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MERGELYAN TYPE THEOREMS FOR SOME
FUNCTION SPACES

Arne Stray

Abstract
Let F be a relatively closed subset of the unit disc D. If A is

any of the Hardy spaces Hp(D), 0 < p < ∞, A|F denotes the
functions on F being uniform limits of elements from Hp(D). Let

F̃ consist of all z ∈ D such that |f(z)| ≤ sup{|f(z)|z ∈ F} for

any bounded analytic function in D. It is proved that A|F consist
of all functions f that can be decomposed as f = u + v, where u
belongs to Hp(D) and v is a uniformly continuous function on the

set F̃ , analytic at interior points of F̃ .

Let A be a linear space of analytic functions and F a subset of the
complex plane C such that each f ∈ A is defined on F . We denote by
A|F the functions being uniformly approximable on F by sequences from
A. The aim with this paper is to give a partial solution to problem 8.5
no. 2 in [7]. If A is any of the classical Hardy spaces Hp(D), 0 < p <∞,
our main result is that A|F coincides (modulo the approximating space)
with a well defined algebra of uniformly continuous analytic functions
on F .

Before giving a precise formulation of the main result, we need some
definitions.

Let Cua(F ) denote the functions on F being analytic in its interior
F 0 and admitting continuous extension to the extended complex plane
C∪{∞}. If F is a compact subset of C and P consists of the polynomials,
a famous theorem of S. N. Mergelyan [7] can be formulated as

P |F = Cua(F̃ )

where F̃ is the union of F and the bounded components of C/F .
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Suppose now we replace P by the set H(C) consisting of all entire
functions. Also allow F to be a closed but possibly unbounded subset of
C. Then it can be proved that

(I): H(C)|F = H(C) + Cua(F̃ )

where F̃ is the union of F and certain components of C/F . A component
V is to be included in F̃ if and only if V ∪{∞} is not arcwise connected
in C ∪ {∞}. For details see [8], [9] and [10].

In general A may contain unbounded functions. For this reason it
is natural to look for an identity like (I) if we seek to describe A|F in
terms of uniformly continuous analytic functions. Let us use the notation
‖g‖B = sup{|g(x)| : z ∈ B} if g is a function defined on the set B. We
also define the hull of F with respect to A:

F̂A = {z : |f(z)| ≤ ‖f‖F , f ∈ A}.

We look for spaces A satisfying the following:

(∗): A|F = A+ Cua(F̂A).

Our main result is the (∗) is valid for the classical Hardy sapces HP (D)
in the unit disc D, 0 < p < ∞, when F is any relatively closed subset
of D. Also note that the two introductory examples are special cases of
(∗).

We refer to [3] or [5] for the basic theory of Hp(D), 0 < p ≤ ∞.
In particular H∞(D) denotes the bounded analytic functions in D. If
F ⊂ D is relatively closed, let

F̂ = {z ∈ D : |f(z)| ≤ ‖f‖F , f ∈ H∞(D)}.

Our main result is

Theorem 1. If 0 < p <∞, then Hp(D)|F = Hp(D) + Cua(F̂ ).

Proof of Theorem 1: If f ∈ Hp(D) it is easy to find {fn} ⊂ H∞(D)
such that |fn(z)| ≤ |f(z)| and fn(z) → f(z) for z ∈ D. This shows that
F̂A = F̂ if A = Hp(D), 0 < p <∞.

Let us first prove that Hp(D)|F ⊂ Hp(D) + Cua(F̂ ). If g ∈ Hp(D)|F
is bounded, we may assume

g =
∑

n

fn, fn ∈ Hp(D)
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in the sense that
∑

n ‖fn‖F <∞.
There are two special classes of sets F where a short proof of the

decomposition of g can be found. It may be instructive to consider these
cases prior to the general proof.

Let us firs assume that F is a Farrell set for Hp(D). (See [8] for defini-
tion and various properties of these sets). Then we can find polynomials
pn, n = 1, 2 such that

‖pn‖F ≤ ‖fn‖F + 2−n

and
‖pn − fn‖Hp ≤ 2−n

for n = 1, 2, . . . . This gives a decomposition

g =
∑

n

(fn − pn) +
∑

n

pn|F̂

as claimed.
In our second example, we assume that F can be written as a Blaschke

sequence S = {ζν}, meaning that

(1)
∑

ν

1 − |ζν | <∞.

Then it is well known that the Blashcke product

B(z) = Π
|ζν |
ζν

ζν − z

1 − ζ̄νz

converge in D. Using cofinite subproducts Bn of B, we can obtain

‖(1 −Bn)fn‖Hp(D) < 2−n, n = 1, 2, . . .

and again we have a decomposition

g =
∑

n

(1 −Bn)fn +
∑

n

Bnfn|F .

The geometric properties of the set F are quite different in the two
cases just discussed. To clarify this, let Fnt denote the non tangential
closure of F on the unit circle T . So z ∈ Fnt if z ∈ T and z is a limit
of a sequence {zn} ⊂ F satisfying |z − zn| ≤ C(1 − |zn|), n = 1, 2, . . . ,
where C may depend only on z. We also define F t = F ∩ T\Fnt.
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It is well known that F is a Farrell set forHp(D) if and only if the linear
measure |F t| of F t is zero ([8]). On the other hand, the condition (1) is
easily seen to imply that |Fnt| = 0.

We have thus obtained the decomposition of Hp(D)|F in two rather
different situations. The general proof will be divided into parts reflecting
the “geometry” of the cases considered above. We shall argue as in the
proof where F was a Farrell set, but the polynomials pn will be replaced
by functions from Hp(D) having a uniformly continuous restriction to
F .

The key part of the proof is an approximation argument related to the
set Fnt:

Lemma 1. Given f ∈ Hp(D), 0 < p < ∞, and ε > 0, there is an
open set V and f1 ∈ Hp(D) with the following properties:

(i) ‖f − f1‖Hp(D) < ε
(ii) ‖f1‖F < ‖f‖F + ε
(iii) f1 extends continuously to F ∩ V
(iv) |Fnt\V | = 0.

For the moment we take Lemma 1 for granted. Consider the “tangen-
tial” part F t of F ∩ T . Let K be a compact subset of F t. We assume
there is a number δ = δ(K) such that Iz ∩K = φ if z ∈ F , |z| > 1 − δ,
and Iz denotes the arc Iz = {eiθ : |z − eiθ| ≤ 2(| − |z|)}.

By a construction due to J. Detraz ([2, Prop. 3.1]), we can find an
outer function GK ∈ H∞(D) such that
|GK | ≤ 1 and GK(z) → 0 if z → K and z ∈ F . Moreover, GK extends

to be continuous and non zero at any eiθ ∈ T\K.
We can find an increasing sequence of such sets Kn ⊂ F t\V with

corresponding outer functions Gn, such that |F t\V \Kn| → 0 and such
that G=

∏
n

Gn has the following properties

(i) 0 < |G(z)| ≤ 1, z ∈ D
(ii) G extends to be continuous at any eiθ ∈ V ∩ T .

It also follows from the construction of {Gn} that

G(z) → 0 if z ∈ F and z → z0 ∈ ∪nKn.

Consider finally the set

L = (F
⋂
T )\V \

⋃
n

Kn.
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It is evident that the linear meausre |L| of L is zero. By a general
version of the Rudin-Carleson theorem ([2]) there is H ∈ H∞(D) with
continuous extension to L ∪ (T\L) such that H �= 0 in D and H = 0 on
L.

For n = 1, 2, . . . we consider the functions Un in Hp(D) given by

Un = G
1
nH

1
n f1

where f1 satisfies the conclusions of Lemma 1.
It follows from the construction of f1, G and H, that Un|F is uni-

formly continuous. This implies that Un|F̂ ∈ Cua(F̂ ), by the maximum
principle. To be a little bit more specific, suppose z0 ∈ F ∩ T and that
Un(z) → 0 as z → z0 and z ∈ F . Then |Un| < ε in F ∩ ∆(z0), for
some disc centered at z0. Choose a polynomial p peaking at z0 such that
|Unp| < ε on F . Then if p(z0) = 1, we have

lim sup
z→z0

z∈F̂

|Un(z)| = lim sup
z→z0

z∈F̂

|Un(z)p(z)| ≤ ε

since ‖Unp‖F̂ ≤ ‖Unp‖F ≤ ε.
We turn to the proof of Theorem 1. If f ∈ Hp(D) and ε > 0 is

given, we have shown (modulo proving Lemma 1) that there is a function
U = Un ∈ Hp(D) ∩ Cua(F̂ ) with n so large that

‖f − U‖Hp(D) < ε

‖U‖ ≤ ‖f‖F + ε.

The proof of Theorem 1 now follows the introductory argument we
gave in the special case where F is a Farrell set.

Let us finally prove Lemma 1. We may assume that f is bounded in
D.

So given f ∈ H∞(D), and ε > 0, we consider a compact set K ⊂ Fnt.
We shall require several properties of K related to f . If 0 < α < π,
T (θ, α) denotes the cone in D with opening angle α, terminating at eiθ,
and being symmetric with respect to the radius {reiθ, 0 ≤ r < 1}. We
assume that

f(eiθ) = lim f(z)

holds uniformly in eiθ ∈ K as z → eiθ inside T (θ, α). Now fix p ∈ (0,∞).
Since f ∈ Hp(D), the radial limits f(eiθ), 0 ≤ θ < 2π, belong to Lp(dθ).
We assume that K is included in the Lebesgue set for f and that

(3)
1
2r

∫ θ+r

θ−r

|f(eiϕ) − f(eiθ)|p dϕ→ 0
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uniformly in eiθ ∈ K as r → 0. Such a set K can be found with |Fnt\K|
as small we please.

Fix δ > 0 so small that |f(eiθ) − f(z)| < ε if eiθ ∈ K, |z| > 1 − δ
and z ∈ T (θ, α). We are now in a convenient position for applying
Vitushkin’s scheme for approximation (see [13] or [4]). Let {∆j}N

j=1 be
a finite collection of open discs with centers zj ∈ K and a common radius
r < δ. Following Vitushkin’s scheme, let ϕj ∈ C1

0 (∆j) be chosen such
that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in ∆1

j =
{
z : |z − zj | < r

2

}
. As a preliminary

approximation to f we define

fK = f −GK

where GK =
∑

j

Tϕj(f−f(zj))−rj is a finite sum which we shall explain

in some detail.
We assume f is defined outside of D by f(z−1) = f(z). For general

properties of the Tϕ-operator we refer to [11] or [4, page 30]. Here we
only note that

Tϕj(f − f(zj))(ς) = ϕj(ς)(f(ς) − f(zj))

− 1
π

∫
∆j

∫
f(z) − f(zj)

z − ς

∂ϕj

∂z
dx dy(z)

= Uj + Vj say.

We assume
∣∣∣∂ϕj

∂z

∣∣∣ ≤ A
r , where A is a numerical constant. Since f ∈

Hp(D), we have in particular that f ∈ Lp(dx dy) locally. Therefore the
convolution term Vj is continuous as a function of ς. If α is close to π,
Hölders inequality gives that

|Vj(ς)| ≤ ε, ς ∈ C j = 1, 2 . . . N.

Note also that Vj is analytic outside ∆j . According to Vitushkin’s
scheme, the functions rj should be analytic outside a compact subset
of ∆j\D and with the property that (Vj − rj)(ς) has a zero of order 3 at
∞. In addition we should require

(4): ‖rj‖∞ ≤ A1‖Vj‖∞ ≤ A1ε, j = 1, 2, . . . , N

where A1 is a numerical constant. In our simple situation, the existence
of {rj} is rather evident ([4, page 210–214]). From the individual bounds
(3), it is part of Vitushkin’s scheme that

(5):

∥∥∥∥∥∥
N∑

j=1

(Vj − rj)

∥∥∥∥∥∥
∞

≤ A2ε



Mergelyan type theorems for some function spaces 67

for some numerical constant A2. We have not claimed that {∆1
j}N

j=1

cover all of K. In fact we shall assume that ∆j ∩ ∆k = φ if j �= k. In
addition we assume that

∣∣∣∣∣K ∩
N⋃
1

∆1
j

∣∣∣∣∣ ≥ A3|K|

for some numerical constant A3, where ∆1
j =

{
z : |z − zj | ≤ r

2

}
. We

remark that fK = f −GK is analytic near ∆1
j ∩ T for 1 ≤ j ≤ N . This

is seen by writing

fk = (f − Uj) − Vj −
∑
i �=j

(Ui + Vi) +
n∑

i=1

ri

and inspecting these four terms separately.
Note that the (Fatou) boundary values f(zj) satisfy |f(zj)| ≤ ‖f‖F .

Since
fK = f

(
1 −

∑
ϕj

)
+

∑
j

ϕjf(zj) +
∑

j

(Vj − rj)

we have

(6) ‖fK‖F ≤ ‖f‖F +A2ε.

From (3) and (5) we also get

‖f − fK‖Hp(D) = ‖GK‖Hp(D) ≤ (1 +A2)ε

if r is sufficiently small.
The function fK satisfies the conditions for f1 in Lemma 1 except

that fK is only analytic (and hence continuous) near a subset PK of K.
But since |PK | ≥ A3|K|, Lemma 1 follows by repeating our construction
countably many times. The main reason why repetition works, is that
the Tϕ-operator preserves continuity and analyticity ([4, page 30]).

It remains to show that Cua(F̂ ) ⊂ Hp(D)|F̂ . Let B denote the Banach
algebra H∞(D)|F̂ . Also put X = (F̂ ). If V is a component of C\X, there
mus exist h ∈ H∞(D) such that

1 = h(z0) > ‖h‖F

for some z0 ∈ V . But then 1 − h is invertible in B and since

1 − h = (z − z0)g, g ∈ H∞(D)
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we conclude that (z−z0)−1|F̂ ∈ B. This means that R(X)|F̂ ⊂ B, where
R(X) is the uniform closure on X by the rational functions with poles
off X.

But if {Vj} are the components os C\X, the maximum principle gives
∂Vj∩T �= φ, j = 1, 2, . . . and hence ∂X = ∪∞

1 ∂Vj . For such sets X (with
empty “inner boundary”) Vitushkin has proved that R(X) = Cua(X)
([4, page 219]), and hence Theorem 1 is proved.

This solves completely problem 8.5 no. 2 in [7] for the space Hp(D),
0 < p <∞. For p = ∞ the problem is still open.

For p = ∞, some information about H∞|F can be obtained from the
work by Carl Sundberg in [12]. If f ∈ BMOA and f |F is bounded,
Sundberg shows that f ∈ H∞|F . On the other hand, our proof above
shows that any f ∈ H∞|F can be written as f = u + v with u ∈ H∞

and v ∈ ∩p>0H
p(D). Several questions arises from this. Here we only

mention the following: Let f ∈ BMOA be bounded on a relatively closed
set F ⊂ D.

Is there g ∈ H∞ such that the restriction (f − g)|F is uniformly con-
tinuous on F?
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