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IMPROVED MUCKENHOUPT-WHEEDEN
INEQUALITY AND

WEIGHTED INEQUALITIES
FOR POTENTIAL OPERATORS

Y. Rakotondratsimba

Abstract
By a variant of the standard good λ inequality, we prove the
Muckenhoupt-Wheeden inequality for measures which are not nec-
essarily in the Muckenhoupt class. Moreover we can deal with a
general potential operator, and consequently we obtain a suitable
approach to the two weight inequality for such an operator when
one of the weight functions satisfies a reverse doubling condition.

0. Introduction

In this paper dµ, dω are locally finite positive Borel measures of Rn,
n ≥ 1. For a nonnegative locally-dµ integrable function K(x, y) (a.e.
continuous in the first variable) we define the potential operator

(Tfµ)(x) =
∫

y∈Rn

K(x, y)f(y)dµ(y).

For each C1 > 0, we assume the existence of a C2 > 0 so that

(H) K(x, y) ≤ C2K(z, y), for each x, y, z with 0 < |z − y| < C1|x− y|.

The dual operator T ∗ is the operator defined by the kernel K∗(x, y) =
K(y, z). The usual fractional integral operator Is, with 0 < s < n, is
given by K(x, y) = |x− y|s−n. Other examples of operators T are those
introduced by Chanillo-Stromberg-Wheeden [Ch-St-Wh] and given by
kernels K(x, y) = a(y,|x−y|)

|x−y|n . Here a is considered as a function defined
on balls of R

n and which satisfies some growth conditions we precise
below.
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We are interested in finding a constant C > 0 for which

(PT ) ‖Tfµ‖Lq
ω
≤ C‖f‖Lp

µ
for all nonnegative functions f

with 1 < p, q < ∞. The constant C depends only on n, p, q, ω, µ and
K; and when it is necessary we denote this dependance by writing C =

C(n, p, q,K, ω, µ). Here ‖g‖Lr
ν

=
(∫

Rn

|g|rdν
) 1

r

. The inequality (PT )

includes the usual two weight norm inequality

‖Tf‖Lq
u
≤ C‖f‖Lp

v

since it is sufficient to replace f by fv
1

p−1 , and to take dω = udx, dµ =
v−

1
p−1 dx, where dx is the usual Lebesgue measure on R

n. Inequality (PT )
with T = Is has been studied extensively by many authors (see for
instance [Ke-Sa], [Sa-Wh] and [Pe] and the reference given by them).
Kerman and Sawyer [Ke-Sa] solved the problem (PIs) with dω = dx.
This particular case is first interesting since it is the usual form which
appears in many mathematic and physic areas. It also appears that the
case dω = dx is naturally suitable to be treated. In fact using a good
λ-inequality, they proved that the left member of (PT ) is majorized by
the Lq norm of the fractional maximal function. So (PT ) is reduced to a
weighted inequality for maximal operator, whose study was done by the
first author [Sa]. Problem (PT ) with general measures dµ and dω was
solved by Sawyer and Wheeden [Sa-Wh].

Let us consider the operator T = Is with 0 < s < n. We have the
pointwise inequality

Msg ≤ c(s, n) Isg

where Ms is the fractional maximal operator defined by

(Msf)(x) = sup{|Q| s
n−1‖f1IQ‖L1(dy); Q a cube with Q 	 x}.

We generally use the letter Q to denote a cube of R
n, and by which we

mean a product of n intervals [ai, ai+t] (0 < t < ∞). The Muckenhoupt-
Wheeden inequality [Mu-Wh] yields a sort of converse (in norm) of the
above inequality, and asserts that for 0 < q < ∞:

‖Isf‖Lq
ω
≤ c(s, n, q, ω)‖Msf‖Lq

ω
for all functions f

whenever the measure dω satisfies the Muckenhoupt condition A∞, i.e.
there are c = c(ω), δ > 0 such as

|E|ω
|Q|ω

≤ c
( |E|
|Q|

)δ

for all cubes Q and all measurables sets E ⊂ Q.
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In his thesis Perez [Pe] gave a weaker condition than the A∞’s. He
proved the above Muckenhoupt-Wheeden inequality for measures dω sat-
isfying D∞ and Bρ conditions with ρ > 1 − s

n , and which can be noted
as dω ∈ D∞ ∩ Bρ. These conditions respectively mean:

|2Q|ω =
∫

2Q

ω ≤ C(ω) |Q|ω for all cubes Q,

(here 2Q is the cube having the same center as Q and the length expanded
twice)

|Q′|ω
|Q|ω

≤ C ′(ω)
( |Q′|
|Q|

)ρ

for all cubes Q,Q′ with Q′ ⊂ Q.

Contrary to the Muckenhoupt-Wheeden technique [Mu-Wh], the
Perez’s analysis [Pe] is not based on the standard good-λ inequalities.
This last author used some estimates obtained by Frazier and Jawerth
[Fr-Ja] for local maximal operator, and moreover he was able to treat
the problem with a general convolution operator.

In this paper we also prove the Muckenhoupt-Wheeden inequality for
measures which are not necessarily in the Muckenhoupt class (see Corol-
lary 4), and with the general potential operator T described above. We
do this, with a sort of a variant of the standard good λ inequality and
by introducing a suitable maximal operator MT,ω (see Theorem 1). The
additional conditions on the measure dω arise only in order to relate this
“exotic” maximal operator to a more standard one like Ms (see Theo-
rem 3). Consequently we obtain a suitable approach to the two weight
inequality for such an operator when one of the weight functions satisfies
a reverse doubling condition (see Theorem 5).

1. Statements of results

Let us define the dyadic maximal operator

(Md
T,ω,µf)(x) = sup{|Q|ω−1

∥∥∥∥f(T ∗1IQω)1I3Q

∥∥∥∥
L1(dµ)

;

Q a dyadic cube with Q 	 x}.

A dyadic cube Q is a product of n intervals of the form [2kai, 2k(ai +1)],
where k and ai are integers. Fix q ≥ 1. By using the Holder inequality we
can observe that (Md

T,ω,µf)(x) is a.e. finite for all bounded functions with
compact supports whenever measures dω and dµ satisfy the condition

(ST ) ‖T1I|x|<Rµ‖Lq
ω
≤ c(R) < ∞ for all R > 0.

Our first result is as follow:
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Theorem 1.
Let 0 < q < ∞ and K be a nonnegative kernel satisfying the hypothesis

H. Assume the measures dω and dµ satisfy the condition (ST ). Then
there is C = C(n, q,K) > 0 so that

‖Tfµ‖Lq
ω
≤ C‖Md

T,ω,µf‖Lq
ω
.

If Md
ω is the dyadic maximal operator defined by

(Md
ωf)(x) = sup{|Q|ω−1

∥∥∥∥f1IQ

∥∥∥∥
L1(dω)

; Q a dyadic cube with Q 	 x},

then (see Lemma 1 below)

(Md
T,ω,µg)(.) ≤ (Md

ω(Tgµ))(.)

and consequently we get

Proposition 2.
Let K, dω, dµ be as above Then for q > 1 we have

‖Tfµ‖Lq
ω
≈ ‖Md

T,ω,µfµ‖Lq
ω
.

Moreover this equivalence also holds for the range of q ∈]0, 1] whenever

Md
ω(Tg)(.) ≤ c(n,K, ω) (Tg)(.)

for all f nonnegative functions g.

The above equivalence means

C1(n, q,K)‖Tfµ‖Lq
ω
≤ ‖Md

T,ω,µfµ‖Lq
ω
≤ C2(n, q, ω)‖Tfµ‖Lq

ω
.

The extra assumption in this result is satisfied for instance for the kernel
K(x, y) = |x − y|s−n, with dω = dx the Lebesgue measure, and more
generally for measures dω ∈ D∞ ∩ Bρ with 1 − s

n < ρ.
Thus in view of Theorem 1, the inequality (PT ) is reduced to the

following one, related for Md
T,ω,µ

(P̃T ) ‖Md
T,ω,µfµ‖Lq

ω
≤ C‖f‖Lp

µ
.

In order to get this last one, we impose more hypothesis on the kernel
K. So as to simplify, we only deal with kernels

K(x, y) = Ka(x, y) =
a(y, |x − y|)
|x − y|n =

a(B(y, |x − y|))
|x − y|n
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where a is a function defined on balls satisfying the following hypotheses
H:

(i) a(B1) ≤ c1(n, a) a(B2) for all balls B1, B2 with B1 ⊂ B2;

there are λ, σ > 0 so that
(ii)
c′1(n, a) tnλ a(B) ≤ a(tB) ≤ c′2(n, a) tnσ a(B) for all balls B and t ≥ 1.

We also define the function a on cubes by a(Q) = a(B), where B is the
smallest ball which contains the cube Q. A suitable dyadic maximal
operator related to the potential operator T = Ta (with kernel K = Ka)
is

(Md
Φf)(x) = sup{a(Q)|Q|−1‖f1IQ‖L1(dy); Q a dyadic cube with Q 	 x}.

The nondyadic version of Md
Φ is merely denoted by MΦ. The measure

dω satisfies the condition RDρ with ρ > 0 (and we write as dω ∈ RDω)
when there c = c(ω, n) > 0 for which

tnρ |B|ω ≤ c |tB|ω for all balls B and t > 1.

Our second result ensures the link between the two maximal operators
we have defined above.

Theorem 3.
Let K = Ka be a kernel satisfying Hi)-ii) with 0 < λ, σ ≤ 1. Suppose

dω ∈ RDρ with 1 − λ < ρ. Then

C1(Md
Φfµ)(.) ≤ (Md

Ta,ω,µf)(.) ≤ C2(MΦfµ)(.) for all functions f

here C1 = C1(n, a) > 0 and C2 = C2(n, a, ω).

In fact C2 does not depend on the individual measure dω but only on
the RDρ constant of dω. The claim we announced in the introduction
can be stated as

Corollary 4.
Let 0 < s < n and 0 < q < ∞. Suppose dω ∈ RDω with (1 − s

n ) < ρ.
Then

‖Isg‖Lq
ω
≈ ‖Msg‖Lq

ω
for all nonnegative functions g

whenever ∫
R<|x|

|x|(s−n)qdω(x) < c(R) < ∞ for all R > 0.
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This is an immediate consequence of Theorems 1 and 2. Indeed since for
all R > 0:
(Is1IB(0,R))(.)1IB(0,2R)(.)≈Rs1IB(0,2R)(.) and (Is1IB(0,R))(x)1I|x|>2R(x)≈
|x|s−n1I|x|>2R(x) so the condition ‖Is1IB(0,R)‖Lq

ω
< ∞ is reduced

to the one written in this corollary. Note also in studying the
two weight inequality ‖Isf‖Lq

ω
≤ c‖f‖Lq

ν
it is necessary that

‖Is1IB(0,R)‖Lq
ω
≤ c‖1IB(0,R)‖Lp

ν
< ∞.

By Theorems 1 and 3, the problem (PT ) is then reduced to the follow-
ing maximal inequality

‖MΦfµ‖Lq
ω
≤ c‖f‖Lp

µ
.

By the study of this last case (see [Ra1], or adapt the proof given in
[Sa]) then we get

Theorem 5.
Let 1 < p, q < ∞, and K = Ka be a kernel satisfying Hi)-ii) with

0 < λ, σ < 1. Suppose dω ∈ RDω with (1 − λ) < ρ. Then the inequality

(PT ) ‖Tfµ‖Lq
ω
≤ c‖f‖Lp

µ

holds if and only if

(1)
∫
|x|>R

[a(x, |x|)
|x|n

]q

dω(x) < c(R) < ∞ for all R > 0,

and

(2)

∥∥∥∥∥(T
∑

k

εk1IQk
µ)1I⋃

Qk

∥∥∥∥∥
Lq

ω

≤ C

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

,

where C > 0 is a constant which does not depend of each sequence (Qk)k

of cubes and (εk)k of nonnegative reals εk.
Moreover in the case 1 < p ≤ q the condition (2) can be replaced by

(2’) ‖(T1IQµ)1IQ‖Lq
ω
≤ C‖1IQ‖Lp

µ
for all cubes Q

Sawyer and Wheeden [Sa-Wh] proved that for 1 < p ≤ q and for all
general measures dω and dµ, then (PT ) is equivalent to (2′) and

(2”) ‖(T ∗1IQω)1IQ‖Lp′
µ

≤ c‖1IQ‖Lq′
ω

p′ =
p

p − 1
, q′ =

q

q − 1
.

With an additional hypothesis on the measure dµ we can simplify the
conditions in Theorem 5. We first consider the case p ≤ q.
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Proposition 6.
Let 1 < p ≤ q < ∞, and K = Ka be a kernel satisfying Hi)-ii) with

0 < λ, σ < 1. Suppose dω ∈ RDρ, dµ ∈ RDρ′ with (1 − λ) < ρ and
ρ′ > 0. Then the inequality (PT ) holds if and only if

‖(T1IQµ)1IQ‖Lq
ω
≤ C‖1IQ‖Lp

µ
.

If moreover dµ ∈ RDρ′ with (1 − λ) < ρ′ or dµ ∈ A∞ then, an easy
necessary and sufficient condition for (PT ) is

a(Q)
|Q| |Q|1−

1
p

µ |Q|
1
q
ω ≤ C for all cubes Q.

This second part is already known [Sa-Wh], and here we deduce it by
using results on maximal functions (see [Ra2] and [Pe]). To deal with the
range of q < p, we introduce the two conditions dµ ∈ R̃D(p), dω ∈ Dε,q

with ε ∈ [1,∞[ (see [Ch-St-Wh]) and which mean respectively∥∥∥∥∥∑
j≥0

∑
k

εk

( |Qk|µ
|2jQk|µ

)
1I2jQk

∥∥∥∥∥
Lp

µ

≤ c(µ)

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ∥∥∥∥∥∑
k

εk1ItQk

∥∥∥∥∥
Lq

ω

≤ c(ω) tnε 1
q

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lq

ω

for all t ≥ 1, εk > 0 and all cubes Q and Qk. Thus we can state

Proposition 7.
Let 1 < q < p < ∞, and K = Ka be a kernel satisfying Hi)-ii) with

0 < λ, σ < 1, and dω ∈ RDρ, with (1 − λ) < ρ.

Suppose dµ ∈ R̃D(p). Then the inequality (PT ) holds if and only if
for some m ≥ 4 and C > 0∥∥∥∥∥∑

k

εk(T1IQk
)1I(mQk)

∥∥∥∥∥
Lq

ω

≤ C

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

for all cubes Qk and all εk > 0.
For dµ ∈ RDρ′ ∩ Dε′,p with max(1 − λ, 1

pε′) < ρ′, a necessary and
sufficient condition for (PT ) is∥∥∥∥∥∑

k

εk

(a(Qk)
|Qk|

|Qk|µ
)
1IQk

∥∥∥∥∥
Lq

ω

≤ C

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

.
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This equivalence is also true when dµ ∈ RDρ ∩ D∞, dω ∈ Dε,q with
1 − λ < ρ′ and ε < q(1 − σ).

Remark. Now we show that the use of the sharp maximal M# (see
[Ya] for a definition) is not well adapted to weaken the weight condition
in the Muckenhoupt-Wheeden inequality

(1) ‖Isf‖Lq
ω
≤ c‖Msf‖Lq

ω
.

Indeed such a purpose is based on the two inequalities:

(2) (Isf)# ≤ c(Msf);

(3) ‖g‖Lq
ω
≤ c‖g#‖Lq

ω
.

Inequality (2) is valid for all functions f with (Isf) ∈ L1
loc and was proved

in [Ad]. Although (3) is well known to be true for w ∈ A∞, Yabuta [Ya]
had obtained such an inequality with a weak condition he denoted as
w ∈ Cr (with r > q). Thus we think get (1) with this last condition.
But since Msf ≤ cIsf = h then

(4) ‖h#‖Lq
ω
≤ c‖h‖Lq

ω

It was proved in [Ya] that condition like (4) implies necessarily w ∈ A∞.

2. Some Lemmas

We first state two Lemmas we need and then we give their proofs.

Lemma 1. Let f be a nonnegative (dµ-locally integrable) function.
Then

(Md
T,ω,µf)(.) ≤ (Md

ω(Tfµ))(.).

Lemma 2. Let T = Ta be an operator with the kernel K = Ka satis-
fying Hi)-ii), and let dν be a positive Borel measure.

A) If 0 < σ ≤ 1 then there is C = C(a, n) > 0 so that for all cubes Q(a(Q)
|Q| |Q|ν

)
1IQ(.) ≤ C (T1IQν)(.)1IQ(.).

B) Let m ≥ 1. There is C = C(a, n,m) > 0 so that

(T1IQν)(.)1ImQ(.) ≤ C [S1(.) + S2(.)]
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where

S1(.) =
(a(Q)

|Q| |Q|ν
)
1ImQ(.)

and

S2(.) =
a(Q)
|Q|

(∑
j≥0

2−jn[λ−1]

∫
Q∩{|y−.|∼2−j |Q|

1
n }

ν

)
1ImQ(.)

C) Let m ≥ 4. There is C = C(a, n,m) > 0 so that

(T1IQν)(.)1I(mQ)c(.) ≤ C |Q|ν
(∑

j≥0

a(2jQ)
|2jQ| 1I2jQ

)
.

Proof of Lemma 1:

Let Q be a dyadic cube. Then we have∫
Q

(Tfµ)dω =
∫

Rn

[T ∗1IQω]fdµ ≥
∫

3Q

[T ∗1IQω]fdµ.

Diving by |Q|ω this inequality and taking the supremum, we obtain the
conclusion.

Proof of Lemma 2:

A) Let Q be a cube with center x0 and length 2R > 0. Then |x− y| ≤
c2R for all x, y ∈ Q with c = c(n). We obtain

(a(Q)
|Q| |Q|ν

)
1IQ(y) ≤ c1(a, n)

(∫
x∈Q

a(y, c2R)
Rn

dν
)
1IQ(y)

≤ c2(a, n)
[∫

x∈Q

( |x − y|
c2R

)n 1
|x − y|n a(

y,
c2R

|x − y| |x − y|
)
dν(x)

]
1IQ(y)

≤ c3(a, n)
[∫

x∈Q

( |x − y|
c2R

)n[1−σ] a(y, |x − y|)
|x − y|n dν(x)

]
1IQ(y).

Since 0 < σ ≤ 1 and |x − y| < 2cR we get

(a(Q)
|Q| |Q|ν

)
1IQ(y) ≤ c(a, n) (Ta1IQν)(y)1IQ(y).
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B) Let Q be a cube as in part A, and let m ≥ 1. We can write

(Ta1IQν)(y)1ImQ(y) = S1(y) + S2(y)

where

S1(y) =
(∫

Q∩{R≤|y−x|}

a(y, |x − y|)
|x − y|n dν(x)

)
1ImQ(y)

and

S2(y) =
(∫

Q∩{|y−x|<R}

a(y, |x − y|)
|x − y|n dν(x)

)
1ImQ(y).

For S1(y) we can observe that for y ∈ (mQ) and x ∈ Q then B(y, |x −
y|) ⊂ c(n)Q and consequently we get

S1(y) =
(∫

Q∩{R≤|y−x|}

a(y, |x − y|)
|x − y|n dν(x)

)
1ImQ(y)

≤ c1(a, n,m)
a(Q)
|Q|

(∫
Q∩{R≤|y−x|}

dν(x)
)

1ImQ(y)

≤ c1(a, n,m)
(a(Q)

|Q| |Q|ν
)
1ImQ(y).

For S2(y) with R = |Q| 1
n , we have

S2(y) =
[∑

j≥0

∫
Q∩{|y−x|∼2−jR}

a(y, |x − y|)
|x − y|n dν(x)

]
1ImQ(y)

≤ c1(a, n)
∑
j≥0

(2−jR)−na(y, 2−jR)
(∫

Q∩{|y−x|∼2−jR}
dν(x)

)
1ImQ(y)

≤ c2(a, n,m)
a(Q)
|Q|

[∑
j≥0

2−jn[λ−1]
(∫

Q∩{|y−x|∼2−jR}
dν(x)

)]
1ImQ(y).

The proof of the part C) lies on the same ideas. We leave the detail for
the reader.

3. Proofs of main results

Preliminaries for the proof of Theorem 1.
Let f be a nonnegative function bounded and with support compact.

By the hypothesis (ST ) then we can observe that

‖Tfµ‖Lq
ω

< ‖f‖L∞‖T1I|x|<Rµ‖Lq
ω

< ∞.
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Since Tfµ is semicontinuous, so for each k ∈ Z the open set Ωk =
{Tfµ > 2k} can be written as

⋃
j

Qjk where the Qjk are the dyadic cubes

maximal among those dyadic cubes Q satisfying (RQ) ⊂ Ωk. Choosing
R ≥ 3 sufficiently large (depending only on the dimension n), we obtain

Ωk =
⋃
j

Qjk where int(Qjk) ∩ int(Qk
j′) = ∅ if j �= j′

and

(RQjk) ⊂ Ωk and (3RQjk)Ωc
k �= ∅ for all k, j (Whitney condition).

Let fix m ≥ 2 which we will choose later, and let define Ejk = Qjk ∩
(Ωk+m−1\Ωk+m). Using the hypothesis H on the kernel K, and the
Whitney condition we get

Lemma.
1) There is C = C(K,R) > 0 so that for all k, j

(Tfµ)(.)1I(3Qjk)c(.) ≤ C2k1IQjk
(.).

2) For a suitable choice of the integer m

2k1IEjk
(.) ≤ (Tfµ1IQjk

)(.)1IEjk
(.)

therefore

|Ejk|ω ≤ 2−k

∫
3Qjk

[T ∗ω1IQjk
]fdµ.

By the Whitney condition one can find at least one z which belongs
to (3RQjk) ∩ Ωc

k. It first implies: (Tfµ)(z) ≤ 2k.
Also for x ∈ Qjk and y ∈ (3Qjk)c |z − y| ≤ C1|x − y| for some C1 =
C1(n,R) > 0. So for another constant C2 = C2(C1) > 0: K(x, y) ≤
C2 K(z, y).

The conclusion 1) appears from these two inequalities, indeed we have

(Tfµ1I(3Qjk)c)(x)1IQjk
(x) =

( ∫
(3Qjk)c

K(x, y)f(y)dµ(y)
)
1IQjk

(x)

≤ C2

( ∫
Rn

K(z, y)f(y)dµ(y)
)
1IQjk

(x)

≤ C2(Tfµ)(z)1IQjk
(x) ≤ C22k1IQjk

(x).
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The part 2) will be a direct consequence of 1). Since Ejk = Qjk ∩
(Ωk+m−1\Ωk+m) and Ωk = {Tfµ > 2k} then choosing m ≥ 2 and
2m−2 ≥ C2 we get

(Tfµ1I(3Qjk))(x)1IEjk
(x) = (Tfµ)(x)1IEjk

(x)−(Tfµ1I(3Qjk)c)(x)1IEjk
(x)

>
(
2k+m−1 − 2kC2

)
(x)1IEjk

(x)

>
(
2k+m−1 − 2k+m−2

)
(x)1IEjk

(x)>2k1IEjk
(x).

So, by integration with respect to the measure dω, this involves

2k|Ejk|ω ≤
∫

Ejk

[Tfµ1I3Qjk
]dω

≤
∫

3Qjk

[T ∗ω1IEjk
]fdµ ≤

∫
3Qjk

[T ∗ω1IQjk
]fdµ

Proof of the Theorem 1:

Using this Lemma, now we prove the inequality

‖Tfµ‖Lq
ω
≤ c ‖Md

T,ω,µµ‖Lq
ω
.

Let β ∈]0, 1[ whose value is to be specified later in the course of the
proof. Then we get

‖Tfµ‖q
Lq

ω
≤ c

∑
k,j

2kq|Ejk|ω c = c(q,m)

≤ c

[ ∑
k,j; |Ejk|ω≤β|Qjk|ω

+
∑

k,j; β|Qjk|ω<|Ejk|ω

]
2kq|Ejk|ω

≤ cβ
∑
k,j

2kq|Qjk|ω + c
∑

k,j; β|Qjk|ω<|Ejk|ω

|Ejk|ω
(

1
|Ejk|ω

∫
3Qjk

[T ∗ω1IQjk
]fdµ

)q

≤ c′β‖Tfµ‖q
Lq

ω
+ cβ−q

∑
k,j

|Ejk|ω
(

1
|Qjk|ω

∫
3Qjk

[T ∗ω1IQjk
]fdµ

)q

≤ c′β‖Tfµ‖q
Lq

ω
+ cβ−q

∑
k,j

∫
Ejk

(Md
T,ω,µfµ)q
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≤ c′β‖Tfµ‖q
Lq

ω
+ cβ−q‖Md

T,ω,µfµ‖q
Lq

ω
.

Since ‖Tfµ‖q
Lq

ω
< ∞, then choosing β ∈]0, 1[ and c′(q,m)β < 1

2 , we have

‖Tfµ‖q
Lq

ω
≤ c(q,m)‖Md

T,ω,µfµ‖q
Lq

ω
.

Therefore the Theorem is proved for each bounded function f with sup-
port compact. For a general nonnegative function f , we can also obtain
the same conclusion by using the monotone convergence theorem.

Proof of proposition 2:

Since the first inequality is proved in Theorem 1, then we are reduced
to get the converse inequality

(*) ‖Md
T,ω,µfµ‖Lq

ω
≤ C‖Tfµ‖Lq

ω
.

By Lemma 1: (Md
T,ω,µf)(.) ≤ (Md

ωTfµ)(.), then the conclusion appears
if we have

‖Md
ωg‖Lq

ω
≤ C‖g‖Lq

ω
.

By the well known arguments (covering lemma using dyadic cubes and
interpolation) then this last maximal inequality is valid for all q > 1.
The same inequality (∗) is also true for all q with 0 < q ≤ 1 by the
means of the extra-hypothesisMd

ω(Tg)(.) ≤ c(n,K, ω) (Tg)(.).

Proof of Theorem 3:

Let f be a nonnegative dµ-locally integrable function. Since (T ∗ν) ≈
(Tν) then taking dν = dω in part A) of Lemma 2, then it appears that
for each dyadic cube Q

a(Q)
|Q|

∫
Q

fdµ = |Q|ω−1
∫

Q

(a(Q)
|Q| |Q|ω

)
fdµ

≤ c(a, n)|Q|ω−1
∫

3Q

(
T ∗

a ω1IQ
)
fdµ.

Hence, we have (Md
Φfµ) ≤ c(a, n) (Md

Ta,ω,µf).

Conversely in order to get (Md
Ta,ω,µfµ) ≤ C(a, n) (MΦfµ), it is suffi-

cient to get

($) (T ∗
a 1IQω)(.)1I3Q(.) ≤ C(a, n)

(a(cQ)
|cQ| |cQ|ω

)
1IcQ(.)

where c = c(n) ≥ 3. By part B) of Lemma 3, the first member of ($) is
essentially dominated by the sum of

S1(.) =
(a(Q)

|Q| |Q|ω
)
1I3Q(.)
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and

S2(.) =
a(Q)
|Q|

(∑
j≥0

2−jn[λ−1]

∫
Q∩{|y−.|∼2−jR}

dω(y)
)

1I3Q(.).

So it is clear, that it remains to estimate S2(.).
If λ = 1, then we immediately get

S2(x) =
a(Q)
|Q|

(∑
j≥0

∫
Q∩{|y−x|∼2−jR}

dω(y)
)

1I3Q(x)

≤ c(a, n)
(a(Q)

|Q| |Q|ω
)
1I3Q(x).

Now for λ ∈]0, 1[ we use the hypothesis dωRDρ with 1 − λ < ρ.
We also note that for x ∈ (3Q) then B(x,R) ⊂ (c1Q) for a constant
c1 = c1(n) ≥ 3. Therefore we obtain

S2(x) ≤ a(Q)
|Q|

(∑
j≥0

2−jn[λ−1]|B(x, 2−jR)|ω
)

1I3Q(x)

≤ c(ω)
a(Q)
|Q|

(∑
j≥0

2−jn[λ−1+ρ]

)
|B(x,R)|ω1I3Q(x)

≤ c′(a, ω)
a(Q)
|Q| |c1Q|ω1I3Q(x)

≤ c′′(a, ω)
a(c1Q)
|c1Q| |c1Q|ω1Ic1Q(x).

Proof of Theorem 5:

It is clear that (2) is a necessary condition for (PT ). To get the con-
dition (1) we first note that for |x| > R (R > 0) and |y| < 1

2R then
|x− y| ≈ |x|, and consequently taking f = 1IB(0,R) in inequality (PT ) we
have

∞ > |B(0, R)|
1
p
µ ≥ C

∥∥∥∥∥
(∫

|y|< 1
2 R

a(x, |x − y|)
|x − y|n dµ(y)

)
1I|x|>R

∥∥∥∥∥
Lq

ω

≥ C|B(0,
1
2
R)|µ

[∫
|x|>R

(a(x, |x|)
|x|n

)q

dω(x)
] 1

q

.

Now we suppose the conditions (1) and (2) are satisfied. The keys for
the converse are the following:

(i) ‖T1IB(0,R)µ‖Lq
ω

< c(R) < ∞ for all R > 0;
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(ii) MΦµ : Lp
µ → Lq

ω.

Indeed by (i) and (ii) we have

‖Tfµ‖Lq
ω
≤ c‖MT,ω,µf‖Lq

ω
by Theorem 1 and by using (i)

≤ c‖MΦfµ‖Lq
ω

by Theorem 3 since dω ∈ RDρ with 1 − λ < ρ

≤ c‖f‖Lp
µ

by (ii).

To get the point (i), we note that ‖(T1IB(0,R)µ)1I|x|<2R‖Lq
ω

< ∞. On
the otherhand, we have∥∥∥∥∥(T1IB(0,R)µ)1I|x|>2R

∥∥∥∥∥
Lq

ω

≤ c

∥∥∥∥∥
(∫

|y|<R

a(x, |x − y|)
|x − y|n dµ(y)

)
1I|x|>2R

∥∥∥∥∥
Lq

ω

≤ c′|B(0, R)|µ
[∫

|x|>2R

(a(x, |x|)
|x|n

)q

dω(x)
]1

q

<∞.

By a result in [Ra1], a sufficient (and necessary) condition for the em-
bedding (ii) is∥∥∥∥∥(MΦ

∑
k

εk1IQk
µ)1I⋃

Qk

∥∥∥∥∥
Lq

ω

≤ C

∥∥∥∥∥∑
k

εk1IQk
µ

∥∥∥∥∥
Lp

µ

and ‖(MΦ1IQµ)1IQ‖Lq
ω

≤ C‖1IQ‖Lp
µ

if p ≤ q. By Lemma 2 A) then
(MΦfµ) ≤ c(Tfµ) and consequently the condition (2) in Theorem 5
implies the above one.

Proof of Proposition 6:

To prove the first part of Proposition 6, we suppose

‖(T1IQµ)1IQ‖Lq
ω
≤ A‖1IQ‖Lp

µ
for all cubes Q.

Since 1 < p ≤ q this condition implies MΦµ : Lp
µ → Lq

ω. And as above
to get (i) it is sufficient to prove

‖(T1IQµ)1I(mQ)c‖Lq
ω
≤ C‖1IQ‖Lp

µ

with a constant m ≥ 4. Using the fact that dµ ∈ RDρ′ for some ρ′ > 0,
then by Lemma 2 (part C) we get∥∥∥∥∥(T1IQµ)1I(mQ)c

∥∥∥∥∥
Lq

ω

≤ c1|Q|µ
∑
j≥0

a(2jQ)
|2jQ| |2jQ|

1
q
ω
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≤ c2|Q|µ
∑
j≥0

|2jQ|−1
µ

∥∥∥∥∥(T1I2jQµ)1I(2jQ)

∥∥∥∥∥
Lq

ω

≤ c2A|Q|
1
p
µ

∑
j≥0

( |Q|µ
|2jQ|µ

)1− 1
p

≤ c3A|Q|
1
p
µ .

For the second part of this proposition, the point is to note that MΦµ :
Lp

µ → Lq
ω is equivalent to

a(Q)
|Q| |Q|1−

1
p

µ |Q|
1
q
ω < A < ∞

whenever dµ ∈ A∞ (see [Pe]) or dµ ∈ RD∞′ with 1 − λ < ρ′ (see
[Ra2]).

Proof of Proposition 7:

It is clear that a necessary condition for (PT ) is

(*)

∥∥∥∥∥∑
k

εk(T1IQk
µ)1I(mQk)

∥∥∥∥∥
Lq

ω

≤ A

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

with m ≥ 4 and for all cubes Q, Qk and all εk > 0. Conversely we
suppose this condition be satisfied and dµ ∈ R̃D(p). Once we have

(**)

∥∥∥∥∥∑
k

εk(T1IQk
µ)1I(mQk)c

∥∥∥∥∥
Lq

ω

≤ cA

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

then (i) and (ii) hold as in proof of Theorem 5, and consequently the
inequality (PT ) is satisfied. Now using Part C) of Lemma 2, the above
condition (∗) and the hypothesis dω ∈ R̃D(p) we have

S =

∥∥∥∥∥∑
k

εk(T1IQk
µ)1I(mQk)c

∥∥∥∥∥
Lq

ω

≤ c1

∥∥∥∥∥∑
k

εk

∑
j≥0

a(2jQk)
|2jQk|

|Qk|µ1I(2jQk)

∥∥∥∥∥
Lq

ω

by part C of Lemma 2

≤ c2

∥∥∥∥∥∑
k

εk

∑
j≥0

( |Qk|µ
|2jQk|µ

)
(T1I2jQk

µ)1I(2jQk)

∥∥∥∥∥
Lq

ω
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≤ c2A

∥∥∥∥∥∑
j≥0

∑
k

εk

( |Qk|µ
|2jQk|µ

)
1I(2jQk)

∥∥∥∥∥
Lp

µ

by the condition (∗)

≤ c3A

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

since dµ ∈ R̃D(p).

It is also clear that a necessary condition for (PT ) is

(**’)

∥∥∥∥∥∑
k

εk

(a(Qk)
|Qk|

|Qk|µ
)
1IQk

∥∥∥∥∥
Lq

ω

≤ A

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

.

Conversely we assume this condition be satified and dµ ∈ Dε′,p ∩ RDρ′

with 1 − λ < ρ′ and ε′ < pρ′. It is sufficient to get the conditions in the
first part of the present Proposition. As in the proof of Theorem 3 by
using part A) of Lemma 2) and since dµ ∈ D∞ then

(T1IQk
µ)1I(mQk) ≤ c

(a(Qk)
|Qk|

|Qk|µ
)
1I(mQk)

and consequently∥∥∥∥∥∑
k

εk(T1IQk
µ)1I(mQk)

∥∥∥∥∥
Lq

ω

≤ c

∥∥∥∥∥∑
k

εk

(a(Qk)
|Qk|

|Qk|µ
)
1I(mQk)

∥∥∥∥∥
Lq

ω

≤ c

∥∥∥∥∥∑
k

εk1I(mQk)

∥∥∥∥∥
Lp

µ

.

Now using dµ ∈ Dε′,p ∩ RDρ′ with ε′ < pρ′ we can get the condition
dµ ∈ R̃D(p) as follow:

S =

∥∥∥∥∥∑
k

εk

∑
j≥0

( |Qk|µ
|2jQk|µ

|Qk|µ
)
1I(2jQk)

∥∥∥∥∥
Lp

µ

≤ c1

∑
j≥0

2−jnρ′

∥∥∥∥∥∑
k

εk1I(2jQk)

∥∥∥∥∥
Lp

µ

≤ c2

∑
j≥0

2−jn[ρ′− 1
p ε′]

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

= c3

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

.

Finally we suppose dµ ∈ D∞ ∩ RDρ′ and dω ∈ Dε,q ∩ RDρ with
1− λ < ρ′ and ε < q(1− σ). It remains to get the above condition (∗∗).
Thus we have

S =

∥∥∥∥∥∑
k

εk(T1IQk
µ)1I(mQk)c

∥∥∥∥∥
Lq

ω
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≤ c1

∥∥∥∥∥∑
k

εk

∑
j≥0

(a(2jQk)
|2jQk|

|Qk|µ
)
1I(2jQk)

∥∥∥∥∥
Lq

ω

≤ c2

∑
j≥0

2−jn[1−σ]

∥∥∥∥∥∑
k

εk

(a(Qk)
|Qk|

|Qk|µ
)
1I(2jQk)

∥∥∥∥∥
Lq

ω

≤ c3

∑
j≥0

2−jn[1−σ− 1
q ε]

∥∥∥∥∥∑
k

εk

(a(Qk)
|Qk|

|Qk|µ
)
1IQk

∥∥∥∥∥
Lq

ω

≤ c3A
∑
j≥0

2−jn[1−σ− 1
q ε]

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

≤ c4A

∥∥∥∥∥∑
k

εk1IQk

∥∥∥∥∥
Lp

µ

.
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