OSCILLATION OF SOLUTIONS OF SOME NONLINEAR DIFFERENCE EQUATIONS

Zdzisław Szafrański and Błażej Szmanda

Abstract _

Sufficient conditions for the oscillation of some nonlinear difference equations are established.

1. Introduction

In this note we consider the nonlinear difference equation of the form

(1)
$$\Delta(r_n \Delta x_n) + q_n f(x_{n-\tau_n}) = 0, \quad n = 0, 1, 2, \dots$$

where Δ denotes the forward difference operator: $\Delta v_n = v_{n+1} - v_n$ for any sequence (v_n) of real numbers; (q_n) is a sequence of real numbers, (τ_n) is a sequence of integers such that

$$\lim_{n \to \infty} (n - \tau_n) = \infty,$$

 (r_n) is a sequence of positive numbers and

$$R_n = \sum_{k=0}^{n-1} \frac{1}{r_k} \to \infty, \text{ as } n \to \infty.$$

 $f: R \to R$ is a continuous with u f(u) > 0 $(u \neq 0)$.

By a solution of Equation (1) we mean a sequence (x_n) which is defined for

$$n \ge \min_{i \ge 0} (i - \tau_i)$$

and satisfies Equation (1) for all large n.

A nontrivial solution (x_n) of (1) is said to be oscillatory if for every $n_0 > 0$ there exists an $n \ge n_0$ such $x_n x_{n+1} \le 0$. Otherwise it is called nonoscillatory.

In several recent papers the oscillatory behaviour of solutions of nonlinear difference equations have been discussed e.g. see [1]-[6].

Our purpose in this paper is to give the sufficient conditions for the oscillation of solutions of Equation (1). The results obtained here extend those in [6].

2. Main results

Theorem 1. Assume that

(i) $q_n \ge 0$ and $\sum_{n=\infty}^{\infty} q_n = \infty$, (ii) $\lim_{|u|\to\infty} \inf |f(u)| > 0$.

Then every solution of Equation (1) is oscillatory.

Proof: Assume, that Equation (1) has nonoscillatory solution (x_n) , and we assume that (x_n) is eventually positive. Then there is a positive integer n_0 such that

(2)
$$x_{n-\tau_n>0} \text{ for } n \ge n_0$$

From the Equation (1) we have

$$\Delta(r_n \Delta x_n) = -q_n f(x_{n-\tau_n}) \le 0, \quad n \ge n_0,$$

and so $(r_n \Delta x_n)$ is an eventually nonincreasing sequence. We first show that

$$r_n \Delta x_n \ge 0$$
 for $n \ge n_0$.

In fact, if there is an $n_1 \ge n_0$ such that $r_{n_1}\Delta x_{n_1} = c < 0$ and $r_n\Delta x_n \le c$ for $n \ge n_1$ that is

$$\Delta x_n \le \frac{c}{r_n}$$

and hence

$$x_n \le x_{n_1} + c \sum_{k=n_1}^{n-1} \frac{1}{r_k} \to -\infty \text{ as } n \to \infty$$

which contradicts the fact that $x_n > 0$ for $n \ge n_1$. Hence $r_n \Delta x_n \ge 0$ for $n \ge n_0$. Therefore we obtain

$$x_{n-\tau_n} > 0, \quad \Delta x_n \ge 0, \quad \Delta(r_n \Delta x_n) \le 0 \text{ for } n \ge n_0.$$

Let

$$L = \lim_{n \to \infty} x_n.$$

Then L > 0 is finite or infinite.

Case 1. L > 0 is finite.

From the continuity of function f(u) we have

$$\lim_{n \to \infty} f(x_{n-\tau_n}) = f(L) > 0.$$

Thus, we may choose a positive integer $n_3 \ (\geq n_0)$ such that

(3)
$$f(x_{n-\tau_n}) > \frac{1}{2}f(L) \quad n \ge n_3.$$

By substituting (3) into Equation (1) we obtain

(4)
$$\Delta(r_n \Delta x_n) + \frac{1}{2} f(L) q_n \le 0, \quad n \ge n_3.$$

Summing up both sides of (4) from n_3 to $n \geq n_3$, we obtain

$$r_{n+1}\Delta x_{n+1} - r_{n_3}\Delta x_{n_3} + \frac{1}{2}f(L)\sum_{i=n_3}^n q_i \le 0$$

and so

$$\frac{1}{2}f(L)\sum_{i=n_{3}}^{n}q_{i}\leq r_{n_{3}}\Delta x_{n_{3}}, \quad n\geq n_{3},$$

which contradicts (i).

Case 2. $L = \infty$.

For this case, from the condition (ii) we have

$$\lim_{n \to \infty} \inf f(x_{n-\tau_n}) > 0$$

and so we may choose a positive constant c and a positive integer n_4 sufficiently large such that

(5)
$$f(x_{n-\tau_n}) \ge c \text{ for } n \ge n_4.$$

Substituting (5) into Equation (1) we have

$$\Delta(r_n \Delta x_n) + cq_n \le 0, \quad n \le n_4.$$

Using the similar argument as that of Case 1 we may obtain a contradiction to the condition (i). This completes the proof. \blacksquare

Theorem 2. Assume, that (iii) $q_n \ge 0$ and $\sum_{n=1}^{\infty} R_n q_n = \infty$, then every bounded solution of (1) is oscillatory.

Proof: Proceeding as in the proof of Theorem 1 with assumption that (x_n) is a bounded nonoscillatory solution of (1) we get the inequality (4) and so we obtain

(6)
$$R_n\Delta(r_n\Delta x_n) + \frac{1}{2}f(L)R_nq_n \le 0, \quad n \ge n_3.$$

It is easy to see that

(7)
$$R_n \Delta(r_n \Delta x_n) \ge \Delta(R_n r_n \Delta x_n) - r_n \Delta x_n \Delta R_n.$$

From inequalities (6) and (7) we deduce

$$\sum_{k=n_3}^{n} \Delta(R_k r_k \Delta x_k) - \sum_{k=n_3}^{n} \Delta x_k + \frac{1}{2} f(L) \sum_{k=n_3}^{n} R_q q_k \le 0 \quad n \ge n_3,$$

which implies

$$\frac{1}{2}f(L)\sum_{k=n_3}^n R_k q_k \le x_{n+1} + R_{n_3}r_{n_3}\Delta x_{n_3} - x_{n_3}, \quad n \ge n_3.$$

Hence there exists a constant c such that

$$\sum_{k=n_3}^n R_k q_k \le c \text{ for all } n \ge n_3,$$

contrary to the assumption of the theorem. \blacksquare

Theorem 3. Assume that

- (iv) $(n \tau_n)$ is nondecreasing, where $\tau_n \in \{0, 1, 2, ...\}$, (v) there is a subsequence of (r_n) , say (r_{n_k}) such that $r_{n_k} \leq 1$ for $k = 0, 1, 2, \dots,$ (vi) $\sum_{n=0}^{\infty} q_n = \infty,$
- (vii) \overline{f} is nondecreasing and there is a nonnegative constant M such that

(8)
$$\lim_{u \to 0} \sup \frac{u}{f(u)} = M.$$

Then the difference (Δx_n) of every solution (x_n) of Equation (1) oscillates.

Proof: If not, then Equation (1) has a solution (x_n) such that its difference (Δx_n) is nonoscillatory. Assume first that the sequence (Δx_n) is eventually negative. Then there is a positive integer n_0 such that

$$\Delta x_n < 0 \quad n > n_0$$

and so (x_n) is decreasing for $n \ge n_0$ which implies that (x_n) is also nonoscillatory. Set

(9)
$$w_n = \frac{r_n \Delta x_n}{f(x_{n-\tau_n})}, \quad n \ge n_1 \ge n_0.$$

Then

(10)

$$\Delta w_n = \frac{r_{n+1}\Delta x_{n+1}}{f(x_{n+1-\tau_{n+1}})} - \frac{r_n\Delta x_n}{f(x_{n-\tau_n})}$$

$$= \frac{\Delta(r_n\Delta x_n)}{f(x_{n-\tau_n})} + r_{n+1}\Delta x_{n+1}\frac{f(x_{n-\tau_n}) - f(x_{n+1-\tau_{n+1}})}{f(x_{n+1-\tau_{n+1}})f(x_{n-\tau_n})}$$

$$\leq \frac{\Delta(r_n\Delta x_n)}{f(x_{n-\tau_n})} = -q_n, \quad n \ge n_1.$$

Summing up both sides of (10) from n_1 to n, we have

$$w_{n+1} - w_{n_1} \le -\sum_{i=n_1}^n q_i$$

and, by (vi), we get

(11)
$$\lim_{n \to \infty} w_n = -\infty,$$

which implies that eventually

(12)
$$f(x_{n-\tau_n}) > 0$$
 and therefore $x_{n-\tau_n} > 0$.

By (11), we can choose $n_2 (\geq n_1)$ such that

$$w_n \le -(M+1), \quad n \ge n_2.$$

That is

(13)
$$r_n \Delta x_n + (M+1)f(x_{n-\tau_n}) \le 0, \quad n \ge n_2.$$

 Set

$$\lim_{n \to \infty} x_n = L.$$

Then $L \ge 0$. Now we prove that L = 0. If L > 0, then we have $\lim_{n \to \infty} f(x_{n-\tau_n}) = f(L) > 0,$

by the continuity of f(u). Choosing an n_3 sufficiently large, such that

(14)
$$f(x_{n-\tau_n}) > \frac{1}{2}f(L), \quad n \ge n_3$$

and substituting (14) into (13), we have

(15)
$$\Delta x_n + \frac{1}{2r_n}(M+1)f(L) \le 0, \quad n \ge n_3.$$

Summing up both sides of (15) from n_3 to n we get

$$x_{n+1} - x_{n_3} + \frac{1}{2}(M+1)f(L)\sum_{i=n_3}^n \frac{1}{r_i} \le 0$$

which implies that

$$\lim_{n \to \infty} x_n = -\infty.$$

This contradicts (12). Hence

$$\lim_{n \to \infty} x_n = 0.$$

By the assumptions we have

$$\lim_{n \to \infty} \sup \frac{x_{n-\tau_n}}{f(x_{n-\tau_n})} \le M$$

From this we can choose n_4 , such that

$$\frac{x_{n-\tau_n}}{f(x_{n-\tau_n})} < M+1, \quad n \ge n_4.$$

That is

(16)

$$x_{n-\tau_n} < (M+1)f(x_{n-\tau_n}), \quad n \ge n_4,$$

and so from (13) we get

$$r_n \Delta x_n + x_{n-\tau_n} < 0, \quad n \ge n_4.$$

In particular, from (16) for a subsequence (r_{n_k}) satisfying the condition (v), we have

$$x_{n_k+1} - x_{n_k} + x_{n_k-\tau_{n_k}} \le r_{n_k}(x_{n_k+1} - x_{n_k}) + x_{n_k-\tau_{n_k}} < 0,$$

for k sufficiently large, which implies that

$$0 < x_{n_k+1} + (x_{n_k-\tau_{n_k}} - x_{n_k}) < 0$$

for all large k. This is a contradiction.

The case that (Δx_n) is eventually positive can be treated in a similar fashion and so the proof of Theorem 3 is completed.

132

- 1. J. W. HOOKER AND W. T. PATULA, Second order nonlinear difference equation: oscillation and asymptotic behaviour, *J. Math. Anal. Appl.* **91** (1983), 9–29.
- 2. J. POPENDA, Oscillation and nonoscillation theorems for second order difference equations, J. Math. Anal. Appl. 123 (1987), 34–38.
- Z. SZAFRAŃSKI, On some oscillation criteria for difference equations of second order, *Fasc. Math.* 14 (1985), 91–99.
- 4. B. SZMANDA, Oscillation criteria for second order nonlinear equations, *Ann. Polon. Math.* **43** (1983), 225–235.
- 5. B. SZMANDA, Oscillatory behaviour of certain difference equations, *Fasc. Math.* **21** (1990), 65–78.
- 6. Z. WANG AND J. YU, Oscillation criteria for second order nonlinear difference equations, *Funkcialaj Ekvacioj* **34** (1991), 313–319.

Institute of Mathematics Poznań University of Technology 60-965 Poznań POLAND

Primera versió rebuda el 15 de Maig de 1995, darrera versió rebuda el 18 d'Octubre de 1995