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UNIQUE CONTINUATION
WITH WEAK TYPE LOWER ORDER TERMS:

THE VARIABLE COEFFICIENT CASE

Guozhen Lu1

Abstract
This paper deals with the unique continuation problems for vari-
able coefficient elliptic differential equations of second order. We
will prove that the unique continuation property holds when the
variable coefficients of the leading term are Lipschitz continuous
and the coefficients of the lower order terms have small weak type
Lorentz norms. This will improve an earlier result of T. Wolff in
this direction.

1. Introduction

Unique continuation problems for variable coefficient elliptic differen-
tial equations of second order have been studied by many authors. We
refer the reader to [7], [8] and [9] for the most recent results and many
references therein.

The following result we prove here is an improvement of a theorem in
[9].

Theorem 1. If d ≥ 3, then there is a constant ε = εd,λ > 0 mak-
ing the following true. Assume that Ω ⊂ R

d is a domain and L =∑d
i,j=1 aij(x) ∂2

∂xi∂xj
is an elliptic operator with Lipschitz coefficients on

Ω, A : Ω → R and B : Ω → R are functions such that (1.1)-(1.3) below
hold:

lim
r→0

||A||Lp∞(D(a,r)) ≤ εd(1.1)

lim
r→0

||B||Ld∞(D(a,r)) ≤ εd(1.2)

1The author is supported in part by NSF Grant #DMS93-15963. AMS classification
35, 42.
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for each aεΩ, where p = d
2 if d ≥ 5, and p > 2 if d = 3 and d = 4.

Assume also that u ∈ W 22
loc(Ω) and satisfies

(1.3) |Lu| ≤ A|u| + B| � u|.

Then if u vanishes on an open set it vanishes identically.

In the above, “elliptic” means that the matrix aij(x) is real and posi-
tive definite for each x ∈ Ω, i.e., there exists a positive constant λ such
that

λ−1|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ λ|ξ|2

for each x ∈ Ω and ξ = (ξj)d
j=1 ∈ Rd; W 22 is the Sobolev space, i.e.,

functions whose second derivatives are in L2; ||A||Lq∞(D(a,r)) is the weak
type norm defined as follows:

||A||Lq∞(D(a,r)) = supλ>0

(
λq|{x ∈ D(a, r) : |A(x)| > λ}|)1/q.

This theorem is a refinement of the previous result of [9], in which
the theorem was shown to be true for A ∈ Lp

loc and B ∈ Ld
loc, and is

an extension to the variable coefficient case of the result in [3]. Such
type of extension to weak type zero order case was considered earlier
in [6], which sharpens the result of [2]. It is known that the Lipschitz
condition can not be replaced by any weaker Holder condition (see [4]).
For the previous known results for unique continuation in this direction,
we refer the reader to [7] and [8], where the unique continuation and

strong unique continuation when B = 0 and A ∈ L
d
2
loc for aij(x) ∈ C∞

were proved. For an alternate way of sharpening the result with Lp

potential by using Campanato-Morrey type condition, we refer the reader
to [1], [5], and [10].

We will use the covering lemma (Lemma 1’) of [9] and the method
of freezing coefficients on appropriate convex and compact sets to prove
our theorem. We will adapt the idea of bounding the weak Ld norm
of B from [3]. However, unlike the constant coefficient case (see [3]),
we will not be able to control the weak Ld norm of B alone when we
deal with the variable coefficient case because we can not drop the terms
containing the weak Lp norm of A due to the presence of other quantities
(see Section 3 for more details). Thus, in contrast to [3], in order to prove
Theorem 1 we shall show either the weak Lp (p is as in Theorem 1) norm
of the zero order term A or the weak Ld norm of the lower order term
B over the union of some (many enough) disjoint sets would not be too
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small if the unique continuation property failed. In any case, it would
lead to a contradiction and the theorem follows.

Section 2 of this paper is the Carleman inequalities needed for Theo-
rem 1, and Section 3 is the proof of the theorem.

One word about the notation: we always assume d ≥ 3 in this paper;
constants depend on the dimension d and the elliptic constant λ only
unless otherwise specified and may differ from lines to lines; we write
x 
 y to mean x ≤ Cy and x ≈ y for x 
 y and y 
 x.

Acknowledgement. I am greatly indebted to T. Wolff for his en-
couragement and helpful discussions.

2. Carleman type of inequalities

Hereafter, f∧ and fv denote the Fourier and inverse Fourier transforms
respectively. We now define the multiplier Nk by (ek·xu)∧ = Nk(ek·x �
u)∧, where

Nk(ξ) =
1

|ξ|2 − ik · ξ − |k|2 .

Take φ ∈ C∞
0 (D(0, 2)), and φ = 1 on D(0, 1), where D(0, a) = {x : |x| <

a}. Set φ(k)(x) = φ(|k|x). Then we can define three multiplier operators,
T , T1, and T2 by

T̂ f = Nkf̂ , T̂1f = Nk(1 − φk)f̂ , T̂2f = (Nk · φk)f̂ .

Thus we have the following lemma

Lemma 2.1. Suppose k ∈ Rd, E ⊂ Rd compact and convex, |E| ≥
|k|−d, u ∈ W 22 has compact support, then if

i) Suppose either a) d ≥ 5 and θ > d−4
d(d−1) ,

1
2 − 1

q = 1
t ≥ 2

d ; or b)

d = 3 or d = 4, 0 < θ < 1
d+1 and 1

2 − 1
q = 1

t > 1
2 − θ(d−1)

2 ; The
following holds:

||T2(ek·x � u)||q ≤ C−1
θ |k| d

t −2(|k|d|E|)θ||ek·x � u||2,E .

ii) Suppose either a) d ≥ 5, 1
2 − 1

q = 2
d and θ > d−4

d(d−1) , or b) d = 4,
2
d > 1

2 − 1
q > 1

2 − θ(d−1)
2 and 0 < θ < 1

d+1 ; or c) d = 3, 1
2 − 1

q >
1
2 −

θ(d−1)
2 and 0 < θ < 1

d+1 . If d = 3 or 4, assume |k| ≥ 1. Then

||ek·xu||q2 ≤ C−1
θ (|k|d|E|)θ||ek·x � u||2,E .
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We note in the above that || · ||qp is the Lorentz norm defined by
||f ||qp = (q

∫ ∞
0

sp−1|{x : |f(x)| > s}|p/qds)
1
p and ||f ||2,E = ||fg

E
||2

where g
E

is defined for the compact and convex set E by g
E
(x) =

min{T ≥ 1 : x ∈ TE} where TE is the expansion of E around the
barycenter of E.

Remark. 1) We note the values of θ > θd = max
(

d−4
d(d−1) , 0

)
in

Lemma (2.1) is sharper than those in the similar type of inequalities in
[9] (see Lemma 6.4 in [9]). However, it is of no essential use for the
present purpose. As long as we can take θ < 1

d , it will be good enough
in the later argument in Section 3.

2) In the above lemma (ii) if we set 1
2 − 1

q = 1
p , then we can certainly

take p = d
2 if d ≥ 5; p > 2 if d = 4 (θ can be as small as possible

provided that p > 2 is very close to 2); and p > 2 and any θ > 0 if d = 3
(actually p = 2 is allowed). In (i) of the lemma, we can take t < p for
the corresponding p we just mentioned.

3) We note we may assume k = e1 in proving lemma (2.1), since inequal-
ities (i) and (ii) a) are scale invariant and in (ii) b) and c), the scaling
works for |k| large.

Proof of Lemma (2.1):

Let N(ξ) = 1
|ξ|2−iξ1−1 = Ne1(ξ). Let also N1(ξ) = N(ξ) · (1 − φ)(ξ)

and N2(ξ) = N(ξ)φ(ξ), where φ(ξ) = φ(e1)(ξ) as before. Then

(2.2)
∣∣N1(ξ)

∣∣ ≤ (1 + |ξ|2)−1.

It is shown in Lemma 6.3 of [9] that

||(N2f̂)v||q1 ≤ C||f ||p1

provided

(2.3) 1 ≤ p1 ≤ s,
1
q1

<
1
p′1

+
1
2
− s′

2p′1
,

where s = 2d+2
d+3 is the Stein-Tomas exponent in the restriction theorem

for the Fourier transform, and p′ denotes the conjugate of p.
By duality,

(2.4) ||(N2f̂)v||p′
1
≤ C||f ||q′

1
.
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We note (2.3) is equivalent to

(2.5)
1
q′1

>
1
2

+
1
p′1

2
d− 1

and 1 ≤ p1 ≤ s.

We now let p1 = 2d
d+4 (which is less than s) and θ > d−4

d(d−1) when d ≥ 5.
Then by (2.5), once we select q1 such that 1

p′
1

2
d−1 < 1

q′
1
− 1

2 < θ, for such
q1 and p1 (2.4) holds.

Since N2(ξ) has compact support, then for any q ≥ p
′
1 we have

||(N2f̂)v||q ≤ C||(N2f̂)v||p′
1
≤ C||f ||q′

1

≤ C|E|
1

q′
1
− 1

2 ||f ||2,E ≤ C|E|θ||f ||2,E .

But 1
2 − 1

q ≥ 2
d is equivalent to q ≥ p

′
1, we are then done for the case

d ≥ 5 by scaling.
When d = 3 or d = 4, we let 0 < θ < 1

d+1 and q satisfy 1
2 − 1

q =
1
t > 1

2 − θ(d−1)
2 . Thus 1

q < θ(d−1)
2 . We can then pick p1 such that

1
q ≤ 1

p′
1

< θ(d−1)
2 because 1

p′
1

is increasing as p1 does and is at most
1
s′ = d−1

2d+2 . Consequently we can pick q1 such that 1
p′
1

2
d−1 < 1

q′
1
− 1

2 < θ.
Since q ≥ p1 and N2 has compact support, we will get

||(N2f̂)v||q ≤ C||(N2f̂)v||p′
1
≤ C||f ||q′

1
≤ C|E|θ||f ||2,E .

This proves (i) of Lemma (2.1).
We now give the proof of (ii) of lemma (2.1). By (2.2), N1(ξ) is a

Bessel potential of order 2. Thus for any q satisfying the assumption of
Lemma (2.1) (ii) we have

||(N1f̂)v||q ≤ C||f ||2,
which of course leads to the desired conclusion by combining with the
estimate for ||(N2f̂)v||q obtained in part (i).

We now fix p0 = 2d
d+2 and use p

′
0 = 2d

d−2 to express its conjugate. We
assume mk(ξ) = iξ−k

|ξ|2−iξk−|k|2 for k ∈ Rd, i.e., a multiplier such that

(ek·x � u)∧(ξ) = mk(ξ)(ek·x � u)∧(ξ)

for u ∈ C∞
0 (Rd), where f∧ is the Fourier transform of f . Set φ(k)(x) =

φ(|k|x) as before.
We now introduce the notations of three multiplier operators

(2.6) Ŝf = mkf̂ , Ŝ1f = mk(1 − φk)f̂ , Ŝ2f = mkφkf̂ .

Thus

ek·x � u = S(ek·x � u) = S1(ek·x � u) + S2(ek·x � u).

We have the following lemma:
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Lemma 2.7. If k ∈ Rd, E ⊂ Rd compact and convex set, |E| ≥
|k|−d, u ∈ W 22 has compact support. Then for any θ > d−2

d(d−1) , the
following two inequalities hold:

i) ||S2(ek·x � u)||q ≤ C|k| d
s −1(|k|d|E|)θ||ek·x � u||2,E provided 1

d ≤
1
2 − 1

q = 1
s

ii) ||ek·x � u||p′
02

≤ C(|k|d|E|)θ||ek·x � u||2,E.

We will prove Lemma (2.7) in the case k = e1 and then by the scaling
property the general case will follow. We need a closer look of the proof
of Lemma 6.4 in [9].

Proof: Recall, when k = e1,me1(ξ) = m(ξ) = iξ−e1
|ξ|2−iξ1−1 . Let m1(ξ) =(

1 − φ(ξ)
)
m(ξ), m2(ξ) = φ(ξ)m(ξ), where φ(ξ) = φe1(ξ). Then clearly,

(2.8)
∣∣m1(ξ)

∣∣ ≤ C(1 + |ξ|2)−1/2.

It is shown in Lemma 6.4 of [9] that

(2.9) ||(m2f̂)v||p′
0
≤ C||f ||r

provided 1
r > 1

2 + d−2
d(d−1) , where p′0 = 2d

d−2 .

Since m2 has compact support, then for any q ≥ p
′
0,

||(m2f̂)v||q ≤ C||(m2f̂)v||p′
0
≤ C||f ||r.

Note 1
2 − 1

p
′
0

= 1
d , thus 1

2 − 1
q ≥ 1

d is equivalent to q ≥ p
′
0.

Given any θ > (d−2)
d(d−1) , we can select r such that 1

2 + d−2
d(d−1) < 1

r < 1
2 +θ.

Thus, for so selected r, (2.9) holds. So for any q satisfying 1
2 − 1

q ≥ 1
d

||(m2f̂)v||q ≤ C||f ||r ≤ C|E|θ||f ||2,E .

Thus part (i) of lemma (2.7) will follow by scaling.
We now prove (ii) of Lemma (2.7). We also assume k = e1 first. Then

||(m1f̂)v||p′
02

≤ C||f ||2
since |m1(ξ)| ≤ (1 + |ξ|2)−1/2. Since the proof in [9] will apply to the
weak type version, thus

||(m2f
∧)v||p′

02
≤ C||f ||r2

if 1
2 + θ > 1

r > 1
2 + d−2

d(d−1) . So,

||(m2f̂)v||p′
02

≤ C|E| 1r − 1
2 ||f ||2,E ≤ C|E|θ||f ||2,E ,

then
||Sf ||p′

02
≤ C|E|θ||f ||2,E .

By scaling, this shows (ii) of Lemma (2.7).
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3. Proof of Theorem 1

We first make a reduction. Set ed = (0, · · · , 0, 1).

Lemma 3.1. To show Theorem 1, it is sufficient to show that for any
given λ > 0 there is ε > 0 such that if (3.2)-(3.6) below holds then u = 0,
where

(3.2) Ω = Rd\D(−ed,
1
2
), u : Ω → R

(3.3) suppu ⊂ D(−ed, 1), 0 ∈ suppu

(3.4) u ∈ W 22
loc(Ω)

(3.5) |Lu| ≤ A|u| + B| � u|,

where

(3.6) L =
d∑

i,j=1

aij(x)
d2

dxidxj
,

λ|ξ|2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ λ−1|ξ|2, ||aij ||Ω ≤ ε

where

||aij ||Ω = sup
x,y∈Ω

|aij(x) − aij(y)|
|x− y|

(3.7) ||A||Lp∞(Ω) ≤ ε, ||B||Ld∞(Ω) ≤ ε

where p is the same as in Theorem 1.

Proof of Lemma 3.1 follows from a modification of the reductions in
[9] and [3].

We now let K be the convex hull of Supp u
⋂
{xd ≥ −1/4}. Select

φ : Rd → R such that φ(x) = 0 when xd ≤ −1/3 and φ = 1 on a
neighborhood of ∂K. Set v = φu, then

(3.8) |Lv| ≤ A|v| + B| � v| + χ
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where χ ∈ L2 has the property:

suppχ ⊂ A1

⋃
A2

where A1 = D(−ed, 1
⋂
{x : −1/3 ≤ xd ≤ −1/4}, A2 = a compact subset

of IntK.
Let Γ be the cone {k ∈ Rd : kd ≥ 4

√
|k|2 − k2

d}.
We now let ε > 0 in Lemma (3.1) be small, M large and define

µ = (A|v| + B| � v| + εM−1/2|Hv|)2dx.

By Lemma 1’ (instead of Lemma 1) in [9], taking p = 2, C = D(
2Med,

2M
100

)
, then we can select {kj} and {Ej} with {Ej} disjoint, com-

pact and convex sets such that

(3.9)
M

2
≤ |kj | ≤ 2M,kj ∈ Γ

(3.10) ||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|)||L2(Rd\(1+T )Ej)

≤ 2−1/2e−1/2C−1T ||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|)||2,

provided T ≥ 0, and

(3.11)
∑

|Ej |−1 ≥ C−1Md

(3.12) diamEj ≤ CM−1/2

(3.13) Ej contains a disc of radius (CM)−1.

Because the family of weights {ek·x} is invariant by linear coordinate
changes, we note the Carleman inequalities in Lemmas (2.1) and (2.7)
remain valid if the Laplacian is replaced by any other constant coefficient
second order elliptic operator, with bounds depending on ellipticity. We
now let Lj be the constant coefficient operator obtained by freezing the
coefficients of L at the barycenter of Ej .

Besides (3.0)-(3.13), we furthermore have the following
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Lemma 3.14. Under the assumptions (3.2)-(3.7), we can select {kj}
and disjoint, compact and convex sets {Ej} satisfying (3.11)-(3.15)
and also the following inequalities (3.15)-(3.18) for any
θ1 > θd = max

(
d−4

d(d−1) , 0
)
, and θ2 > d−2

d(d−1) .

(3.15) ||A||Lp∞(Ej)(M
d|Ej |)θ1 + ||B||Ld∞(Ej)(M

d|Ej |)θ2 ≥ C1

(3.16) ||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1 + ||B||Ls(Ej)M

d
s −1(Md|Ej |)θ2 ≥ C2

(3.17) ||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1 + ||B||Ld∞(Ej)(M

d|Ej |)θ2 ≥ C3

(3.18) ||A||Lp∞(Ej)(M
d|Ej |)θ1 + ||B||Ls(Ej)M

d
s −1(Md|Ej |)θ2 ≥ C4

provided that t < p is very close to p and s < d.

Proof: To show (3.15), we will apply Lemmas (2.1) (ii) and (2.7) (ii)
and Lemmas (8.1) and (8.2) in [9] together with the properties (3.9)-
(3.13) of the sets {Ej} and kj . We also note below that 1

2 − 1
q = 1

p , p is
as in Theorem 1, and p

′
0 = 2d

d−2 .

||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|)||L2(Ej)

≤ ||A||Lp∞(Ej)||ekj ·xv||Lq2(Ej) + ||B||Ld∞(Ej)||ekj ·x � v||
L

p′
0
2
(Ej)

+ εM−1/2||ekj ·xHv||L2(Ej)


 ||A||Lp∞(Ej)(M
d|Ej |)θ1 ||ekj ·xLjv||2,Ej

+ ||B||Ld∞(Ej)(M
d|Ej |)θ2 ||ekj ·xLjv||2,Ej

+ ε||ekj ·xLjv||2,Ej
.

The last inequality follows from Lemmas (2.1) and (2.7) for Lj and by
using (3.12) after using Lemma (8.1) in [9]. On the other hand, by (3.6)
and (3.12), we have

|Ljv| ≤ |Lv| + CεM− 1
2 g

Ej
|Hv|.

Hence
|Ljv| ≤ A|v| + B| � v| + CεM− 1

2 g
Ej
|Hv| + χ.

Therefore, by dropping χ in view of Lemma (8.2) in [9] and using the
exponential decay property (3.10), (3.19) is bounded by

[
||A||Lp∞(Ej)(M

d|Ej |)θ1 + ||B||Ld∞(Ej)(M
d|Ej |)θ2 + ε

]
· ||ekj ·x(A|v| + B| � v| + CεM− 1

2 g
Ej
|Hv|)||L2(Ej)
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Hence we get by cancellation

||A||Lp∞(Ej)(M
d|Ej |)θ1 + ||B||Ld∞(Ej

(Md|Ej |)θ2 + ε ≥ C1.

Since ε is assumed to be arbitrarily small, we get

||A||Lp∞(Ej)(M
d|Ej |)θ1 + ||B||Ld∞(Ej)(M

d|Ej |)θ2 ≥ C1.

This shows (3.15).
We now recall the definitions of the operators S1, S2, T1, T2 defined

in section 2 and p is as in the statement of Theorem 1, and temporarily
denote 1

2 − 1
q = 1

p , 1
2 − 1

q1
= 1

t > 1
p , and 1

2 − 1
q2

= 1
s > 1

d . We then apply
Lemmas (2.1) (i) and (2.7) (i), Lemmas (8.1) and (8.2) in [9], and also
(2.2) and (2.8).

||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|)||L2(Ej)

≤ |||AT1(ekj ·xLjv)| + |BS1(ekj ·xLjv)|||L2(Ej)

+ ||AT2(ekj ·xLjv)||L2(Ej) + ||BS2(ekj ·xLjv)||L2(Ej)

+ ||εM−1/2ekj ·xHv||L2(Ej)

≤ ||A||Lp∞(Ej)||T1(ekj ·xLjv)||q + ||B||Ld∞ ||S1(ekj ·xLjv)||p′
02

+ ||A||Lt(Ej)||T2(ekj ·xLjv)||Lq1 (Ej) + ||B||Ls(Ej)||S2(ekj ·xLjv)||Lq2 (Ej)

+ ε||ekj ·xLjv||2,Ej


 ||A||Lp∞(Ej)||ekj ·xLjv||L2 + ||B||Ld∞(Ej)||ekj ·xLjv||L2

+ ||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1 ||ekj ·xLjv||2,Ej

+ ||B||Ls(Ej)||ekj ·xLjv||2,Ej
M

d
s −1(Md|Ej |)θ2 + ε||ekj ·xLjv||2,Ej



[
||A||Lp∞(Ej) + ||B||Ld∞(Ej) + ||A||Lt(Ej)M

d
t −2(Md|Ej |)θ1

+ ||B||Ls(Ej)M
d
s −1(Md|Ej |)θ2 + ε

]
||ekj ·xLjv||2,Ej



[
||A||Lp∞(Ej) + ||B||Ld∞(Ej) + ||A||Lt(Ej)M

d
t −2(Md|Ej |)θ1

+ ||B||Ls(Ej)M
d
s −1(Md|Ej |)θ1 + ε

]
· ||ekj ·x(A|v| + B| � v| + CεM− 1

2 g
Ej
|Hv|)||L2(Ej).

Thus by cancellation, we get

||A||Lp∞(Ej) + ||B||Ld∞(Ej) + ||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1

+ ||B||Ls(Ej)M
d
s −1(Md|Ej |)θ2 + ε ≥ C2.
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Since ||A||Lp∞(Ej) and ||B||Ld∞(Ej) and ε are very small by assumption
(see (3.7) in Lemma (3.1)), we may drop them and get

||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1 + ||B||Ls(Ej)M

d
s −1(Md|Ej |)θ2 ≥ C2.

This shows (3.16).
We now prove (3.17). We keep the same notation of p, q, and q1 as in

the proof of (3.16) above.

||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|)||L2(Ej)

≤ ||A|T1(ekj ·xLjv)| + A|T2(ekj ·xLjv)|
+ B|ekj ·x � v| + εM−1/2|Hv|||L2(Ej)

≤ ||A||Lp∞(Ej)||T1(ekj ·xLjv)||Lq(Ej) + ||A||Lt(Ej)||T2(ekj ·xLjv)||Lq1 (Ej)

+ ||B||Ld∞(Ej)||ekj ·x � v||
L

p′
0
2
(Ej)

+ ε||ekj ·xLjv||2,Ej


 ||A||Lp∞ ||ekj ·xLjv||2,Ej + ||A||Lt(Ej)M
d
t −1(Md|Ej |)θ1 ||ekj ·xLjv||2,Ej

+ ||B||Ld∞(Ej)(M
d|Ej |)θ2 ||ekj ·xLjv||2,Ej

+ ε||ekj ·xLjv||2,Ej



[
||A||Lp∞(Ej) + ||A||Lr(Ej)M

d/r−1(Md|Ej |)θ1

+ ||B||Ld∞(Ej)(M
d|Ej |)θ2

+ ε
]
· ||ekj ·x(A|v| + B| � v| + CεM− 1

2 g
Ej
|Hv|)||L2(Ej).

By cancellation, we get

||A||Lp∞(Ej) + ||A||Lt(Ej)M
d
t −1(Md|Ej |)θ1

+ ||B||Ld∞(Ej)(M
d|Ej |)θ2 + ε ≥ C3.

By dropping ||A||Lp∞(Ej) and ε since they are very small, we get

||A||Lt(Ej)M
d
t −2(Md|Ej |)θ1 + ||B||Ld∞(Ej)(M

d|Ej |)θ2 ≥ C3

this is (3.17)
Finally, we prove (3.18). We argue as follows:

||ekj ·x(A|v| + B| � v| + εM−1/2|Hv|||L2(Ej)

≤ ||A||Lp∞(Ej)||ekj ·xv||Lq2(Ej) + ||BS1(ekj ·xLjv)||L2(Ej)

+ ||BS2(ekj ·xLjv)||L2(Ej) + ε||ekj ·xLjv||2,Ej


 ||A||Lp∞(Ej)(M
d|Ej |)θ1 ||ekj ·xLjv||2,Ej + ||B||Ld∞(Ej)||ekj ·xLjv||L2

+ ||B||Ls(Ej)(M
d|Ej |)θ2M

d
s −1||ekj ·xLjv||2,Ej + ε||ekj ·xLjv||2,Ej



[
||A||Lp∞(Ej)(M

d|Ej |)θ1

+ ||B||Ld∞(Ej) + ||B||Ls(Ej)(M
d|Ej |)θ2M

d
s −1

+ ε
]
· ||ekj ·x(A|v| + B| � v| + CεM− 1

2 g
Ej
|Hv|)||L2(Ej).
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By cancellation again, we get

||A||Lp∞(Ej)(M
d|Ej |)θ1

+ ||B||Ld∞(Ej) + ||B||Ls(Ej)(M
d|Ej |)θ2M

d
s −1 + ε ≥ C4.

By dropping ε and ||B||Ld∞(Ej) we get

||A||Lp∞(Ej)(M
d|Ej |)θ1 + ||B||Ls(Ej)(M

d|Ej |)θ2M
d
s −1 ≥ C4.

this shows (3.18).

Lemma 3.20. Under the assumptions (3.2)-(3.7), we can either se-
lect a sequence of {Ej} satisfying (3.9)-(3.13) such that (3.21) and (3.22)
below hold:

||A||Lp∞(Ej) ≥ C−1(Md|Ej |)−θ1(3.21)

||A||Lt(Ej) ≥ C−1(Md|Ej |)−θ2M2− d
t(3.22)

for any θ1 > θd = max
(

d−4
d(d−1) , 0

)
provided t < p and very close to p;

or a sequence of {Ej} satisfying (3.9)-(3.13) but such that (3.23) and
(3.24) below hold:

||B||Ld∞(Ej) ≥ C−1(Md|Ej |)−θ2(3.23)

||B||Ls(Ej) ≥ C−1(Md|Ej |)−θ2M− d
s +1(3.24)

for any θ2 > d−2
d(d−1) provided s < d.

Proof: Take C = min{C1, C2, C3, C4} where C1, C2, C3 and C4 are
constants in (3.15)-(3.18).

Given any j, if

||A||Lt(Ej)(M
d|Ej |)θ1M

d
t −2 ≤ C/2

then (3.23) and (3.24) follow from this and (3.16) and (3.17).
If

(3.25) ||A||Lt(Ej)(M
d|Ej |)θ1M

d
t −2 > C/2

then we consider (3.15) and (3.18). If

(3.26) ||A||Lp∞(Ej)(M
d|Ej |)θ1 > C/2

then combining (3.25) and (3.26) we will get (3.21) and (3.22). If

(3.27) ||A||Lp∞(Ej)(M
d|Ej |)θ1 ≤ C/2

then by (3.27), (3.15) and (3.18), we will get (3.23) and (3.24).
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Lemma 3.28. Under the assumptions (3.2)-(3.7), we can either se-
lect a sequence of {kj} and disjoint compact convex sets of {Ej} satisfy-
ing (3.9)-(3.13) and there exist θ11, θ12 with θd < θ11, θ12 < 1

d and t < p
such that for each such j there exists some λj satisfying

(3.29) |{x ∈ Ej ; |A(x)| > λj}| ≥ C−1
θ11

λ−p
j (Md|Ej |)−pθ11

and

(3.30) C−1(Md|Ej |)
−θ11p−1

p M
d
p ≤ λj ≤ C(Md|Ej |)

θ12t

p−t M
d
p

or select a sequence of {kj} and {Ej} satisfying (3.9)-(3.13) and there
exist θ21, θ22 with d−2

d(d−1) < θ21, θ22 < 1
d and s < d, such that for each

such j there exists some λj satisfying (3.31)-(3.32) below:

(3.31) |{x ∈ Ej : |B(x)| > λj}| ≥ C−1
θ21

λ−d
j (Md|Ej |)−dθ21

(3.32) C−1(Md|Ej |)
−θ21d−1

d M ≤ λj ≤ C(Md|Ej |)
θ22s

d−s M

We note here that if (3.23) and (3.24) in Lemma (3.20) are true, then
(3.31) and (3.32) follow as shown in [3]. We can also show that if (3.21)
and (3.22) in Lemma (3.20) hold, then (3.29) and (3.30) also hold. Since
the proof is quite similar, we omit the details.

By Lemma (3.28) and the combinatorial lemma proved in [3], we will
get the proof of Theorem 1. We omit the details here.
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