules, there exist decompositions F-- H ~ F', G = H® G'
such that rk k F ' = rkk M and rkk G' = rel-rkk M, and thus the quotien t
presentation 0 —> G' --+ F' - --} M —> 0 is minimal.

Proof: Let 0 -4 A --4 B --} M ---} 0 be any minimal presentation of M,
with A C B free . Since F is free, there is a map F --~ B such that

F

/ ~
B—>M—>o

commutes . Let B' be the image of F —> B, so B ' is free, and B' ~ M i s
surjective . Let A ' be the kernel of B' --} M, so A' C A, so the rank of A'
is at most the rank of A, so 0 —> A ' —> B' —> M --} 0 is also a minimal
presentation . Now

0

	

0

	

0

H' —> H --4 0 ----} 0

G —> F --4 M -4 0

A' —> B' —> M ---} 0

1
0

	

0

	

0

0 ~

0 ~

0 . ~
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is a commuting diagram with exact columns and rows . Hence H' = H.
Since the middle column splits, H has the desired properties . ■

5.4 . Definition. Let D. be a differential graded k-module that i s
free as k-module .

We now define a non-canonical component-contracting homotopy s*
which reduces rkk D * as much as possible ; in particular, s * reduces Dn
to o whenever H(D) = o and H_ 1(D) is free, as k-module .

Let n be an integer .

cae have a presentation o --> Im an+1 —> Ker On —> H(D) --} O .
By Lemma 5 .3 we can choose decompositions

Ker an = An EE) Xn f Im an+1 = An e Yn, .Yn Ç Xn,

such that rk k Xn = rkk .FIn (D,k ) , rk k Yn = rel-rkk Hn (D * ) , and we the n
have a minimal presentatio n

o~Yn ~n } XnHn(D*) --> o ,

where in is the inclusion map .

Since D_1 is a free k-module, the image of an : Dn —+ 14_ 1 is a free
k-module, so we may choose a k-linear isomorphism

Dn Ker an El) Im an = An ~ Xn ~ An -1~ Yn _ 1 .

Thus we have a commuting diagram

r,
Dn+1

	

} An+l EE) Xn +1 ~ A.n ~ Yn
0

1 (0° 000 l
i000 1
oin oo /

Dn ----~ An EE) Xn e) An— 1 E) Yn— •

Let sn : Dn —> D n+1 be the map in the reverse direction that corre-
sponds to

ooi o
000 0
000 0
000 0

It is clear that snsn+ l = o and snan+1 sn = sn, so s* is a component-con-
tracting homotopy, and H* (D*) ,':--, H* (D* (l — s*~* — a* s * ) } , as graded
k-modules .

Although s* depends on the choice of the decompositions, there is at
least one invariant, namely the graded k-module isomorphism class o f

an+
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D* (1 — s*a * — c7* s * ), since Dn(1 — snan+1 — r7nsn,.l) Xn Yn_.l, S O

rkk Dn (1 — snan+1 — ansn _- 1 ) = rkk Hn (D * ) + rel-rk k Hn_ l (D* ) .

Notice that this is o if and only if H(D) = o and H_ 1 (D) is free ,

as k-module .

5 .5 . Notation. For any Y E ZoXA , and n E N, we define

cn (Y, XA, k) = rkk Hn_ ~ (Z* (Y, XA ) , k) + rel -rk k Hn--2 (Z* (Y, XA), k) .

5 .6 . Theorem. lf Hypothesis 3 .1 holds, and XA is finite-dimensio-
nal, then there exists a finite exact sequence of R -bimodules

(9) . . .

	

cn,YR®R(Y) R —> . .
YEZQ xA

CQ,YR®R {Y} R --+ R ---> o ,
YEloxA

where cn , YR ®R(Y) R denotes a direct sum of cn (Y, XA , k) copies of

R®R(Y) R •

The maps in (9) have not been specified, nor are they in any way

canonical . There is an underlying exact sequence of k -modules obtained
by taking all the R(x) to be k . For k = Z, the underlying exact sequence

is the augmented chain complex of some acyclic CW-complex, provided

the resulting map

	

c I,Y Z - >

	

co ,Y Z behaves like a boundary
YEZoXA

	

YEZox A
map for edges, that is, sends each of the given generators of the domain

to the difference of two of the given generators of the codomain .

Proof Recall that the augmented complex R(Z* X) = :; R(ZnXA )
n�- 1

presented in Definition 4.2, is acyclic, by Theorem 4.6 .

Let D * denote the graded R-sub-bimodule El) R(ZnXA ) of R(Z* X ) ,
n7p

endowed with the natural induced differential thus D* is actually a
quotient complex of R(Z*XA) , and its homology is R, concentrated in
degree o .

For the reminder of the proof, for reasons of typographical aesthetics ,
we supress most of the * subscripts .

We want to apply a component -contracting homotopy to D to elimi-
nate redundancies .

For each Y E ZOXA , let Dy (resp. DY) denote the graded R-sub-
bimodule (resp . k-submodule) of D generated by those (XO , . . . , Xn) for
which x0 = Y. Thus we can identify Dy -- (RO R ( Y)R) ®kDÇ .
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Then, as graded R-bimodule, D =

	

Dy .
YEZoX A

The differential a has a corresponding componentwise decomposition
as a =

	

II

	

E ay, y► , where ay, y► is an R-bimodule map from
YEZo(X A ) Y'ETo(XA )

Dy to Dy► . From the definition of a, we know that ay, y► = o unles s
YCY' .

Again far aesthetic reasons, we supress the product symbol in the
preceding expression, and write simply a

	

ay,y► .
YÇY' in 10 (XA )

For any Y ' Ç Y" in ZoXA , the (Y ' , Y")-component of a2 = o i s
E ay► , yay, y►► = O .

Y'CYCY"

Thus, for any Y E ZoXA , al,y = o, so Dy, y (resp . Dç-y) is a differ-
ential graded R-bimodule (resp . k-module) with differential ay,y .

Observe that DÇ,y is isomorphic to the chain complex of the aug-
mented simplicial complex Z* (Y, XA) with coefficients in k, but with the
degree of the latter shifted up by 1, so an n-simplex {Xo, . . . , Xn} in

Zn (Y, XA) corresponds to a generator (--1)n (Y, Xo, . . . , Xn) of D"y,y of
degree n + 1, for all n E N - 1 . Hence Hn (Z* (Y, XA) , k) ti Hn+ 1 (DÇy y ) .

As in Definition 5 .4, we can choose a component-contracting homotopy
sy of DÇ such that Dñ ,y(1 - sn , yan+ l,y,y - an ,y, ysn_1 ,y) is k-free of
rank

rkk Hn (DY ) + rel-rkk Hn_ 1 (DY )

= rk k 14_ 1 (1* (Y, XA ), k) + rel-rkk Hn_ 2 (Z* (Y, XA), k)

= cn(Y, XA, k) = cn , y .

It is a simple matter to lift sy to a degree +1, R-bimodule endomor-
phism on all of Dy (R ®R(y) R) DY,y, and we again use sy to
denote the lifted map . As R-bimodule ,

Dn,Y ( 1 - Sn,Yan+1,Y,Y - an,Y,YSn -1,Y) Cn,YROR(Y) R .

We now express a as a sum of two degree -1, R-bimodule endomor-
phisms of D . Let a= denote E ay,y, and let a+ denote a - a-, so

YEZoXA
a+=

	

~

	

ay, y► .
YCY' in 2-0(XA )

Let s= == E sy , a degree +1, R-bimodule endomorphism of D .
YEToXA

Notice that s-s- = o, and s=a-s= = s = .

Now 1 + s- a+ is a degree o, R-bimodule endomorphism of D, and we
claim it is an automorphism. Let d = 1 + dimZ* XA , which is finite by
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hypothesis. Then the depth with respect to XA of each element of ZoXA
is at most d, and at least 0 . Since

(Dy)sO+ C (~y)D+ Ç ~ DY► ,
Y' D Y

we see that s= á+ is strictly decreasing with respect to depth. It follows
that (sa)'1 +1 = o . Hence 1 + s = e7 + is an automorphism of Dy, with
inverse 1 - s=a+ + (s=a+ ) 2 + • • • + (_s=a+)d , as claimed .

Define s = (1+s=a) -'s= = s= (1 + a+ s= ) -1 , so s is a degree +1 ,
R-bimodule endomorphism of D.

To see that s is a component-contracting homotopy of D observe that :

ss = (1+s=O+)-1s=s-(1+a+s= ) -1 = o ;

sas = (1+ s=a+ )- 1s=(a=+a+ )s=(1+a+s= ) -1

= (1 +s=al-1s-a= s=(1+á+s=)--1 + (1+s-a+} -1s-a+s=(1+c7+s= ) - 1

= (1 +s
=a

+
)
_1s=(1+a+s= ) -1 + (l+s-a+}-ls=a+s=(1+a+s=) -1

_ (1+s=a's=(1+as=)(1+as=)' = (1+s-a+)-1s= = s .

Write e = 1 - sa - - Os and e = = 1 - s-a= -- a=s- . Then e, e=
are idempotent, degree o, R-bimodule endomorphisms of D, which are
decreasing with respect to depth. Moreover e - e= is strictly decreasin g
with respect to depth. Let u = ee= + (1 -- e)(1 - el, a degree o, R-bi-
module endomorphism of D. Since

1-u =e +e= -2ee= =e(e- e=}+ ( e -ele=

is strictly decreasing with respect to depth, we see (1 -- u)d+
1 = o, so u

is an automorphism, with inverse 1 + (1 - u) + (1 - u)2 + • • • + (1 - u) d .
Also eu = ee = + o = ue = , so De Deu = Due= = De= . That is, as
R-bimodules ,

Dn ( 1 - S nan+1 - ansn_1) Dn( — sna7l+1 — <t s n—1 )
,-,

	

cn,YROR(Y} R .

Y EIO XA

Moreover, H* (D* (1 -- sa - as)) IL* (D*) , which is R, concentrated
in degree 0 . This gives an exact sequence (9) . ■

The resolution (9) can be expressed in the notation introduced in
Example 2 .3, entirely in terms of the graph XA , and the principal ideal
domain k, so, in this sense, (9) is independent of the choice of rings K
andR(x),xEX .

In the same way that Corollary 4 .8 was deduced from Theorem 4.6 ,
the following can be deduced from Theorem 5 .6 .

116
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5.7 . Corollary . Suppose that Hypothesis 3 .1 holds, and that XA is
finite-dimensional . Then, far any left R-module M, there is a finite exact
sequence of left R - modules

. . . —>

	

cn,YROR(Y) M ~ . .
YE10 X A

~ EB, co,YR®R(Y)m --+
m —>

p ?
YEZOX A

so prof . dim . R M < sup{hdk (Y, XA ) + prof . dim . R(Y) M 1 Y E ZoXA} .

Thus 1 . gl . dim. R sup{hd k (Y, XA) + 1 . gl . dim . R(Y) ~ Y E ZoXA} .

We now illustrate why ornitting the hypothesis of finite-dimensionality
would invalidate Theorem 5.6 and Corollary 5 .7 .

5 .8 . Example . Let X be the following set of sub- intervals of the
interval [0, 1] :

{[2n ~ 2 2n1 ]~i,nEl~,z+l<2n }U{{y}yE[0,1]} .

We will construct a graph having vertex set X , but le t us firs t mare
some observations .

Notice that X is a poset . partially orclered by inclusion .

O . II ] [ 1v

Consider the binary tree formed by starting with the interval [0,1], and
successively dividing intervals in half; so an interval [p, q] E X divides ,
to form two new intervals [p, P19], [ , q] , also in X . It is clear that ,
fo r any two elements of X, either one is containe d in the other , or thei r
intersection is either empty or a singleton .

Any infinite strictly descending chain of intervals in X has intersection
a singleton subset of [0,1] , an element of X .
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Conversely, any singleton subset of [0,1] is the intersection of exactly

one or two such chains . Any rational q in (0,1) of the forra 2ñ will occur

as the midpoint of some interval in X, and, from there on, we have a

chain in which q is the right endpoint of each term, and another chain

in which q is the left endpoint of each term . All other points of [0,1 ]

occur as the intersection of a unique strictly descending infinite chain o f

intervals in X .

For any nonempty subset x of [0,1] , let x* denote the set of all elements

of X which contain x . Thus, if x has more than one element, then x* is

a finite, totally ordered chain x* = Upo, go] , [p 1 , q 1 ], . . . , [pn , gn ]}, where

[0,1]=[po,qo][pi,q1]D . .J[p,q]x.

Here x* = [pn, qn] * . In general, then, x* = Y*, where is the intersection

of all elements of x*, so E X .

Let XA be the graph, with vertex set X, formed by joining two distinct

elements of X whenever they have non-empty intersection .

For each non-empty subset x of [0,1], x* is clearly the vertex set

of a complete subgraph of XA . Moreover, for any y E [0,1], we have

{y}* E JVtoXA .

We claim that, conversely, each Y E MoXA is of the form {y}* fo r

some y E [0,11 . Suppose not . Then we have a Y E MoXA such that

the intersection of its elements is empty. Since [0,1] is compact, and the

elements of Y are closed, we see that the intersection of some finite set of

elements yo, . . . , yn of Y, is empty. We may assume that no yi contains

another yi as a subset, so the intersection of any two distinct yi is either

empty or a singleton . But Y is connected, so each pairwise intersectio n

is a singleton . Since the y i are intervals, any two distinct yi meet in an

endpoint . This limits the number of intervals to at most two, and the

intersection is then non-empty, a contradiction . This proves the claim .

Thus there is a bijection [0,1] —> MoXA , y ~ {y}* .

An element Y of ZoXA is a finite intersection of elements of MoXA ,

so there is a finite subset {yo, . . . , yn} of [0,1] such that

Y = {yo}* n . . . n {yn }* = {yo, . . . , yn }* — x* ,

where x = {yo, . . . , yn} E X . It follows that we have a poset anti-

isomorphism X --> .ZoXA , x x* ; that is, both the map and its inverse

are inclusion-reversing .

Consider any Y E 10XA, and let x be the least element of Y, so

Y = x* . Recali that 10 (Y,XA) is the sub-poset {Z E ZoXA Z D Y}
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of ZoXA . Then the aboye poset anti-isomorphism induces a poset anti-
isomorphism between the subposet {z EX I z C x} of X, and the poset
10 (Y, XA ) . Temporarily, let us denote the former poset (—oo, x) .

If Y 1 MoXA , then its least element, x, is an interval which is not
a singleton, and the poset (—oo, x) has exactly two maximal elements ,
namely the two intervals xl , x 2 formed by dividing x. Moreover, there i s
exactly one element of (—oo, x) comparable to both x1 and x2 , namely
xl n x2, the singleton which consists of the midpoint of the interval x . It
follows that the associated simplicial complex Z* + (Y, XA) is the union o f
two cones, and the intersection of the two eones is a single point. Such
a complex is easily seen to be contractible . Thus we have proved that ,
if Y 0 .lV[oXA , then hdk (Y, XA ) = —cc.

On the other hand, if Y E M o XA , then 10 (Y, XA) is empty, so
Z* (Y, XA ) consists of a -1 simplex, and here hdk (Y, XA ) = O .

Thus, for any Y E ZoXA
a

hdk ~Y, XA } =
o if YE .I~oXA ,

—oa otherwise .

Now let K be a field, set R(0) = K, and, for each x E X, se t

K[ ex i e~ = ex ] if x is a singleton ,
R(x) =

K

	

otherwise .

Consider the family of K-algebras (R(Y) i Y Ç X), defined as in Exam--
ple 3.3 (i) . For any Y E ZoXA ,

R(y) K x K ifYEmoXA ,

K

	

otherwise ,

so 1 . gl . dim . R(Y) = O .

Hence sup{hd k (Y, XA) + 1 . gl . dim . R(Y) Y E ZoXA } = O .

But R = R(X) is the K-algebra coproduct of a family of copies of
K [ e e 2 = e ] , indexed by the elements of [o, l], so R does not have
global dimension 0 . (In fact, R must then have global dimension 1, by
{2, Corollary 2 .51 or [9, Corollary 71 . )

Hence the inequality in the conclusion of Corollary 5 .7 is not valid fo r
this example .

Let us apply Corollary 5 .7 to graph products of groups .
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5.9 . Corollary. Let XA be finite-dimensional, and let (G(x) ~ x E X )
be a family of groups indexed by X, and let G = G(X A) be their graph
product.

Then there there is a finite exact sequence of left KG-module s

•—> cn, Y K[GIG (Y)] —> . . .

YEZo(XA)

▪

	

▪ —> ED co ,Y K[GIG(Y)] ~ K —} o ,
YEZ4(XA )

where cn ,YK[G/G(Y)] denotes a direct sum of cn (Y, XA , k) copies of
K[G/G(Y)] .

Hence cdK G(XA ) c sup{hd k (Y, XA ) + cdK G(YA ) ~ Y E ZoXA } .

Bestvina [5], refining techniques of Davis [8], gives a similar result fo r
finitely generated Coxeter groups, and there is some overlap with the
aboye result in the case of right-angled Coxeter groups .

6 . Normal forrns and module- freeness
adapted from G. M . Bergman [3, Section 2 ]

The results of this section shed some light on the structure of the rings
with which we have been dealing .

Here we examine the following special case of Hypothesis 3 .1 .

6 .1 . Hypothesis . For each x E X, let R(x) be a K-ring given wit h
a K-centralizing (right) K -basis B(x) U {1}, where 1 « B( x) . For each
(x, y) E A, let B(x, y) = {ab — ba i a E B(x), b E B(y)} . For each subset
Y of X, let R(Y) be the quotient of II R(y) by the ideal generated by

yEY
the images of the B(x, y), (x, y) E A n (Y x Y) .

The object of this section is to prove that, for any Y Ç X, R = R(X)
is free as right R(Y)-module on a basis containing 1 ; this is stronger than
the conclusion of Proposition 3.4 . The form taken by the basis of RR(y)
will show in particular that if, for each x E X, we are given a subset
C(x) of B(x) U {1}, such that 1 E C(x), and C(x) is the K-basis of a
subring S(x) of R(x ) , then 8(X), which is defined in the obvious way, is
naturally embedded in R(X ) .

6 .2 . Examples. (i) If K is a field contained in the center of each
R(x), x E X, then R(x) obviously has a K-centralizing K-basis contain-
ing 1 . Thus the situation considered here includes the case of Construc-
tion 1 .2 where K is a field .
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(u) In the situation of Construction 1 .3, set R(x) = K[G(x)] and
B(x) = G(x) — {1} . Then B(x) U {1} is a K-centralizing K -basis of R(x)
and R(X) = K[G(XA )] .

Further, if, far each x E X, C(x) is a submonoid of the group G(x) ,
then C(x) is the K-basis of a subring S(x) = K[C(x)] of R(x), and
S(X) = K[C(XA )], where C(XA ) is defined in the obvious way, so the
aboye statement implies that C(XA ) Ç G(XA ) .

Let B denote the disjoint union of the B(x) . Each element b E B wil l
be said to be "associated to" the index x E X such that b E B(x) . Let
B * denote the free monoid on the set B .

Since R is generated by the images of the R(x), it will be spanned
as right K-module by the products of the images of the elements of
B (counting the empty product, 1), i .e . by the natural image of B* .
We shall call these products monomials, and denote them by the same
symbols as the elements of B* of which they are images, though the map
B*

	

R is generally not one-to-one .

But we will be careful to distinguish between speaking of two mono -
mials as being "equal in R" , and being "equal " , which will mean "equal
in B*"

Note that if a monomial b1 • • • b n has two succesive terms bi, bi+1 both
associated with the same index x E X, then, by writing the product
bibi+ l E R(x) as a K-linear combination of elements of B (x ) U{ 1}, we
can reduce b 1 • • • b7z in R to a K-linear combination of monomials of
shorter length . More generally, if b 1 - • - b7z has two terms bi and bi ( i C j)
associated with the same index x E X, and if . all terms bk occuring
between these ( i .e ., i < k < j) are associated with indices y such that
(x, y) E A, then, in R, we can commute b i past these terms until it is
adjacent to and then reduce our monomial as aboye to a K-linear
combination of shorter monomials .

We deduce that R will be spanned as a right K-module by those mono-
mials b 1 • • - b,z with the property that any two terms b i and b; therein ,
that are associated with the same index x E X, are separated by at least
one intermediate term b k associated with an index y such that (x, y) 1 A .
We shall call such b 1 - - • bn "acceptable monomials" , and denote the set
of acceptable monomials S Ç B* .

An acceptable monomial can still have adjacent terms bi bi+1 associated
with indices x and y such that (x, y) E A, and in this case it will be
equal in R to the (also acceptable) monomial obtained by transposing
these terms . To obtain invariants of acceptable monomials under such
transpositions, let us associate to any acceptable monomial b 1 . - - bn a
partial ordering of its terms, setting
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(10) b i ~ bi if i C j and there exists a sequence

i =m1 C . . .CmgC . . . CrïmT= j

such that, writing ind(q) for the index associated with b ryn q , we
have (ind(q), ind(q + 1) ) 1 A for all q C r .

We are being sloppy in our notation, since a monomial may repeat
terms of B, so that it is not really the terms b i that are being partially
ordered, but, if you will, their subscripts i ; or, if you prefer, the pair s
(i, bi ) . In any case, the point is that we obtain from our monomial a finite
partially ordered set, with its vertices labeled with certain elements of
B, possibly with repetitions . This partially ordered set will (by (10) and
the definition of acceptable monomial) have the properties that any two
vertices labelled with elements of B associated to indices x, y such that
(x, y) 1 A must be related under our ordering (one -< the other ; note that
this includes the case x = y) ; and when one vertex covers another (is a
minimal vertex >- than it ) , the associated indices in X must be distinct .

6.3 . Lemma . Let w — b 1 • • • b, and w' = ¿II - • - b;n be acceptable

rnonomials of the same length . Then the following conditions are equiv-
alent :

(a) w' can be obtained from w by a series o f transpositions o f adjacen t
terms bi, bi + 1 associated to indices x, y such that (x, y) E A .

(b) There is an isomorphism between the partially ordered sets asso-
ciated with these two monomials, which preserves the B-labels on
the vertices . Equivalently : there exists a permutation rr E Symn
such that for all i, bi = b, (i) , and far all i, j if bi ~ b'.i in w' then
b„(i) --< b 7 (.i) in w .

Further, when these condicions hotd, the isomorphism of (b ) (equiva-
lently, rr ) is unique .

Broof. ( ~ (b) : We easily see that each transposition leaves th e
isomorphism class of the B-labeled partially ordered set unchanged .

(b) ~ (a) : If rr is not the identity, there will be some i such that
7r(i) ~ 7r (i + 1) . We see that b i and bi+ 1 must be unrelated under -<
(otherwise rr would not respect the partial ordering) , so they must be
associated with a pair of indices (x, y) E A . Hence we may transpos e
them, transforming w to a monomial the order of whose terms is "closer"
to that of w ' (fewer pairs of terms bi , bi occuring in different orders) .
Iterating this procedure, we see that w will be transformed in a finit e
number of steps into w' .
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To see the last assertion of the lemma, note that in our partially or-

dered sets, any two vertices bearing the same label in B must be related

under --< . Since the sets are finite, there cannot therefore be more than

one order-preserving and label-preserving bijection . ■

Let us write w w' if the equivalent conditions of the aboye lemma

hold . This gives an equivalence relation on the set S of acceptable mono-

mials. We shall write 5~--► = S ' , and represent the equivalence class o f

w by [w] E S' . Clearly, the map S —> R factors through S' . We shal l

soon see that this map is one-to-one, and its image is a K-centralizing

K -basis of R. But first we need a result on the structure of S' .

For any subset Y of X , let us define SY to be the set of al l

[b1 • • • bn] E S' such that all bi E U B (x) . Let us also define S;Y to
xE Y

be the set of all [w] E S' such that in the partially ordered set associated
with [w], no maximal vertex is labeled with a member of any B(y) with
y E Y . We note that the maximal vertices of the partially ordered set
associated with [w] correspond to those terms that can be transposed
to the rightmost position. (E .g., if (x, y), (x, z) E A, y z, a E B(x) ,
b E B(y), c E B(z), then, in the partially ordered set associated with

[abc], a and c are both maximal . )

Note that if [w1] E S;y and [w2] E Sy then w1 w2 will be an acceptabl e

monomial. Further, [w iw2 ] will be determined by the equivalence classes

[wl ] and [w 2 ], since any transposition of terms that can be performed in
the latter elements can certainly be duplicated in the product . In fact ,
we have :

6.4. Lemma. Let Y C X . Then for any element [w] E S' there exis t
unique elements [w 1 ] E

	

[w 2] E SY such that [w] = [w 1w2 ] .

Proof: To get the existence of such a decomposition, look for a maxi-
mal term of w associated with an index in Y ; if there is one, transpose i t

to the last position. Then treat the remaining string of terms (shorter by
one) the same way. It may contain maximal terms that were not maxi-
mal in the original element, because they were covered by the first term
extracted . Iterate until we are left with a string w 1 (possibly empty)

with no maximal terms associated with an index in Y, followed by a
string w 2 with all terms associated to indices in Y .

To get uniqueness, note that w2 must consist precisely of those terms

of w which are associated to indices in Y, and are not ~ any terms wit h
indices in X --- Y . ■

We can now prove :
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6.5 . Proposition. lf Hypothesis 6 .1 holds, then the images in R
of the distinct elements of S' are distinct, and form a K -centralizing
K -basis of R .

Proof: Let M be a free right K-module on the basis S ' . We shal l
show that M may be made a right R-module in a natural way, and tha t
the actions on this module of distinct elements of S' are right K -linearly
independent . (The idea of this trick goes back to van der Waerden, cf.
[4, Section 11 .2, (28")]) .

For each x E X, take Y = {x} in Lemma 6.4 . Every member of S{ s } i s
of the form [b] (b E B(x)), or [1], so the lemma says that we get a bijection
S~{x} x (B(x)U{1}) —> S ' , given by ([w i],b) i—> [w 1 b] . But B(x)U{1} is a

right K -basis for R(x), so this decomposition allows us to give the free
right K-module M on S' a structure of free right R(x)-module on the
basis S~{z } , extending the given right K -module structure . Doing thi s
for all x E X, we get a structure of right II R(x)-module .

ac EX
Now take any (x, y) E A . We see that S {~ ,y} will consist of element s

[ww] = [ww], wx E B(x)U{1}, wy E B(y)U{1} . (Because element s
of B(x) and B(y) are transposable with one another, we can form from
them no acceptable monomial of length greater than two, by the defini-
tion of acceptable monomial . } This gives a biject ion

S,' { x ,y} x (B(x)U{1}) x (B(y)U{1}) -~ S' .

Since (B(x) U {1}} x (B(y) U {1}} commutes with K, we see that S, {s,y }
is a right K-basis of R( {x, y } ) . Thus we may define a structure of (free)
right R( {x, y})-module on M which, clearly, extends the structures o f
right R(x)- and R(y)-module already defined . This means that the
actions of B(x) and the actions of B(y) on M must commute with
one another . Since this is so for all pairs (x, y) E A, our right
~ R(x)-module structure must in fact give a right R(X)-module struc-

x EX
ture, by the definition of R(X ) .

Now note that for any [b ] • • • bn ] E S ' , the product b i • • • bn E R ,
acting on the element [1] E M, will give [bl • • - b n ] E M . It follovcrs that
any non-trivial K-linear combination in R of the images of elements of

S' are K-Iinearly independent . Since we already know they span R, thi s
completes the proof of the proposition . ■

We can now get our desired freeness result from Lemma 6.4 .

6 .6 . Proposition. lf Hypothesis 6 .1 holds then, for any subset Y of

X, R(X) is free as a right module over R(Y), with basis the (faithful)

image o f S,Y .
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