Abstract

Let G be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma(G)$, in terms of geometric abelian actions on \mathbb{R}-trees. We provide a proof of Brown's characterization of $\Sigma(G)$ by exceptional abelian actions of G, using geometric methods.

Introduction.

In a 1987 paper at Inventiones [BNS], Bieri, Neumann and Strebel associated an invariant $\Sigma = \Sigma(G)$ to any finitely generated group G. This invariant may be viewed as a positively homogeneous open subset of $\text{Hom}(G, \mathbb{R}) \setminus \{0\}$. It contains information about finitely generated normal subgroups of G with abelian quotient.

In the same issue of Inventiones [Br], Brown introduced HNN-valuations and related Σ to actions of G on \mathbb{R}-trees. In particular a nonzero homomorphism $\chi : G \to \mathbb{R}$ is in $\Sigma \cap -\Sigma$ if and only if \mathbb{R} is the only \mathbb{R}-tree admitting a minimal action of G with length function $|\chi|$ (see Theorem 3.2 below).

A few months earlier, also in Inventiones [Le 1], this author studied singular closed differential one-forms on closed manifolds M^n ($n \geq 3$). We defined complete forms by several equivalent geometric conditions; in the simplest case, a form ω is complete if and only if every path in M is homotopic to a path γ that is either transverse to ω or tangent to ω (i.e. $\omega(\gamma'(t))$ never vanishes or is identically 0).

We proved that any form cohomologous to a complete form is also complete, so that completeness defines a subset $U(M)$ in the De Rham cohomology space $H^1_{DR}(M, \mathbb{R}) \simeq \text{Hom}(\pi_1 M, \mathbb{R})$. We also proved that $U(M)$ depends only on the group $G = \pi_1 M$, and in fact $U(M)$ is nothing but $\Sigma(\pi_1 M) \cap -\Sigma(\pi_1 M)$.

R-TREES AND THE BIERI-NEUMANN-STREBEL INVARIANT

GILBERT LEVITT
In this note we use (a generalization of) closed one-forms to give a new characterization of \(\Sigma(G) \), this time in terms of geometric actions of \(G \) on \(\mathbb{R} \)-trees (Theorem 3.1). Assuming for simplicity that \(G \) is finitely presented, we say that an action of \(G \) on an \(\mathbb{R} \)-tree is geometric if it comes from a measured foliation on a finite 2-complex \(K \) with \(\pi_1 K = G \) (see [LP] for a complete discussion). A consequence of Theorem 3.1 is:

Corollary. Let \(\chi : G \to \mathbb{R} \) be a nonzero homomorphism, with \(G \) finitely generated.

1. There exists a geometric action of \(G \) on an \(\mathbb{R} \)-tree with length function \(\ell = |\chi| \) if and only if \(\chi \in \Sigma \cup -\Sigma \).
2. The action of \(G \) on \(\mathbb{R} \) by translations associated to \(\chi \) is geometric if and only if \(\chi \in \Sigma \cap -\Sigma \).

We also give a geometric proof of Brown's theorem, by associating a natural \(\mathbb{R} \)-tree \(T^+(f) \) to any real-valued function \(f \) defined on a path-connected space (there is a similar construction in terms of romp-trees in [BS, Chapter II]).

In Part 1 we define closed one-forms relative to a homomorphism \(\chi : G \to \mathbb{R} \), and we reformulate the condition \(\chi \in \Sigma \) in terms of closed one-forms. In Part 2 we recall known facts about abelian actions on \(\mathbb{R} \)-trees (see [CuMo], [Sh]). In Part 3 we prove both characterizations of \(\Sigma \) mentioned above.

Acknowledgements. This work was motivated by Skora's remark that actions of nonabelian free groups on \(\mathbb{R} \) are not geometric. It benefited from conversations I had with R. Bieri during the Geometric methods in group theory semester in Barcelona’s Centre de Recerca Matemàtica, and in Frankfurt as part of the Procope program.

1. **Closed one-forms.**

Let \(\chi : G \to \mathbb{R} \) be a homomorphism. A *closed one-form* relative to \(\chi \) consists of a path-connected space \(X \) equipped with an action of \(G \), together with a continuous function \(f : X \to \mathbb{R} \) such that

\[
f(gx) = f(x) + \chi(g)
\]

for all \(x \in X \) and \(g \in G \).

The closed one-form is *geometric* if \(G \) acts as a group of covering transformations and the base \(X/G \) is (homeomorphic to) a finite CW-complex. Note that this forces \(G \) to be finitely generated.

Example 1. Let \(G \) be the trivial group. Then any function on a path-connected space defines a closed one-form.
Example 2. Let ω be a closed differential one-form on a closed manifold M. Let $\chi : \pi_1M \to \mathbb{R}$ be the homomorphism given by integrating ω along loops. Let $p : X \to M$ be the universal covering. Then any $f : X \to \mathbb{R}$ such that $df = p^*\omega$ defines a geometric closed one-form relative to χ.

Example 3. Let Γ be the Cayley graph of G relative to some fixed generating system. Given a homomorphism $\chi : G \to \mathbb{R}$, view it as a function on the set of vertices of Γ, and extend it affinely and G-equivariantly to a function f defined on the whole of Γ. This defines a closed one-form relative to χ. It is geometric if and only if the generating system is finite.

Example 4. Any abelian action of G on an \mathbb{R}-tree T defines a closed one-form $f : T \to \mathbb{R}$ (see Part 2).

If f is a closed one-form on X, we denote $X_{>c} = f^{-1}(c, +\infty)$ for $c \in \mathbb{R}$.

Proposition 1.1. Let $f : X \to \mathbb{R}$ be a geometric closed one-form relative to a nonzero homomorphism $\chi : G \to \mathbb{R}$. For any $c \in \mathbb{R}$, the set $X_{>c}$ has at least one component on which f is unbounded. This component is unique if and only if $\chi \in \Sigma(G)$.

Proof: Since f is geometric, the group G acts on X as a group of covering transformations. Let $X' = X/G'$, where G' is the commutator subgroup of G. The function f induces $f' : X' \to \mathbb{R}$. Let $X'_{>c} = f'^{-1}(c, +\infty)$. By [BNS, Part 5], there exists a unique component A' of $X'_{>c}$ on which f' is unbounded, and $\chi \in \Sigma(G)$ if and only if the natural map from $\pi_1 A'$ to G' is onto (compare [Le 1, Parts IV and V] and [Si]). The proposition follows. ■

2. Abelian actions on \mathbb{R}-trees.

Suppose a finitely generated group G acts by isometries on an \mathbb{R}-tree T.

The *length function* $\ell : G \to \mathbb{R}^+$ is defined as $\ell(g) = \inf_{x \in T} d(x, gx)$. The action is *trivial* if there is a global fixed point (equivalently if $\ell \equiv 0$), *minimal* if there is no proper invariant subtree. The action (or the length function) is called *abelian* if ℓ is the absolute value of a nonzero homomorphism $\chi : G \to \mathbb{R}$. Two minimal actions of G with the same length function ℓ are equivariantly isometric, except maybe if ℓ is abelian. Brown's theorem (Theorem 3.2 below) is concerned with this "maybe".

A nontrivial action is abelian if and only if there is a fixed end e. We can then define a closed one-form on T, as follows. Given $x \in T$, there is a unique isometric embedding $i_x : (-\infty, 0] \to T$ such that $i_x(-\infty) = e$.
and \(i_x(0) = x \). Fixing a basepoint \(m \in T \), we define \(f(x) \) as the only real number such that \(i_x(t) = i_m(t + f(x)) \) for \(|t| \) large enough ("Busemann function"). Then \(f \) is a closed one-form on \(T \), relative to some nonzero homomorphism \(\chi : G \to \mathbb{R} \) satisfying \(\ell = |\chi| \). This homomorphism measures how much elements of \(G \) push away from \(e \).

An abelian action is called *exceptional* if there is only one fixed end \(e \). We can then define \(\chi \) unambiguously, and we say that the action is *associated* to \(\chi \). If there are two fixed ends (i.e. if there is an invariant line), we say that the action is associated to both \(\chi \) and \(-\chi \).

3. Characterizations of \(\Sigma \).

Let \(f : X \to \mathbb{R} \) be continuous, with \(X \) path-connected. Assume \(f \) has bounded variation in the following sense: given \(x, y \in X \), there exists a path \(\gamma : [0, 1] \to X \) from \(x \) to \(y \) such that \(f \circ \gamma \) has bounded variation. The infimum of the total variation of \(f \circ \gamma \) over all paths \(\gamma \) from \(x \) to \(y \) then defines a pseudometric \(d(x, y) \) on \(X \).

We let \(T(f) \) be the associated metric space: points of \(T(f) \) are equivalence classes for the relation \(d(x, y) = 0 \). Denote \(\pi : X \to T(f) \) the natural projection and \(\lambda : T(f) \to \mathbb{R} \) the map such that \(\lambda \circ \pi = f \).

If \(f \) is a closed one-form relative to some \(\chi : G \to \mathbb{R} \), there is an induced isometric action of \(G \) on \(T(f) \) with \(\lambda(gx) = \lambda(x) + \chi(g) \). When \(T(f) \) is an \(\mathbb{R} \)-tree, the length function \(\ell \) of this action satisfies \(\ell \geq |\chi| \) (since \(\lambda \) does not increase distances).

Definition. Consider an abelian action of a finitely generated group \(G \) on an \(\mathbb{R} \)-tree \(T \), associated to \(\chi : G \to \mathbb{R} \). The action is geometric if and only if there exists a geometric closed one-form \(f : X \to \mathbb{R} \) relative to \(\chi \) such that \(T(f) \) is \(G \)-equivariantly isometric to \(T \).

Theorem 3.1. Let \(\chi : G \to \mathbb{R} \) be a nontrivial homomorphism, with \(G \) a finitely generated group. There exists a geometric abelian action of \(G \) on an \(\mathbb{R} \)-tree associated to \(\chi \) if and only if \(\chi \in -\Sigma \).

Proof:

Let \(f : X \to \mathbb{R} \) be a geometric closed one-form relative to \(\chi \). Assume that \(T(f) \) is an \(\mathbb{R} \)-tree and the action of \(G \) on \(T(f) \) is abelian, associated to \(\chi \). We show \(\chi \in -\Sigma \).

Fix \(g \in G \) with \(\chi(g) < 0 \), and fix \(x \in X \) with, say, \(f(x) = 0 \). For \(A \) large enough, the path component \(U \) of \(f^{-1}(-A, A) \) containing \(x \) meets every orbit for the action of \(G \) on \(X \): this is because \(X/G \) is a finite complex. We may also assume that \(A \) has been chosen so that \(gx \in U \).
We then claim that any \(y \in X \) with \(f(y) \leq -A \) belongs to the same component of \(f^{-1}(-\infty, A) \) as \(x \). This will imply \(\chi \in -\Sigma \) by Proposition 1.1.

Choose an infinite path \(\gamma : [0, +\infty) \to X \) such that \(\gamma|_{[0,1]} \) is a path from \(x \) to \(gx \) in \(U \) and \(\gamma(t + n) = g^n\gamma(t) \) for \(n \in \mathbb{N} \) and \(t \in [0, 1] \). Since \(\chi(g) < 0 \) this path is contained in \(f^{-1}(-\infty, A) \).

Given \(y \in X \) with \(f(y) \leq -A \), fix \(h \in G \) such that \(hy \in U \), and choose a path \(\delta \) from \(hy \) to \(x \) in \(U \). Consider the infinite path \(\rho \) obtained by applying \(h^{-1} \) to \(\delta \gamma \): it starts at \(y \) and passes through \(h^{-1}x \), \(h^{-1}gx \), \(h^{-1}g^2x \), \ldots. It is contained in \(f^{-1}(-\infty, A) \) since \(f(y) \leq -A \).

The image of \(\gamma \) in \(T(f) \) contains all points \(g^n\pi(x) \) \((n \in \mathbb{N})\), while the image of \(\rho \) contains all points \(h^{-1}g^n\pi(x) = (h^{-1}gh)^n\pi(h^{-1}x) \). Now the translation axes of \(g \) and \(h^{-1}gh \) intersect in a half-line containing the fixed end \(e \) (unless they are equal). Furthermore \(g \) and \(h^{-1}gh \) both push towards \(e \) since \(\chi(g) < 0 \). It follows that \(\gamma \) and \(\rho \) are contained in the same component of \(f^{-1}(-\infty, A) \), so that \(\chi \in \Sigma \).

Conversely, suppose \(\chi \in -\Sigma \). First assume that \(G \) is finitely presented. Let \(M \) be a closed manifold with \(\pi_1 M = G \). Consider a geometric closed one-form \(f : X \to \mathbb{R} \) as in Example 2 of Part 1. To fix ideas we may assume that \(f \) is a Morse function.

Since \(X \) is simply connected (it is the universal covering of \(M \)), it is known [GS] that \(T(f) \) is an \(\mathbb{R} \)-tree (see [Le 2, Corollary 111.5]). Since \(\chi \in -\Sigma \) the function \(\lambda : T(f) \to \mathbb{R} \) is bounded on every component of \(\lambda^{-1}(-\infty, c) \) but one. It follows that the action of \(G \) on \(T(f) \) is abelian, associated to \(\chi \): letting \(\lambda \) go to \(-\infty \) defines an end \(e \) of \(T(f) \) which is invariant under the action.

Now let \(G \) be any finitely generated group. Using (i) \(\iff \) (iii) in [BNS, Proposition 2.1] we can find an epimorphism \(q : H \to G \), with \(H \) finitely presented, such that \(\chi' = \chi \circ q \) belongs to \(-\Sigma(H)\). Apply the previous construction to \(H \) and \(\chi' \). Let \(Y \) be the normal covering of \(M \) with group \(G \) and \(g : Y \to \mathbb{R} \) the map induced by \(f \).

The length function of the action of \(H \) on the \(\mathbb{R} \)-tree \(T(f) \) is \(\ell = |\chi'| \). It vanishes on the kernel \(K \) of \(q \). It follows from [Le 2, corollary of Theorem 2] that \(T(g) = T(f)/K \) is an \(\mathbb{R} \)-tree. The action of \(G \) on this \(\mathbb{R} \)-tree is abelian, associated to \(\chi \).

Theorem 3.2 (Brown). Let \(\chi : G \to \mathbb{R} \) be a nontrivial homomorphism, with \(G \) finitely generated. Then \(\chi \in \Sigma \) if and only if there exists no exceptional abelian action associated to \(\chi \).

We start the proof with a general construction. Let \(f : X \to \mathbb{R} \) be continuous, with \(X \) path connected. We construct an \(\mathbb{R} \)-tree \(T^+(f) \) as
follows. Given \(x, y \in X \), define
\[
\delta(x, y) = f(x) + f(y) - 2\sup_{\gamma \in [0,1]} \min_{t \in [0,1]} f(\gamma(t)),
\]
the supremum being over all paths \(\gamma : [0,1] \to X \) from \(x \) to \(y \). This is a pseudodistance on \(X \) and we let \(T^+(f) \) be the associated metric space.

Proposition 3.3. The space \(T^+(f) \) is an \(\mathbb{R} \)-tree. If \(\mu : T^+(f) \to \mathbb{R} \) is the map induced by \(f \), all sets \(\mu^{-1}(-\infty, c) \) are path-connected, so that \(T^+(f) \) has a preferred end \(e = \mu^{-1}(-\infty) \).

Proof:

We first prove that \(T^+(f) \) is an \(\mathbb{R} \)-tree. By [AB, Theorem 3.17] it suffices to show that \(\delta \) satisfies the 0-hyperbolicity inequality
\[
\delta(x, y) + \delta(z, t) \leq \max\{\delta(x, z) + \delta(y, t), \delta(x, t) + \delta(y, z)\}.
\]
By linearity we need only worry about the terms \(\delta' = \sup \min f \circ \gamma \). They satisfy inequalities such as
\[
\delta'(x, y) \leq \min\{\max(\delta'(x, z), \delta'(z, y)), \max(\delta'(x, t), \delta'(t, y))\}
\]
and we conclude by applying the inequality
\[
\min\{\max(a, c), \max(b, d)\} + \min\{\max(a, b), \max(c, d)\} \leq \max(a+d, b+c),
\]
valid for any four real numbers \(a, b, c, d \).

Let \(\pi^+ \) be the projection from \(X \) to \(T^+(f) \). Given \(x, y \in X \) in \(f^{-1}(-\infty, c) \) with, say, \(f(y) \leq f(x) \), choose a path \(\gamma : [0,1] \to X \) from \(x \) to \(y \). If \((p, q) \) is a maximal interval in \((f \circ \gamma)^{-1}(f(x), +\infty) \), we have \((\pi^+ \circ \gamma)(p) = (\pi^+ \circ \gamma)(q) \) and we can change \(\pi^+ \circ \gamma \) on \((p, q) \) so that it becomes constant on \([p, q] \). Doing this for all intervals \((p, q) \) yields a path from \(\pi^+(x) \) to \(\pi^+(y) \) in \(\mu^{-1}(-\infty, c) \).

If \(f \) is a closed one-form relative to \(\chi : G \to \mathbb{R} \), the natural action of \(G \) on \(T^+(f) \) fixes \(e \). It is abelian, associated to \(\chi \) (note that this action is nongeometric whenever \(\chi \notin -\Sigma \), by Theorem 3.1).

To prove Theorem 3.2, we fix a finite generating system \(S \) for \(G \) with \(\chi(s) > 0 \) for every \(s \in S \) and we consider the corresponding Cayley graph \(\Gamma \).

First assume \(\chi \notin \Sigma \). Let \(f : \Gamma \to \mathbb{R} \) be as in Example 3 of Part 1. We claim that the abelian action of \(G \) on \(T^+(f) \) is exceptional.
Let u_1 and u_2 be vertices of Γ belonging to distinct components U_1, U_2 of some $f^{-1}(c, +\infty)$. Fix $s \in S$. The whole ray $u_i, u_is, u_is^2, \ldots, u_is^n, \ldots$ is contained in U_i. Writing $u_is^n = (u_isu_i^{-1})^nu_i$ we see that $u_isu_i^{-1}$ and $u_isu_2^{-1}$ do not have the same translation axis in $T^+(f)$. This means that the action is exceptional.

Now assume $\chi \in \Sigma$. Let T be an \mathbb{R}-tree with a minimal abelian action associated to χ. We show that the action is not exceptional.

Choose $x \in T$ belonging to the translation axis of every $s \in S$. Consider a G-equivariant map $\varphi : \Gamma \to T$, affine on each edge, sending 1 to x. It is surjective because the action is minimal.

Define $f : T \to \mathbb{R}$ as in Part 2. The choice of x implies that $g = f \circ \varphi$ is monotonous on each edge of Γ. It follows that g is unbounded on every component of $g^{-1}(c, +\infty)$, so that $g^{-1}(c, +\infty)$ is connected for every $c \in \mathbb{R}$ by Proposition 1.1. Projecting to T we see that every $f^{-1}(c, +\infty)$ is connected: the action is not exceptional.

Combining Theorems 3.1 and 3.2 we get:

Corollary. Let $\chi : G \to \mathbb{R}$ be a nonzero homomorphism, with G finitely generated.

1. If $\chi \in \Sigma \cap -\Sigma$, the action of G on \mathbb{R} by translations is the only minimal action with length function $\ell = |\chi|$. It is geometric.
2. If $\chi \in \Sigma$ but $\chi \notin -\Sigma$, there exist geometric exceptional abelian actions associated to $-\chi$. The only minimal action associated to χ is the action on \mathbb{R}, it is not geometric.
3. If $\chi \notin \Sigma \cup -\Sigma$, there exist both exceptional abelian actions associated to χ and exceptional actions associated to $-\chi$. No action with length function $|\chi|$ is geometric.

Combining with Theorem B.1 from [BNS] we obtain:

Corollary. Let G be finitely generated. The following conditions are equivalent:

1. Every nontrivial action of G on \mathbb{R} by translations is geometric.
2. The commutator subgroup G' is finitely generated.

References

Laboratoire de Topologie et Géométrie
URA CNRS 1408
Université Toulouse III
31062 Toulouse Cedex
FRANCE

e-mail: levitt@cict.fr

Rebut el 10 de Setembre de 1993