IMPROVED MUCKENHOUPT-WHEEDEN INEQUALITY AND WEIGHTED INEQUALITIES FOR POTENTIAL OPERATORS

Y. RAKOTONDRATSIMBA

Abstract _

By a variant of the standard good λ inequality, we prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class. Moreover we can deal with a general potential operator, and consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition.

0. Introduction

In this paper $d\mu$, $d\omega$ are locally finite positive Borel measures of \mathbb{R}^n , $n \geq 1$. For a nonnegative locally- $d\mu$ integrable function K(x, y) (a.e. continuous in the first variable) we define the potential operator

$$(Tf\mu)(x) = \int_{y \in \mathbb{R}^n} K(x,y) f(y) d\mu(y)$$

For each $C_1 > 0$, we assume the existence of a $C_2 > 0$ so that

 $(\mathcal{H}) \ K(x,y) \le C_2 K(z,y), \text{ for each } x,y,z \text{ with } 0 < |z-y| < C_1 |x-y|.$

The dual operator T^* is the operator defined by the kernel $K^*(x,y) = K(y,z)$. The usual fractional integral operator I_s , with 0 < s < n, is given by $K(x,y) = |x - y|^{s-n}$. Other examples of operators T are those introduced by Chanillo-Stromberg-Wheeden [**Ch-St-Wh**] and given by kernels $K(x,y) = \frac{a(y,|x-y|)}{|x-y|^n}$. Here a is considered as a function defined on balls of \mathbb{R}^n and which satisfies some growth conditions we precise below.

We are interested in finding a constant C > 0 for which

 (P_T) $||Tf\mu||_{L^q_{\omega}} \leq C||f||_{L^p_{\mu}}$ for all nonnegative functions f

with $1 < p, q < \infty$. The constant *C* depends only on *n*, *p*, *q*, ω , μ and *K*; and when it is necessary we denote this dependance by writing $C = C(n, p, q, K, \omega, \mu)$. Here $||g||_{L^r_{\nu}} = \left(\int_{\mathbb{R}^n} |g|^r d\nu\right)^{\frac{1}{r}}$. The inequality (P_T) includes the usual two weight norm inequality

$$||Tf||_{L^q_u} \leq C ||f||_{L^p_u}$$

since it is sufficient to replace f by $fv^{\frac{1}{p-1}}$, and to take $d\omega = udx$, $d\mu = v^{-\frac{1}{p-1}}dx$, where dx is the usual Lebesgue measure on \mathbb{R}^n . Inequality (P_T) with $T = I_s$ has been studied extensively by many authors (see for instance [**Ke-Sa**], [**Sa-Wh**] and [**Pe**] and the reference given by them). Kerman and Sawyer [**Ke-Sa**] solved the problem (P_{I_s}) with $d\omega = dx$. This particular case is first interesting since it is the usual form which appears in many mathematic and physic areas. It also appears that the case $d\omega = dx$ is naturally suitable to be treated. In fact using a good λ -inequality, they proved that the left member of (P_T) is reduced to a weighted inequality for maximal operator, whose study was done by the first author [**Sa**]. Problem (P_T) with general measures $d\mu$ and $d\omega$ was solved by Sawyer and Wheeden [**Sa-Wh**].

Let us consider the operator $T = I_s$ with 0 < s < n. We have the pointwise inequality

$$M_s g \leq c(s, n) I_s g$$

where M_s is the fractional maximal operator defined by

$$(M_s f)(x) = \sup\{|Q|^{\frac{s}{n}-1} \| f \mathbb{1}_Q \|_{L^1(dy)}; Q \text{ a cube with } Q \ni x\}.$$

We generally use the letter Q to denote a cube of \mathbb{R}^n , and by which we mean a product of n intervals $[a_i, a_i+t]$ $(0 < t < \infty)$. The Muckenhoupt-Wheeden inequality [**Mu-Wh**] yields a sort of converse (in norm) of the above inequality, and asserts that for $0 < q < \infty$:

$$||I_s f||_{L^q} \leq c(s, n, q, \omega) ||M_s f||_{L^q}$$
 for all functions f

whenever the measure $d\omega$ satisfies the Muckenhoupt condition A_{∞} , i.e. there are $c = c(\omega), \delta > 0$ such as

$$\frac{|E|_{\omega}}{|Q|_{\omega}} \leq c \left(\frac{|E|}{|Q|}\right)^{\delta} \text{ for all cubes } Q \text{ and all measurables sets } E \subset Q.$$

In his thesis Perez [**Pe**] gave a weaker condition than the A_{∞} 's. He proved the above Muckenhoupt-Wheeden inequality for measures $d\omega$ satisfying D_{∞} and B_{ρ} conditions with $\rho > 1 - \frac{s}{n}$, and which can be noted as $d\omega \in D_{\infty} \cap B_{\rho}$. These conditions respectively mean:

$$|2Q|_{\omega} = \int_{2Q} \omega \le C(\omega) |Q|_{\omega}$$
 for all cubes Q ,

(here 2Q is the cube having the same center as Q and the length expanded twice)

$$\frac{|Q'|\omega}{|Q|_{\omega}} \le C'(\omega) \left(\frac{|Q'|}{|Q|}\right)^{\rho} \text{ for all cubes } Q, Q' \text{ with } Q' \subset Q.$$

Contrary to the Muckenhoupt-Wheeden technique [Mu-Wh], the Perez's analysis [Pe] is not based on the standard good- λ inequalities. This last author used some estimates obtained by Frazier and Jawerth [Fr-Ja] for local maximal operator, and moreover he was able to treat the problem with a general convolution operator.

In this paper we also prove the Muckenhoupt-Wheeden inequality for measures which are not necessarily in the Muckenhoupt class (see Corollary 4), and with the general potential operator T described above. We do this, with a sort of a variant of the standard good λ inequality and by introducing a suitable maximal operator $M_{T,\omega}$ (see Theorem 1). The additional conditions on the measure $d\omega$ arise only in order to relate this "exotic" maximal operator to a more standard one like M_s (see Theorem 3). Consequently we obtain a suitable approach to the two weight inequality for such an operator when one of the weight functions satisfies a reverse doubling condition (see Theorem 5).

1. Statements of results

Let us define the dyadic maximal operator

$$(M^{d}_{T,\omega,\mu}f)(x) = \sup\{|Q|_{\omega}^{-1} \left\| f(T^* \mathrm{I}\!\mathrm{I}_Q \omega) \mathrm{I}\!\mathrm{I}_{3Q} \right\|_{L^1(d\mu)};$$

Q a dvadic cube with $Q \ni x\}.$

A dyadic cube Q is a product of n intervals of the form $[2^k a_i, 2^k (a_i + 1)]$, where k and a_i are integers. Fix $q \ge 1$. By using the Holder inequality we can observe that $(M_{T,\omega,\mu}^d f)(x)$ is a.e. finite for all bounded functions with compact supports whenever measures $d\omega$ and $d\mu$ satisfy the condition

$$(S_T) ||T\mathbb{I}_{|x|< R}\mu||_{L^q_{\omega}} \le c(R) < \infty \text{ for all } R > 0.$$

Our first result is as follow:

Theorem 1.

Let $0 < q < \infty$ and K be a nonnegative kernel satisfying the hypothesis \mathcal{H} . Assume the measures $d\omega$ and $d\mu$ satisfy the condition (S_T) . Then there is C = C(n, q, K) > 0 so that

$$||Tf\mu||_{L^q_{\omega}} \le C ||M^d_{T,\omega,\mu}f||_{L^q_{\omega}}.$$

If M^d_{ω} is the dyadic maximal operator defined by

$$(M^d_{\omega}f)(x) = \sup\{|Q|_{\omega}^{-1} \left\| f \mathbb{I}_Q \right\|_{L^1(d\omega)}; Q \text{ a dyadic cube with } Q \ni x\},$$

then (see Lemma 1 below)

$$(M^d_{T,\omega,\mu}g)(.) \le (M^d_{\omega}(Tg\mu))(.)$$

and consequently we get

Proposition 2.

Let K, $d\omega$, $d\mu$ be as above Then for q > 1 we have

$$\|Tf\mu\|_{L^q_{\omega}} \approx \|M^d_{T,\omega,\mu}f\mu\|_{L^q_{\omega}}.$$

Moreover this equivalence also holds for the range of $q \in [0, 1]$ whenever

$$M^d_{\omega}(Tg)(.) \le c(n, K, \omega) \, (Tg)(.)$$

for all f nonnegative functions g.

The above equivalence means

$$C_1(n,q,K) \|Tf\mu\|_{L^q_{\omega}} \le \|M^d_{T,\omega,\mu}f\mu\|_{L^q_{\omega}} \le C_2(n,q,\omega) \|Tf\mu\|_{L^q_{\omega}}.$$

The extra assumption in this result is satisfied for instance for the kernel $K(x,y) = |x - y|^{s-n}$, with $d\omega = dx$ the Lebesgue measure, and more generally for measures $d\omega \in D_{\infty} \cap B_{\rho}$ with $1 - \frac{s}{n} < \rho$.

Thus in view of Theorem 1, the inequality (P_T) is reduced to the following one, related for $M^d_{T,\omega,\mu}$

$$(\tilde{P}_T) \qquad \qquad \|M^d_{T,\omega,\mu}f\mu\|_{L^q_\omega} \le C\|f\|_{L^p_\mu}$$

In order to get this last one, we impose more hypothesis on the kernel K. So as to simplify, we only deal with kernels

$$K(x,y) = K_a(x,y) = \frac{a(y,|x-y|)}{|x-y|^n} = \frac{a(B(y,|x-y|))}{|x-y|^n}$$

26

where a is a function defined on balls satisfying the following hypotheses H:

(i)
$$a(B_1) \leq c_1(n, a) a(B_2)$$
 for all balls B_1, B_2 with $B_1 \subset B_2$;

there are $\lambda, \sigma > 0$ so that (ii)

 $c_1^{(n)}(n,a) t^{n\lambda} a(B) \le a(tB) \le c_2^{\prime}(n,a) t^{n\sigma} a(B)$ for all balls B and $t \ge 1$.

We also define the function a on cubes by a(Q) = a(B), where B is the smallest ball which contains the cube Q. A suitable dyadic maximal operator related to the potential operator $T = T_a$ (with kernel $K = K_a$) is

$$(M_{\Phi}^{d}f)(x) = \sup\{a(Q)|Q|^{-1} \|f \mathbb{I}_{Q}\|_{L^{1}(dy)}; Q \text{ a dyadic cube with } Q \ni x\}.$$

The nondyadic version of M_{Φ}^d is merely denoted by M_{Φ} . The measure $d\omega$ satisfies the condition RD_{ρ} with $\rho > 0$ (and we write as $d\omega \in RD_{\omega}$) when there $c = c(\omega, n) > 0$ for which

 $t^{n\rho} |B|_{\omega} \leq c |tB|_{\omega}$ for all balls B and t > 1.

Our second result ensures the link between the two maximal operators we have defined above.

Theorem 3.

Let $K = K_a$ be a kernel satisfying $\mathcal{H}i$)-ii) with $0 < \lambda, \sigma \leq 1$. Suppose $d\omega \in RD_{\rho}$ with $1 - \lambda < \rho$. Then

$$C_1(M^d_{\Phi}f\mu)(.) \leq (M^d_{T_a,\omega,\mu}f)(.) \leq C_2(M_{\Phi}f\mu)(.)$$
 for all functions f

here $C_1 = C_1(n, a) > 0$ and $C_2 = C_2(n, a, \omega)$.

In fact C_2 does not depend on the individual measure $d\omega$ but only on the RD_{ρ} constant of $d\omega$. The claim we announced in the introduction can be stated as

Corollary 4.

Let 0 < s < n and $0 < q < \infty$. Suppose $d\omega \in RD_{\omega}$ with $(1 - \frac{s}{n}) < \rho$. Then

 $||I_sg||_{L^q_\omega} \approx ||M_sg||_{L^q_\omega}$ for all nonnegative functions g

whenever

$$\int_{R < |x|} |x|^{(s-n)q} d\omega(x) < c(R) < \infty \text{ for all } R > 0.$$

This is an immediate consequence of Theorems 1 and 2. Indeed since for all R > 0:

$$\begin{split} (I_s 1\!\mathrm{I}_{B(0,R)})(.)1\!\mathrm{I}_{B(0,2R)}(.) &\approx R^s 1\!\mathrm{I}_{B(0,2R)}(.) \text{ and } (I_s 1\!\mathrm{I}_{B(0,R)})(x)1\!\mathrm{I}_{|x|>2R}(x) \approx \\ |x|^{s-n}1\!\mathrm{I}_{|x|>2R}(x) \text{ so the condition } \|I_s 1\!\mathrm{I}_{B(0,R)}\|_{L^q_\omega} < \infty \text{ is reduced} \\ \text{to the one written in this corollary. Note also in studying the } \\ \text{two weight inequality } \|I_s f\|_{L^q_\omega} \leq c \|f\|_{L^q_\nu} \text{ it is necessary that} \\ \|I_s 1\!\mathrm{I}_{B(0,R)}\|_{L^q_\omega} \leq c \|1\!\mathrm{I}_{B(0,R)}\|_{L^p_\nu} < \infty. \end{split}$$

By Theorems 1 and 3, the problem (P_T) is then reduced to the following maximal inequality

$$\|M_{\Phi}f\mu\|_{L^{q}_{\omega}} \le c\|f\|_{L^{p}_{\mu}}.$$

By the study of this last case (see [**Ra1**], or adapt the proof given in [**Sa**]) then we get

Theorem 5.

Let $1 < p, q < \infty$, and $K = K_a$ be a kernel satisfying $\mathcal{H}i$)-ii) with $0 < \lambda, \sigma < 1$. Suppose $d\omega \in RD_{\omega}$ with $(1 - \lambda) < \rho$. Then the inequality

$$(P_T) ||Tf\mu||_{L^q_\omega} \le c||f||_{L^p_\omega}$$

holds if and only if

(1)
$$\int_{|x|>R} \left[\frac{a(x,|x|)}{|x|^n}\right]^q d\omega(x) < c(R) < \infty \text{ for all } R > 0,$$

and

(2)
$$\left\| (T\sum_{k} \varepsilon_{k} \mathbb{1}_{Q_{k}} \mu) \mathbb{1}_{\bigcup Q_{k}} \right\|_{L^{q}_{\omega}} \leq C \left\| \sum_{k} \varepsilon_{k} \mathbb{1}_{Q_{k}} \right\|_{L^{p}_{\mu}},$$

where C > 0 is a constant which does not depend of each sequence $(Q_k)_k$ of cubes and $(\varepsilon_k)_k$ of nonnegative reals ε_k .

Moreover in the case 1 the condition (2) can be replaced by

(2')
$$\|(T\mathbb{I}_Q\mu)\mathbb{I}_Q\|_{L^q_\omega} \le C\|\mathbb{I}_Q\|_{L^p_\mu} \text{ for all cubes } Q$$

Sawyer and Wheeden [Sa-Wh] proved that for $1 and for all general measures <math>d\omega$ and $d\mu$, then (P_T) is equivalent to (2') and

(2")
$$\|(T^* \mathbb{I}_Q \omega) \mathbb{I}_Q\|_{L^{p'}_{\mu}} \le c \|\mathbb{I}_Q\|_{L^{q'}_{\omega}} \quad p' = \frac{p}{p-1}, q' = \frac{q}{q-1}.$$

With an additional hypothesis on the measure $d\mu$ we can simplify the conditions in Theorem 5. We first consider the case $p \leq q$.

Proposition 6.

Let $1 , and <math>K = K_a$ be a kernel satisfying $\mathcal{H}i$)-ii) with $0 < \lambda, \sigma < 1$. Suppose $d\omega \in RD_{\rho}$, $d\mu \in RD_{\rho'}$ with $(1 - \lambda) < \rho$ and $\rho' > 0$. Then the inequality (P_T) holds if and only if

$$\|(T 1 I_Q \mu) 1 I_Q\|_{L^q_\omega} \le C \| 1 I_Q \|_{L^p_\mu}.$$

If moreover $d\mu \in RD_{\rho'}$ with $(1 - \lambda) < \rho'$ or $d\mu \in A_{\infty}$ then, an easy necessary and sufficient condition for (P_T) is

$$\frac{a(Q)}{|Q|}|Q|_{\mu}^{1-\frac{1}{p}}|Q|_{\omega}^{\frac{1}{q}} \le C \text{ for all cubes } Q.$$

This second part is already known [Sa-Wh], and here we deduce it by using results on maximal functions (see [Ra2] and [Pe]). To deal with the range of q < p, we introduce the two conditions $d\mu \in \widetilde{RD}(p)$, $d\omega \in D_{\varepsilon,q}$ with $\varepsilon \in [1, \infty]$ (see [Ch-St-Wh]) and which mean respectively

$$\begin{split} \left\| \sum_{j\geq 0} \sum_{k} \varepsilon_{k} \left(\frac{|Q_{k}|_{\mu}}{|2^{j}Q_{k}|_{\mu}} \right) \mathrm{I}_{2^{j}Q_{k}} \right\|_{L^{p}_{\mu}} \leq c(\mu) \left\| \sum_{k} \varepsilon_{k} \mathrm{I}_{Q_{k}} \right\|_{L^{p}_{\mu}} \\ \left\| \sum_{k} \varepsilon_{k} \mathrm{I}_{tQ_{k}} \right\|_{L^{q}_{\omega}} \leq c(\omega) t^{n\varepsilon\frac{1}{q}} \left\| \sum_{k} \varepsilon_{k} \mathrm{I}_{Q_{k}} \right\|_{L^{q}_{\omega}} \end{split}$$

for all $t \ge 1$, $\varepsilon_k > 0$ and all cubes Q and Q_k . Thus we can state

Proposition 7.

Let $1 < q < p < \infty$, and $K = K_a$ be a kernel satisfying $\mathcal{H}i$)-ii) with $0 < \lambda, \sigma < 1$, and $d\omega \in RD_{\rho}$, with $(1 - \lambda) < \rho$.

Suppose $d\mu \in \widetilde{RD}(p)$. Then the inequality (P_T) holds if and only if for some $m \ge 4$ and C > 0

$$\left\|\sum_{k}\varepsilon_{k}(T\mathrm{I}\!\mathrm{I}_{Q_{k}})\mathrm{I}\!\mathrm{I}_{(mQ_{k})}\right\|_{L^{q}_{\omega}} \leq C\left\|\sum_{k}\varepsilon_{k}\mathrm{I}\!\mathrm{I}_{Q_{k}}\right\|_{L^{p}_{\mu}}$$

for all cubes Q_k and all $\varepsilon_k > 0$.

For $d\mu \in RD_{\rho'} \cap D_{\varepsilon',p}$ with $\max(1-\lambda, \frac{1}{p}\varepsilon') < \rho'$, a necessary and sufficient condition for (P_T) is

$$\left\|\sum_{k}\varepsilon_{k}\left(\frac{a(Q_{k})}{|Q_{k}|}|Q_{k}|_{\mu}\right)\mathrm{I\!I}_{Q_{k}}\right\|_{L^{q}_{\omega}} \leq C\left\|\sum_{k}\varepsilon_{k}\mathrm{I\!I}_{Q_{k}}\right\|_{L^{p}_{\mu}}.$$

This equivalence is also true when $d\mu \in RD_{\rho} \cap D_{\infty}$, $d\omega \in D_{\varepsilon,q}$ with $1 - \lambda < \rho'$ and $\varepsilon < q(1 - \sigma)$.

Remark. Now we show that the use of the sharp maximal $M^{\#}$ (see **[Ya]** for a definition) is not well adapted to weaken the weight condition in the Muckenhoupt-Wheeden inequality

(1)
$$\|I_s f\|_{L^q_\omega} \le c \|M_s f\|_{L^q_\omega}$$

Indeed such a purpose is based on the two inequalities:

(2)
$$(I_s f)^\# \le c(M_s f);$$

(3)
$$||g||_{L^q_{\omega}} \le c ||g^{\#}||_{L^q_{\omega}}$$

Inequality (2) is valid for all functions f with $(I_s f) \in L^1_{loc}$ and was proved in [**Ad**]. Although (3) is well known to be true for $w \in A_{\infty}$, Yabuta [**Ya**] had obtained such an inequality with a weak condition he denoted as $w \in C_r$ (with r > q). Thus we think get (1) with this last condition. But since $M_s f \leq cI_s f = h$ then

(4)
$$\|h^{\#}\|_{L^{q}_{\omega}} \le c\|h\|_{L^{q}_{\omega}}$$

It was proved in **[Ya]** that condition like (4) implies necessarily $w \in A_{\infty}$.

2. Some Lemmas

We first state two Lemmas we need and then we give their proofs.

Lemma 1. Let f be a nonnegative (dµ-locally integrable) function. Then

$$(M^{d}_{T,\omega,\mu}f)(.) \leq (M^{d}_{\omega}(Tf\mu))(.).$$

Lemma 2. Let $T = T_a$ be an operator with the kernel $K = K_a$ satisfying $\mathcal{H}i$)-ii), and let $d\nu$ be a positive Borel measure.

A) If $0 < \sigma \leq 1$ then there is C = C(a, n) > 0 so that for all cubes Q

$$\left(\frac{a(Q)}{|Q|}|Q|_{\nu}\right) \mathbb{I}_Q(.) \le C\left(T\mathbb{I}_Q\nu\right)(.)\mathbb{I}_Q(.).$$

B) Let $m \ge 1$. There is C = C(a, n, m) > 0 so that

$$(T \mathbb{I}_Q \nu)(.) \mathbb{I}_{mQ}(.) \le C [S_1(.) + S_2(.)]$$

where

$$S_1(.) = \left(\frac{a(Q)}{|Q|}|Q|_{\nu}\right) \mathrm{I}_{mQ}(.)$$

and

$$S_2(.) = \frac{a(Q)}{|Q|} \left(\sum_{j \ge 0} 2^{-jn[\lambda-1]} \int_{Q \cap \{|y-.| \sim 2^{-j}|Q|^{\frac{1}{n}}\}} \nu \right) \mathbb{I}_{mQ}(.)$$

C) Let $m \ge 4$. There is C = C(a, n, m) > 0 so that

$$(T \mathrm{I}_{Q} \nu)(.) \mathrm{I}_{(mQ)^{c}}(.) \leq C |Q|_{\nu} \left(\sum_{j \geq 0} \frac{a(2^{j}Q)}{|2^{j}Q|} \mathrm{I}_{2^{j}Q} \right).$$

Proof of Lemma 1:

Let ${\cal Q}$ be a dyadic cube. Then we have

$$\int_Q (Tf\mu)d\omega = \int_{\mathbb{R}^n} [T^*1\!\mathrm{I}_Q\omega]fd\mu \geq \int_{3Q} [T^*1\!\mathrm{I}_Q\omega]fd\mu.$$

Diving by $|Q|_\omega$ this inequality and taking the supremum, we obtain the conclusion. \blacksquare

Proof of Lemma 2:

A) Let Q be a cube with center x_0 and length 2R > 0. Then $|x - y| \le c2R$ for all $x, y \in Q$ with c = c(n). We obtain

Since $0 < \sigma \le 1$ and |x - y| < 2cR we get

$$\left(\frac{a(Q)}{|Q|}|Q|_{\nu}\right)\mathbb{I}_Q(y) \le c(a,n) \left(T_a \mathbb{I}_Q \nu\right)(y)\mathbb{I}_Q(y).$$

B) Let Q be a cube as in part A, and let $m \ge 1$. We can write

$$(T_a \mathbb{I}_Q \nu)(y) \mathbb{I}_{mQ}(y) = S_1(y) + S_2(y)$$

where

$$S_1(y) = \left(\int_{Q \cap \{R \le |y-x|\}} \frac{a(y, |x-y|)}{|x-y|^n} d\nu(x)\right) \mathrm{I}_{mQ}(y)$$

and

$$S_2(y) = \left(\int_{Q \cap \{|y-x| < R\}} \frac{a(y, |x-y|)}{|x-y|^n} d\nu(x) \right) \mathbb{1}_{mQ}(y).$$

For $S_1(y)$ we can observe that for $y \in (mQ)$ and $x \in Q$ then $B(y, |x - y|) \subset c(n)Q$ and consequently we get

$$S_{1}(y) = \left(\int_{Q \cap \{R \le |y-x|\}} \frac{a(y, |x-y|)}{|x-y|^{n}} d\nu(x) \right) \mathbb{I}_{mQ}(y)$$

$$\le c_{1}(a, n, m) \frac{a(Q)}{|Q|} \left(\int_{Q \cap \{R \le |y-x|\}} d\nu(x) \right) \mathbb{I}_{mQ}(y)$$

$$\le c_{1}(a, n, m) \left(\frac{a(Q)}{|Q|} |Q|_{\nu} \right) \mathbb{I}_{mQ}(y).$$

For $S_2(y)$ with $R = |Q|^{\frac{1}{n}}$, we have

$$S_{2}(y) = \left[\sum_{j\geq 0} \int_{Q\cap\{|y-x|\sim 2^{-j}R\}} \frac{a(y,|x-y|)}{|x-y|^{n}} d\nu(x)\right] \mathbb{I}_{mQ}(y)$$

$$\leq c_{1}(a,n) \sum_{j\geq 0} (2^{-j}R)^{-n} a(y,2^{-j}R) \left(\int_{Q\cap\{|y-x|\sim 2^{-j}R\}} d\nu(x)\right) \mathbb{I}_{mQ}(y)$$

$$\leq c_{2}(a,n,m) \frac{a(Q)}{|Q|} \left[\sum_{j\geq 0} 2^{-jn[\lambda-1]} \left(\int_{Q\cap\{|y-x|\sim 2^{-j}R\}} d\nu(x)\right)\right] \mathbb{I}_{mQ}(y).$$

The proof of the part C) lies on the same ideas. We leave the detail for the reader. \blacksquare

3. Proofs of main results

Preliminaries for the proof of Theorem 1.

Let f be a nonnegative function bounded and with support compact. By the hypothesis (S_T) then we can observe that

$$||Tf\mu||_{L^{q}_{\omega}} < ||f||_{L^{\infty}} ||T\mathbb{1}_{|x|< R}\mu||_{L^{q}_{\omega}} < \infty.$$

Since $Tf\mu$ is semicontinuous, so for each $k \in \mathbb{Z}$ the open set $\Omega_k = \{Tf\mu > 2^k\}$ can be written as $\bigcup_j Q_{jk}$ where the Q_{jk} are the dyadic cubes maximal among those dyadic cubes Q satisfying $(RQ) \subset \Omega_k$. Choosing $R \geq 3$ sufficiently large (depending only on the dimension n), we obtain

$$\Omega_k = \bigcup_j Q_{jk} \text{ where } \operatorname{int}(Q_{jk}) \cap \operatorname{int}(Q_{j'}^k) = \emptyset \text{ if } j \neq j$$

and

 $(RQ_{jk}) \subset \Omega_k$ and $(3RQ_{jk})\Omega_k^c \neq \emptyset$ for all k, j (Whitney condition).

Let fix $m \geq 2$ which we will choose later, and let define $E_{jk} = Q_{jk} \cap (\Omega_{k+m-1} \setminus \Omega_{k+m})$. Using the hypothesis \mathcal{H} on the kernel K, and the Whitney condition we get

Lemma.

1) There is C = C(K, R) > 0 so that for all k, j

$$(Tf\mu)(.) \mathbb{I}_{(3Q_{jk})^c}(.) \le C2^k \mathbb{I}_{Q_{jk}}(.).$$

2) For a suitable choice of the integer m

$$2^{k} 1\!\!1_{E_{jk}}(.) \le (Tf\mu 1\!\!1_{Q_{jk}})(.) 1\!\!1_{E_{jk}}(.)$$

therefore

$$|E_{jk}|_{\omega} \le 2^{-k} \int_{3Q_{jk}} [T^* \omega \mathrm{I}\!\mathrm{I}_{Q_{jk}}] f d\mu$$

By the Whitney condition one can find at least one z which belongs to $(3RQ_{jk}) \cap \Omega_k^c$. It first implies: $(Tf\mu)(z) \leq 2^k$. Also for $x \in Q_{jk}$ and $y \in (3Q_{jk})^c |z - y| \leq C_1 |x - y|$ for some $C_1 = C_1(n, R) > 0$. So for another constant $C_2 = C_2(C_1) > 0$: $K(x, y) \leq C_1(x, y) \leq C_2(C_1) > 0$.

 $C_2 K(z, y).$ The conclusion 1) appears from these two inequalities, indeed we have

$$(Tf\mu 1\!\!1_{(3Q_{jk})^c})(x) 1\!\!1_{Q_{jk}}(x) = \left(\int_{(3Q_{jk})^c} K(x,y)f(y)d\mu(y)\right) 1\!\!1_{Q_{jk}}(x)$$

$$\leq C_2 \left(\int_{\mathbb{R}^n} K(z,y)f(y)d\mu(y)\right) 1\!\!1_{Q_{jk}}(x)$$

$$\leq C_2 (Tf\mu)(z) 1\!\!1_{Q_{jk}}(x) \leq C_2 2^k 1\!\!1_{Q_{jk}}(x).$$

The part 2) will be a direct consequence of 1). Since $E_{jk} = Q_{jk} \cap (\Omega_{k+m-1} \backslash \Omega_{k+m})$ and $\Omega_k = \{Tf\mu > 2^k\}$ then choosing $m \ge 2$ and $2^{m-2} \ge C_2$ we get

$$\begin{split} (Tf\mu \mathrm{I\!I}_{(3Q_{jk})})(x)\mathrm{I\!I}_{E_{jk}}(x) &= (Tf\mu)(x)\mathrm{I\!I}_{E_{jk}}(x) - (Tf\mu \mathrm{I\!I}_{(3Q_{jk})^c})(x)\mathrm{I\!I}_{E_{jk}}(x) \\ &> \left(2^{k+m-1} - 2^kC_2\right)(x)\mathrm{I\!I}_{E_{jk}}(x) \\ &> \left(2^{k+m-1} - 2^{k+m-2}\right)(x)\mathrm{I\!I}_{E_{jk}}(x) > 2^k\mathrm{I\!I}_{E_{jk}}(x). \end{split}$$

So, by integration with respect to the measure $d\omega$, this involves

$$\begin{split} 2^{k}|E_{jk}|_{\omega} &\leq \int_{E_{jk}} [Tf\mu 1\!\!\mathrm{I}_{3Q_{jk}}] d\omega \\ &\leq \int_{3Q_{jk}} [T^{*}\omega 1\!\!\mathrm{I}_{E_{jk}}] fd\mu \leq \int_{3Q_{jk}} [T^{*}\omega 1\!\!\mathrm{I}_{Q_{jk}}] fd\mu \end{split}$$

Proof of the Theorem 1:

Using this Lemma, now we prove the inequality

$$\|Tf\mu\|_{L^q_{\omega}} \le c \|M^d_{T,\omega,\mu}\mu\|_{L^q_{\omega}}.$$

Let $\beta \in]0,1[$ whose value is to be specified later in the course of the proof. Then we get

$$\begin{split} \|Tf\mu\|_{L^q_{\omega}}^q &\leq c \sum_{k,j} 2^{kq} |E_{jk}|_{\omega} \quad c = c(q,m) \\ &\leq c \left[\sum_{k,j; \ |E_{jk}|_{\omega} \leq \beta |Q_{jk}|_{\omega}} + \sum_{k,j; \ \beta |Q_{jk}|_{\omega} < |E_{jk}|_{\omega}} \right] 2^{kq} |E_{jk}|_{\omega} \\ &\leq c\beta \sum_{k,j} 2^{kq} |Q_{jk}|_{\omega} + c \sum_{k,j; \ \beta |Q_{jk}|_{\omega} < |E_{jk}|_{\omega}} \\ &\quad |E_{jk}|_{\omega} \left(\frac{1}{|E_{jk}|_{\omega}} \int_{3Q_{jk}} [T^* \omega \mathrm{I\!I}_{Q_{jk}}] f d\mu \right)^q \\ &\leq c'\beta \|Tf\mu\|_{L^q_{\omega}}^q + c\beta^{-q} \sum_{k,j} \\ &\quad |E_{jk}|_{\omega} \left(\frac{1}{|Q_{jk}|_{\omega}} \int_{3Q_{jk}} [T^* \omega \mathrm{I\!I}_{Q_{jk}}] f d\mu \right)^q \\ &\leq c'\beta \|Tf\mu\|_{L^q_{\omega}}^q + c\beta^{-q} \sum_{k,j} \int_{E_{jk}} (M_{T,\omega,\mu}^d f\mu)^q \end{split}$$

$$\leq c'\beta \|Tf\mu\|_{L^q_{\omega}}^q + c\beta^{-q} \|M^d_{T,\omega,\mu}f\mu\|_{L^q_{\omega}}^q$$

Since $\|Tf\mu\|_{L^q_\omega}^q < \infty$, then choosing $\beta \in]0,1[$ and $c'(q,m)\beta < \frac{1}{2}$, we have

$$\|Tf\mu\|_{L^q_{\omega}}^q \leq c(q,m) \|M^d_{T,\omega,\mu}f\mu\|_{L^q_{\omega}}^q.$$

Therefore the Theorem is proved for each bounded function f with support compact. For a general nonnegative function f, we can also obtain the same conclusion by using the monotone convergence theorem.

Proof of proposition 2:

Since the first inequality is proved in Theorem 1, then we are reduced to get the converse inequality

(*)
$$\|M^d_{T,\omega,\mu}f\mu\|_{L^q_\omega} \le C\|Tf\mu\|_{L^q_\omega}.$$

By Lemma 1: $(M^d_{T,\omega,\mu}f)(.) \leq (M^d_\omega T f \mu)(.),$ then the conclusion appears if we have

$$\|M^d_{\omega}g\|_{L^q_{\omega}} \le C\|g\|_{L^q_{\omega}}.$$

By the well known arguments (covering lemma using dyadic cubes and interpolation) then this last maximal inequality is valid for all q > 1. The same inequality (*) is also true for all q with $0 < q \leq 1$ by the means of the extra-hypothesis $M^d_{\omega}(Tg)(.) \leq c(n, K, \omega) (Tg)(.)$.

Proof of Theorem 3:

Let f be a nonnegative $d\mu$ -locally integrable function. Since $(T^*\nu) \approx (T\nu)$ then taking $d\nu = d\omega$ in part A) of Lemma 2, then it appears that for each dyadic cube Q

$$\begin{aligned} \frac{a(Q)}{|Q|} \int_{Q} f d\mu &= |Q|_{\omega}^{-1} \int_{Q} \left(\frac{a(Q)}{|Q|} |Q|_{\omega} \right) f d\mu \\ &\leq c(a,n) |Q|_{\omega}^{-1} \int_{3Q} \left(T_{a}^{*} \omega \operatorname{I\!I}_{Q} \right) f d\mu. \end{aligned}$$

Hence, we have $(M^d_{\Phi}f\mu) \leq c(a,n) (M^d_{T_a,\omega,\mu}f).$

Conversely in order to get $(M^d_{T_a,\omega,\mu}f\mu)\leq C(a,n)\,(M_{\Phi}f\mu),$ it is sufficient to get

(\$)
$$(T_a^* \mathbb{I}_Q \omega)(.) \mathbb{I}_{3Q}(.) \le C(a, n) \Big(\frac{a(cQ)}{|cQ|} |cQ|_{\omega} \Big) \mathbb{I}_{cQ}(.)$$

where $c = c(n) \ge 3$. By part B) of Lemma 3, the first member of (\$) is essentially dominated by the sum of

$$S_1(.) = \left(\frac{a(Q)}{|Q|}|Q|_{\omega}\right) \mathbb{I}_{3Q}(.)$$

and

$$S_2(.) = \frac{a(Q)}{|Q|} \left(\sum_{j \ge 0} 2^{-jn[\lambda-1]} \int_{Q \cap \{|y-.| \sim 2^{-j}R\}} d\omega(y) \right) \mathrm{I}_{3Q}(.)$$

So it is clear, that it remains to estimate $S_2(.)$.

If $\lambda = 1$, then we immediately get

$$S_2(x) = \frac{a(Q)}{|Q|} \left(\sum_{j \ge 0} \int_{Q \cap \{|y-x| \sim 2^{-j}R\}} d\omega(y) \right) \mathrm{I}_{3Q}(x)$$
$$\leq c(a,n) \left(\frac{a(Q)}{|Q|} |Q|_{\omega} \right) \mathrm{I}_{3Q}(x).$$

Now for $\lambda \in]0,1[$ we use the hypothesis $d\omega RD_{\rho}$ with $1-\lambda < \rho$. We also note that for $x \in (3Q)$ then $B(x,R) \subset (c_1Q)$ for a constant $c_1 = c_1(n) \geq 3$. Therefore we obtain

$$S_{2}(x) \leq \frac{a(Q)}{|Q|} \left(\sum_{j \geq 0} 2^{-jn[\lambda-1]} |B(x, 2^{-j}R)|_{\omega} \right) \mathrm{I}_{3Q}(x)$$

$$\leq c(\omega) \frac{a(Q)}{|Q|} \left(\sum_{j \geq 0} 2^{-jn[\lambda-1+\rho]} \right) |B(x,R)|_{\omega} \mathrm{I}_{3Q}(x)$$

$$\leq c'(a,\omega) \frac{a(Q)}{|Q|} |c_{1}Q|_{\omega} \mathrm{I}_{3Q}(x)$$

$$\leq c''(a,\omega) \frac{a(c_{1}Q)}{|c_{1}Q|} |c_{1}Q|_{\omega} \mathrm{I}_{c_{1}Q}(x). \blacksquare$$

Proof of Theorem 5:

It is clear that (2) is a necessary condition for (P_T) . To get the condition (1) we first note that for |x| > R (R > 0) and $|y| < \frac{1}{2}R$ then $|x-y| \approx |x|$, and consequently taking $f = \mathbb{1}_{B(0,R)}$ in inequality (P_T) we have

$$\begin{split} \infty > |B(0,R)|_{\mu}^{\frac{1}{p}} \geq C \Bigg\| \left(\int_{|y| < \frac{1}{2}R} \frac{a(x,|x-y|)}{|x-y|^n} d\mu(y) \right) \mathrm{I\!I}_{|x|>R} \Bigg\|_{L^q_{\omega}} \\ \geq C |B(0,\frac{1}{2}R)|_{\mu} \left[\int_{|x|>R} \left(\frac{a(x,|x|)}{|x|^n} \right)^q d\omega(x) \right]^{\frac{1}{q}}. \end{split}$$

Now we suppose the conditions (1) and (2) are satisfied. The keys for the converse are the following:

(i)
$$||T1I_{B(0,R)}\mu||_{L^q_{\omega}} < c(R) < \infty \text{ for all } R > 0;$$

36

(ii)
$$M_{\Phi}\mu: L^p_{\mu} \to L^q_{\omega}.$$

Indeed by (i) and (ii) we have

$$\begin{aligned} \|Tf\mu\|_{L^q_{\omega}} &\leq c \|M_{T,\omega,\mu}f\|_{L^q_{\omega}} \text{ by Theorem 1 and by using (i)} \\ &\leq c \|M_{\Phi}f\mu\|_{L^q_{\omega}} \text{ by Theorem 3 since } d\omega \in RD_{\rho} \text{ with } 1-\lambda < \rho \\ &\leq c \|f\|_{L^p_{\mu}} \text{ by (ii)}. \end{aligned}$$

To get the point (i), we note that $\|(T 1\!\!1_{B(0,R)} \mu) 1\!\!1_{|x|<2R}\|_{L^q_{\omega}} < \infty$. On the other hand, we have

$$\begin{split} \left\| (T 1\!\!\mathrm{I}_{B(0,R)} \mu) 1\!\!\mathrm{I}_{|x|>2R} \right\|_{L^q_{\omega}} &\leq c \left\| \left(\int_{|y|2R} \right\|_{L^q_{\omega}} \\ &\leq c' |B(0,R)|_{\mu} \bigg[\int_{|x|>2R} \bigg(\frac{a(x,|x|)}{|x|^n} \bigg)^q d\omega(x) \bigg]^{\frac{1}{q}} < \infty \end{split}$$

By a result in [Ra1], a sufficient (and necessary) condition for the embedding (ii) is

$$\left\| (M_{\Phi} \sum_{k} \varepsilon_{k} \mathrm{I}\!\mathrm{I}_{Q_{k}} \mu) \mathrm{I}\!\mathrm{I}_{\bigcup Q_{k}} \right\|_{L^{q}_{\omega}} \leq C \left\| \sum_{k} \varepsilon_{k} \mathrm{I}\!\mathrm{I}_{Q_{k}} \mu \right\|_{L^{p}_{\mu}}$$

and $||(M_{\Phi} \mathbb{1}_Q \mu) \mathbb{1}_Q \|_{L^q_{\omega}} \leq C ||\mathbb{1}_Q \|_{L^p_{\mu}}$ if $p \leq q$. By Lemma 2 A) then $(M_{\Phi} f \mu) \leq c(T f \mu)$ and consequently the condition (2) in Theorem 5 implies the above one.

Proof of Proposition 6:

To prove the first part of Proposition 6, we suppose

$$\|(T\mathbb{I}_Q\mu)\mathbb{I}_Q\|_{L^q_\omega} \le A\|\mathbb{I}_Q\|_{L^p_u} \text{ for all cubes } Q.$$

Since $1 this condition implies <math>M_{\Phi}\mu : L^p_{\mu} \to L^q_{\omega}$. And as above to get (i) it is sufficient to prove

$$\| (T \mathbb{I}_Q \mu) \mathbb{I}_{(mQ)^c} \|_{L^q_\omega} \le C \| \mathbb{I}_Q \|_{L^p_u}$$

with a constant $m \ge 4$. Using the fact that $d\mu \in RD_{\rho'}$ for some $\rho' > 0$, then by Lemma 2 (part C) we get

$$\left\| (T \mathrm{II}_{Q} \mu) \mathrm{II}_{(mQ)^{c}} \right\|_{L^{q}_{\omega}} \leq c_{1} |Q|_{\mu} \sum_{j \geq 0} \frac{a(2^{j}Q)}{|2^{j}Q|} |2^{j}Q|^{\frac{1}{q}}_{\omega}$$

$$\leq c_{2}|Q|_{\mu} \sum_{j\geq 0} |2^{j}Q|_{\mu}^{-1} \left\| (T \mathrm{II}_{2^{j}Q}\mu) \mathrm{II}_{(2^{j}Q)} \right\|_{L^{q}_{\omega}}$$
$$\leq c_{2}A|Q|_{\mu}^{\frac{1}{p}} \sum_{j\geq 0} \left(\frac{|Q|_{\mu}}{|2^{j}Q|_{\mu}} \right)^{1-\frac{1}{p}}$$
$$\leq c_{3}A|Q|_{\mu}^{\frac{1}{p}}.$$

For the second part of this proposition, the point is to note that $M_{\Phi}\mu$: $L^p_{\mu} \to L^q_{\omega}$ is equivalent to

$$-\frac{a(Q)}{|Q|}|Q|_{\mu}^{1-\frac{1}{p}}|Q|_{\omega}^{\frac{1}{q}} < A < \infty$$

whenever $d\mu \in A_{\infty}$ (see [**Pe**]) or $d\mu \in RD_{\infty'}$ with $1 - \lambda < \rho'$ (see [**Ra2**]).

Proof of Proposition 7:

It is clear that a necessary condition for (P_T) is

(*)
$$\left\|\sum_{k}\varepsilon_{k}(T\mathbb{I}_{Q_{k}}\mu)\mathbb{I}_{(mQ_{k})}\right\|_{L^{q}_{\omega}} \leq A\left\|\sum_{k}\varepsilon_{k}\mathbb{I}_{Q_{k}}\right\|_{L^{p}_{\mu}}$$

with $m \geq 4$ and for all cubes Q, Q_k and all $\varepsilon_k > 0$. Conversely we suppose this condition be satisfied and $d\mu \in \widetilde{RD}(p)$. Once we have

(**)
$$\left\|\sum_{k}\varepsilon_{k}(T\mathrm{I}_{Q_{k}}\mu)\mathrm{I}_{(mQ_{k})^{c}}\right\|_{L^{q}_{\omega}} \leq cA\left\|\sum_{k}\varepsilon_{k}\mathrm{I}_{Q_{k}}\right\|_{L^{p}_{\mu}}$$

then (i) and (ii) hold as in proof of Theorem 5, and consequently the inequality (P_T) is satisfied. Now using Part C) of Lemma 2, the above condition (*) and the hypothesis $d\omega \in \widetilde{RD}(p)$ we have

$$\begin{split} \mathcal{S} &= \left\| \sum_{k} \varepsilon_{k} (T \mathrm{I}_{Q_{k}} \mu) \mathrm{I}_{(mQ_{k})^{c}} \right\|_{L_{\omega}^{q}} \\ &\leq c_{1} \left\| \sum_{k} \varepsilon_{k} \sum_{j \geq 0} \frac{a(2^{j}Q_{k})}{|2^{j}Q_{k}|} |Q_{k}|_{\mu} \mathrm{I}_{(2^{j}Q_{k})} \right\|_{L_{\omega}^{q}} \text{ by part C of Lemma 2} \\ &\leq c_{2} \left\| \sum_{k} \varepsilon_{k} \sum_{j \geq 0} \left(\frac{|Q_{k}|_{\mu}}{|2^{j}Q_{k}|_{\mu}} \right) (T \mathrm{I}_{2^{j}Q_{k}} \mu) \mathrm{I}_{(2^{j}Q_{k})} \right\|_{L_{\omega}^{q}} \end{split}$$

$$\leq c_2 A \left\| \sum_{j \geq 0} \sum_k \varepsilon_k \left(\frac{|Q_k|_{\mu}}{|2^j Q_k|_{\mu}} \right) \mathrm{I\!I}_{(2^j Q_k)} \right\|_{L^p_{\mu}} \text{ by the condition } (*)$$

$$\leq c_3 A \left\| \sum_k \varepsilon_k \mathrm{I\!I}_{Q_k} \right\|_{L^p_{\mu}} \text{ since } d\mu \in \widetilde{RD}(p).$$

It is also clear that a necessary condition for (P_T) is

(**')
$$\left\|\sum_{k}\varepsilon_{k}\left(\frac{a(Q_{k})}{|Q_{k}|}|Q_{k}|_{\mu}\right)\mathbb{I}_{Q_{k}}\right\|_{L_{\omega}^{q}} \leq A\left\|\sum_{k}\varepsilon_{k}\mathbb{I}_{Q_{k}}\right\|_{L_{\mu}^{p}}$$

Conversely we assume this condition be satified and $d\mu \in D_{\varepsilon',p} \cap RD_{\rho'}$ with $1 - \lambda < \rho'$ and $\varepsilon' < p\rho'$. It is sufficient to get the conditions in the first part of the present Proposition. As in the proof of Theorem 3 by using part A) of Lemma 2) and since $d\mu \in D_{\infty}$ then

$$(T\mathbb{I}_{Q_k}\mu)\mathbb{I}_{(mQ_k)} \le c\Big(\frac{a(Q_k)}{|Q_k|}|Q_k|_{\mu}\Big)\mathbb{I}_{(mQ_k)}$$

and consequently

$$\begin{split} \left\| \sum_{k} \varepsilon_{k}(T \mathrm{I\!I}_{Q_{k}} \mu) \mathrm{I\!I}_{(mQ_{k})} \right\|_{L^{q}_{\omega}} &\leq c \left\| \sum_{k} \varepsilon_{k} \left(\frac{a(Q_{k})}{|Q_{k}|} |Q_{k}|_{\mu} \right) \mathrm{I\!I}_{(mQ_{k})} \right\|_{L^{q}_{\omega}} \\ &\leq c \left\| \sum_{k} \varepsilon_{k} \mathrm{I\!I}_{(mQ_{k})} \right\|_{L^{p}_{\mu}}. \end{split}$$

Now using $d\mu \in D_{\varepsilon',p} \cap RD_{\rho'}$ with $\varepsilon' < p\rho'$ we can get the condition $d\mu \in \widetilde{RD}(p)$ as follow:

$$\begin{split} \mathcal{S} &= \left\| \sum_{k} \varepsilon_{k} \sum_{j \geq 0} \left(\frac{|Q_{k}|_{\mu}}{|2^{j}Q_{k}|_{\mu}} |Q_{k}|_{\mu} \right) \mathbb{I}_{(2^{j}Q_{k})} \right\|_{L^{p}_{\mu}} \\ &\leq c_{1} \sum_{j \geq 0} 2^{-jn\rho'} \left\| \sum_{k} \varepsilon_{k} \mathbb{I}_{(2^{j}Q_{k})} \right\|_{L^{p}_{\mu}} \\ &\leq c_{2} \sum_{j \geq 0} 2^{-jn[\rho' - \frac{1}{p}\varepsilon']} \left\| \sum_{k} \varepsilon_{k} \mathbb{I}_{Q_{k}} \right\|_{L^{p}_{\mu}} = c_{3} \left\| \sum_{k} \varepsilon_{k} \mathbb{I}_{Q_{k}} \right\|_{L^{p}_{\mu}}. \end{split}$$

Finally we suppose $d\mu \in D_{\infty} \cap RD_{\rho'}$ and $d\omega \in D_{\varepsilon,q} \cap RD_{\rho}$ with $1 - \lambda < \rho'$ and $\varepsilon < q(1 - \sigma)$. It remains to get the above condition (**). Thus we have

$$\mathcal{S} = \left\| \sum_{k} \varepsilon_{k} (T \mathbb{I}_{Q_{k}} \mu) \mathbb{I}_{(mQ_{k})^{c}} \right\|_{L^{q}_{\omega}}$$

$$\begin{split} &\leq c_1 \left\| \sum_k \varepsilon_k \sum_{j \geq 0} \left(\frac{a(2^j Q_k)}{|2^j Q_k|} |Q_k|_\mu \right) \mathrm{I\!I}_{(2^j Q_k)} \right\|_{L^q_\omega} \\ &\leq c_2 \sum_{j \geq 0} 2^{-jn[1-\sigma]} \left\| \sum_k \varepsilon_k \left(\frac{a(Q_k)}{|Q_k|} |Q_k|_\mu \right) \mathrm{I\!I}_{(2^j Q_k)} \right\|_{L^q_\omega} \\ &\leq c_3 \sum_{j \geq 0} 2^{-jn[1-\sigma-\frac{1}{q}\varepsilon]} \left\| \sum_k \varepsilon_k \left(\frac{a(Q_k)}{|Q_k|} |Q_k|_\mu \right) \mathrm{I\!I}_{Q_k} \right\|_{L^q_\omega} \\ &\leq c_3 A \sum_{j \geq 0} 2^{-jn[1-\sigma-\frac{1}{q}\varepsilon]} \left\| \sum_k \varepsilon_k \mathrm{I\!I}_{Q_k} \right\|_{L^p_\mu} \\ &\leq c_4 A \left\| \sum_k \varepsilon_k \mathrm{I\!I}_{Q_k} \right\|_{L^p_\mu}. \end{split}$$

Acknowledgement. I would like to thank the referee for his helpful comments and suggestions.

References

- [Ad] D. ADAMS, A note on Riesz potentials, *Duke Math. J.* **42** (1975), 765–778.
- [Fr-Ja] M. FRAZIER AND B. JAWERTH, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93(1) (1990), 34–170.
- [Ke-Sa] R. KERMAN AND E. SAWYER, Weighted norm inequalities for potentials with applications to Schrodinger operators, Fourier transforms and Carleson measures, *Ann. Inst. Fourier* **36** (1986), 207–228.
- [Mu-Wh] B. MUCKENHOUPT AND R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, *Trans. Amer. Math. Soc.* 192 (1974), 261–274.
- [Pe] C. PÉREZ, Weighted norm inequalities for potential and maximal operators, Ph. D. Thesis, Washington University (1989).
- [Ra1] Y. RAKOTONDRATSIMBA, Inégalités à poids pour des opérateurs maximaux et des opérateurs de type potentiel., Thèse de Doctorat, Université d'Orléans France (1991).
- [Ra2] Y. RAKOTONDRATSIMBA, On Muckenhoupt and Sawyer conditions for maximal operators, *Pub. Mat.* 37 (1993), 57–93.

- [Sa] E. SAWYER, A characterization of a two weight norm inequality for maximal operators, *Studia Math.* 75 (1982), 1–11.
- [Sa-Wh] E. SAWYER AND R. L. WHEEDEN, Weighted norm inequalities for fractional integral on euclidean and homogeneous spaces, *Amer. J. Math.* **114** (1992), 813–874.
- [Ya] K. YABUTA, Sharp maximal functions and C_p condition, Archiv. Math. 55 (1990), 151–155.

Keywords. Weighted inequalities, Potential operators, Maximal operators 1980 Mathematics subject classifications: 42B25

> Université d'Orléans Département de Mathématiques U.F.R. Faculté des Sciences B.P. 6759 45067 Orléans Cedex 2 FRANCE

Primera versió rebuda el 16 de Març de 1993, darrera versió rebuda el 15 de Gener de 1995